

University of Wisconsin-Madison Space Science and Engineering Center

### **Cooperative Institute for Meteorological Satellite Studies**



### -WVSS-II Moisture Observations – A Tool for Validating and Monitoring Satellite Moisture Data

Ralph Petersen<sup>1</sup>, Lee Cronce<sup>1</sup>, Erik Olson<sup>1</sup>, Wayne Feltz<sup>1</sup>, David Helms<sup>2</sup> and Randy Baker<sup>3</sup>

<sup>1</sup> Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin – Madison <sup>2</sup> NOAA, National Weather Service, Office of Science and Technology, Silver Spring, Maryland <sup>3</sup> United Parcel Service, Louisville, Kentucky



A-synoptic Moisture Soundings Readily Available for Operational Forecasting & High-accuracy Moisture Validations



### **A Brief Historical Perspective**

- In the mid-1980s, the FAA formed the "Aviation Weather Forecasting Task Force" led by John McCarthy of NCAR.
- At that time, flight level wind and temperature forecast errors were costing airlines major losses.

e.g., Trans-oceanic flights often made unscheduled 10 refueling stops in route, requiring overnight lodging for passengers and equipment rescheduling



## Aircraft Data Collection has been a Joint Industry/Government effort

 Airlines offered to help.
 – Several airlines were already downlinking

<u>automated</u> temperature



and wind data for their own internal use

- At this time, most major airlines had in-house meteorological staffs – and used the aircraft wind/temperature data to update their own systems flight plans
  - Resulted in financial advantage to airlines collecting data
  - Airlines were reluctant to share data with airlines that didn't invest in down-linking costs.
  - Relied upon existing digital air-to-ground communications

## US and European Programs consolidated under WMO AMDAR Program

- Airlines offered to help.
  - Basic AMDAR Data
    (Flight Level (Pressure),
    Temperature and Wind)
    are copies of observations
    taken for other purposes



- Commercial aircraft already had accurate temperature and wind observations for flight efficiency
  - Pressure to determine altitude
  - Jet Engine performance is related to the temperature difference between the engine and the atmosphere
  - Flight efficiency depends on minimizing head winds

#### The benefits of AMDAR data are global and large for forecasts out to 48 hour.



### The benefits of AMDAR data are global and large for forecasts out to 48 hour.



# AMDAR data <u>have</u> help Improve in NWP over past 10 years



SAA pilot said recently that flight times from South Africa to Australia are now typically within 1 minute of predictions



02-Oct-2008 0C:00:00 - 02-Oct-2008 23:59:55 (210175 obs loaced, 89990 in range, 1234 shown) NOAA / ESRL / 65D ANNude: -1000 ft. to 9003 ft. All dele

### **Measuring Moisture from Commercial Aircraft**

- Efforts underway for over a decade
  - Research instruments not appropriate for "day-today", "real world" application
  - Initial experiments were made using a "standalone" Temperature/Relative Humidity sensor called the Water Vapor Sensing System (WVSS-I)
    - Used humidity sensors "similar" to those used on radiosondes
      - Test results showed:
        - » Substantial Biases and RMS values that exceeded WMO specification
        - » Systems became contaminated by everyday airport "gunk", e.g. de-icer, dirt on runways, etc.

## **Measuring Moisture from Commercial Aircraft**

- Efforts underway for over a decade
  - Second-generation Water Vapor Sensing System (WVSS-II) measures <u>Mixing Ratio</u> directly
    - Uses a laser-diode system to measure number of water molecules passing sensor
    - Testing on UPS 757s
      - Used by UPS for fog forecasting
      - Final tests in 2009-2010
      - Re-engineered electronics
      - Improved mechanics
    - New installation at SouthWest Airlines



## **EXPERIMENTAL DESIGN**

Most recent Independent ground-truth assessments of the WVSS-II systems have been conducted for three periods:

- November 2009,
- May-June 2010, and
- August 2010.



# The WVSS-II humidity data were compared with rawinsonde and ground based remote sensing systems.

- Between 15 and 20 different UPS B757 aircraft provided WVSS-II data --Data available via GTS

Rawinsondes observations were made at the UPS hub in Rockford, Illinois – where about 20-25% of the WVSS-II equipped planes land / take off daily.

## **2005 Specific Humidity Profiles Varied**

5000[

4000

3000

2000

1000

260

Time/Tail # 0915/97

0902/701

0837/380

0833/381

270

280

Dry Bulb Temperature (K)

290

300

Altitude(m)

22 Jun 2005 0915 UTC

......

solid: ascending

dashed: descending



## Some WVSS-II profiles matched the rawinsonde profile well.

(Profiles 16 and 39 min before rawinsonde)

#### Others show much greater spread between individual aircraft and the rawinsonde report.

22 Jun 2005 0915 UTC

5000 [

4000

3000

2000

1000

0

5

10

Specific Humidity (g/kg)

15

20

25

Altitude(m)

(Of 3 'outlying' reports, one was taken at the exact rawinsonde starting time.)

### **2005 Test – Conclusions**

• Moisture observations made by WVSS-II equipped commercial (UPS) aircraft show a small, but positive bias in the boundary layer, with slightly larger values above.

• Specific humidity RMS and Standard Deviations average around 1 g/kg at all levels.

#### <u>But:</u>

• The <u>accuracy</u> of individual WVSS-II instruments <u>varied greatly</u> from one aircraft to another.

•*More than 1/3 showed unacceptably* <u>*large biases*</u> *and were* <u>*not included*</u> *in the evaluation*.

•<u>Engineering problems</u> <u>contaminated low values</u>

•<u>Encoding problems reduced</u> <u>reporting accuracy of high values</u>



## **Nov 2006 Validation Results**



#### Random Differences:

Differences between aircraft data and rawinsonde reports showed variability of 0.5 to 0.8 g/kg from the surface to 950 hPa. Above 950 hPa, SD values decrease to between 0.3 and 0.5 g/kg

Tests excluded high/low moisture environments

### **Comparing 2005 & 2006 Validation Results** 2005

2006



Engineering changes made after the 2005 test were at least partially successful in improving WVSS-II data taken, but only during ascent.

- Modified systems produce consistent small negative Biases at all levels.
- Random error component improved ~0.4 g/kg, a 50-65% improvement

BUT:

Still unacceptably numbers of 'bad' systems and high degradation rate Only ascending reports > 2 g/kg and <10 g/kg – due to known system deficiencies.

### -- Remaining WVSS-II data problems addressed --

Three re-engineered units to NOAA were thoroughly tested before widespread aircraft installation in 2009-2010:

- Data processing hardware replaced with digital systems unaffected by ambient temperature

- Issues regarding water accumulating in intake tubes corrected.
- All moisture was removed from laser chambers.
- Every laser was tested for long-term stability before use.
  - Assessed:
    - In Chamber at the NOAA's Upper-Air Facility
    - In Chamber at Deutscher Wetterdienst
    - Versus chilled mirror on P-3
    - In long-term laser stability tests

- Reporting Precision issues resolved on all UPS aircraft

#### In 2009-2010:

-Replaced 25 WVSSII units on UPS B-757s -Installing 31 units on Southwest B-737s



### Chamber Experiments by NOAA and DWD were Very Positive



Specific Humidity below ~0.03 g/kg

### Initial Comparisons of re-engineered WVSS-II data with co-located surface (METAR) reports

First new WVSS-II unit on UPS aircraft agrees very closely with time/space co-located night-time surface observations from September 2009:

Mixing Ratio Bias ~ 0.2 g/kg Mixing Ratio Standard Deviation ~ 0.4 g/kg



### **Nov 2009-2010 Validation Results** Direct Sounding Intercomparisons



**Direct Data Comparison:** 

Aircraft data generally fell between bounding Rawinsonde reports

### **Nov 2009-2010 Validation Results** Direct Sounding Intercomparisons



**Direct Data Comparison:** 

Aircraft data generally fell between bounding Rawinsonde reports

Large variability within Moist regimes led to large Specific Humidity differences

### Nov 2009-2010 Validation Results Summary of Direct Specific Humidity Intercomparisons



#### Differences showed:

Aircraft data and rawinsonde reports agreed best in middle SH ranges Positive WVSS-II biases at low rawinsonde values (low bias improbable) Few moist outliers from one case in 10-12 g/kg range – good for moister data

### Nov 2009-2010 Validation Results

**Direct Specific Humidity Intercomparisons by Relative Humidity** 



#### Differences showed:

Small positive Bias across all RH ranges Random Errors average ~0.5-0.7 g/kg (low bias improbable) Higher Random Errors between 20-25% RH and Near Saturation

### **Spring 2010 Validation Results**

#### Direct Temperature and Specific Humidity Intercomparisons All Spring Data Only



Differences from Rawinsondes showed: Warm Temperature Bias at all levels Large Temperature variability Random SH Differences average ~ ± 0.5 g/kg

Mean Distance (km) 10 20 30 40 50 60 RFD\_AIIData All WVSS-II Matches **Specific Humidity** 300 🗖 300 Sonde RH(%) Diff < 7 Minimum #/bin: 10 \_♦ SH (g/kg) RMS Sonde dRH/dPley < 10 🛶 SH (g/kg) Bias ♦ =♦ Avg dTime (min) (Excludes cases with SH (a/ka) Stde ime: +/- 60 min 400 400 Distance: +/- 50 km large time and vertical Sondes = 44rawinsonde differences) 500 500 500 Systematic Differences: 6 (hPa) 600 600 600 WVSS-II Biases at low levels <sup>5</sup>ressure ressure of 0.1 to +0.4 g/kg 700 700 700 from surface to 850 hPa. 800 800 800 ±0.2 g/kg above 900 900 900 Total RMS = 0.536603+/- RMS of hourly rate Total StDev = 0.499848of change of sondes Total Bias = 0,195182 1000 1000 10 20 30 40 50 60 0 wvss-ii Vaisala Sp fic Humidity (a/ka`

Random Differences (Including Dry/Moist Environments):

# Matches

Differences between aircraft data and rawinsonde reports generally showed variability of 0.3 to 0.7 g/kg from the surface to 600 hPa – decreases aloft.

StdDev slightly larger than 1-hour variability between bounding rawinsonde reports (gray shading).

Note: Fewer intercomparisons near 800 hPa and above 700 hPa. Greater time and space separation above 650 hPa.

**Relative Humidity** (From WVSS-II Humidity & Aircraft Temperature)

#### Systematic Differences:

WVSS-II RH Biases were very small positive (0 – ±3%) from surface to 650 hPa.

Negative maximum at observation minimum.



#### Random Differences (Including Dry/Moist Environments):

Differences between aircraft data and rawinsonde reports generally showed variability of 5 to 8% from the surface to 750 hPa.

Above 750 hPa, RH StdDev increases as number of matches decreases and space/time distance increases.

Differences slightly larger than 1-hour variability between bounding rawinsonde reports (gray shading).

### Temperature

#### Systematic Differences:

Aircraft Temperature Biases at low levels of 0.2 to +0.7°C. from surface to 700 hPa.

Net neutral above that level



#### Random Differences :

Differences between aircraft data and rawinsonde reports generally showed variability of 0.8 to +1.5°C from the surface to 850 hPa.

Above 850 hPa, T SdtDev stabilizes to about 1.0°C

Differences larger than 1-hour variability between bounding rawinsonde reports (gray shading).

**Relative Humidity** (From WVSS-II Humidity & Rawinsonde Temperature)

Systematic Differences:

RH Biases due to WVSS-II were small positive (1 – ±4%) from surface to 650 hPa.

Negative maximum at observation minimum.



Random Differences (Including Dry/Moist Environments):

Differences between aircraft data and rawinsonde reports generally showed variability of 6 to 9% from the surface to 750 hPa.

Above 750 hPa, RH StdDev increases as number of matches decreases and space/time distance increases.

Random Differences slightly larger than 1-hour variability between bounding rawinsonde reports (gray shading).

### **Specific Humidity Variability amongst WVSS-II Observations**



**RMS Differences show** (Including Dry/Moist Environments):

0-15 minute / 0-20 km variability of ~0.18 g/kg

Variability nearly doubled for 0-60 time window

Variability increased for larger distance windows: 30% increase for short time windows 10% increase for longer time windows

### Specific Humidity Variability amongst WVSS-II Observations



RMS Differences show (Including Dry/Moist Environments):

WVSS-II observations agree extremely well with one another

**Atmospheric Variability:** 

- More than doubles from 0-15 to 30-60 minute time intervals
- Smaller increases over distance, but larger for short time spacing

For exact co-locations, operational WVSS-II instrument errors should be ~0.1 g/kg

#### Summary

Engineering/mechanical issues with WVSS-II sensors have been resolved

Tests made over wide range of moisture conditions show:

Sensors agreed extremely closely with each other
 Overall Specific Humidity (SH) RMS < 0.2 g/kg</li>

☑ Sensors agreed well with co-located rawinsonde observations Overall SH Bias ~ 0.2 g/kg, SH StDev ~ 0.5 g/kg

☑ Relative Humidity differences due to WVSS-II were small Overall RH Bias ~ 2.5 %, RH StDev ~ 7.5%

☑ WVSS-II data Meet WMO requirements for mesoscale observations

Additional analysis underway to:

- Separate atmospheric variability from observation error

- Develop error statistics for deeper layers appropriate for satellite validation

(Past studies comparing WVSS-II total water vapor positive)

### **The Future**

### WVSS-II Installations increasing on SouthWest Airlines B-737



WMO and E-AMDAR program working to expand data coverage elsewhere – Including Europe, Asia, Central/South America