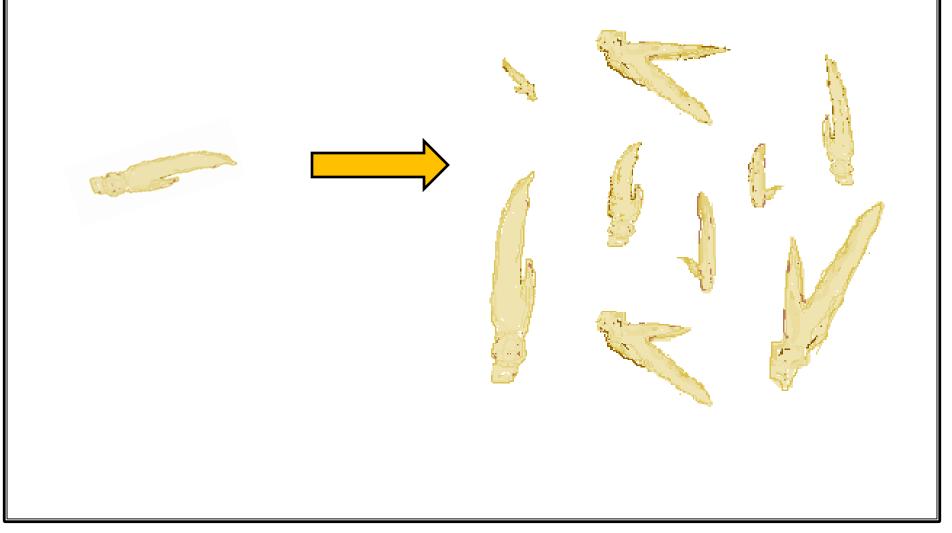
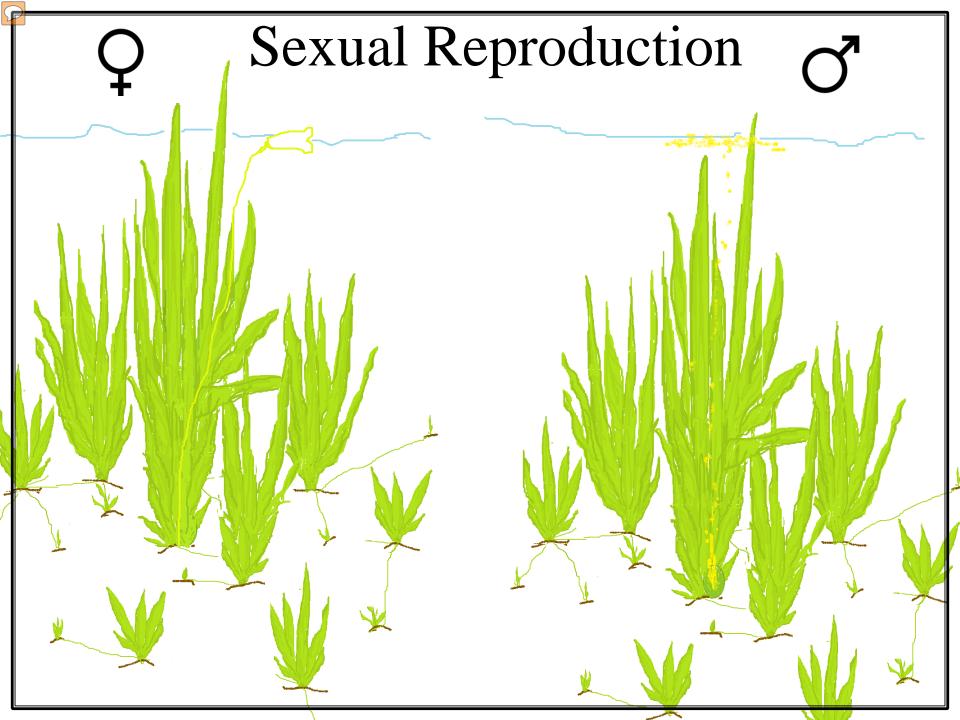

Performance of "Dominant" Vallisneria americana Genotypes in Greenhouse Mesocosm Competition Experiments

> Shanie Gal-Edd December 15, 2016


## Vallisneria americana Michx


(Common names: wild celery, water-celery, tape grass, eelgrass)





## Asexual Reproduction







## Prior Research

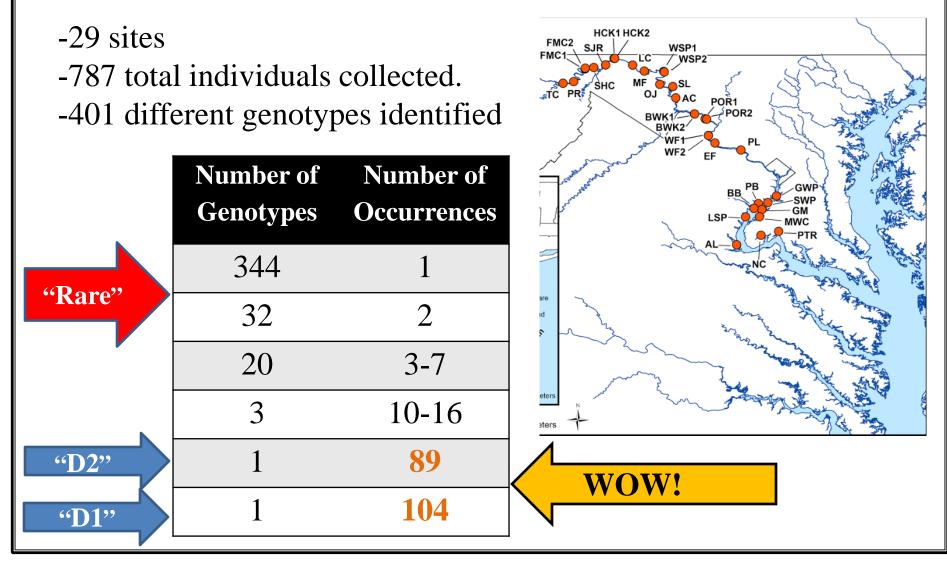




Dr. Maile Neel

Dr. Brittany Marsden




Dr. Katia Engelhardt



Dr. Mike Lloyd



## 2007, 2009 & 2011 *V. americana* Samplings of the Upper Potomac River

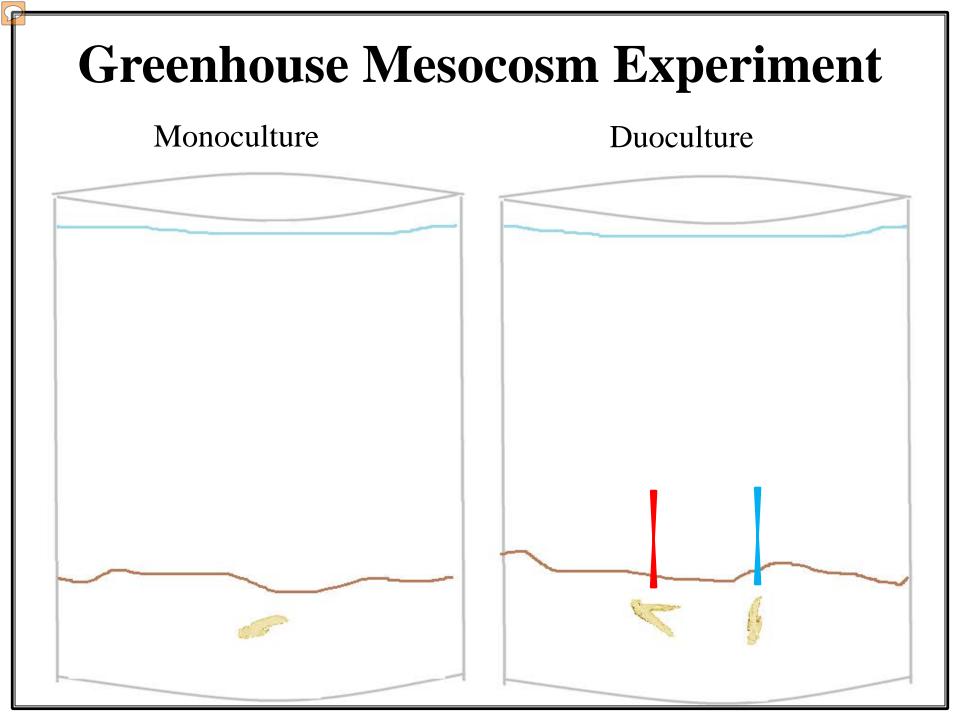


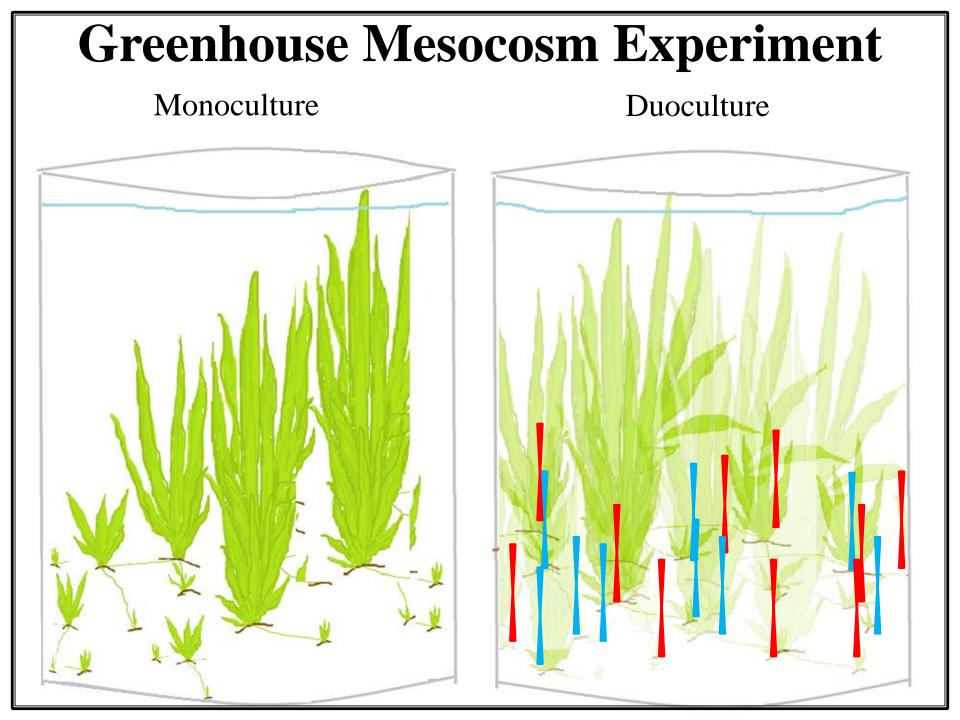
## **Research Question**

• Why are these two "dominant" genotypes (D1 and D2) so abundant in natural *V. americana* populations within the Potomac River?

-Are they phenotypically superior to other genotypes in terms of sprouting, growth, survival, asexual reproduction, or dispersal?

#### OR


-Did chance events lead to low genetic diversity?

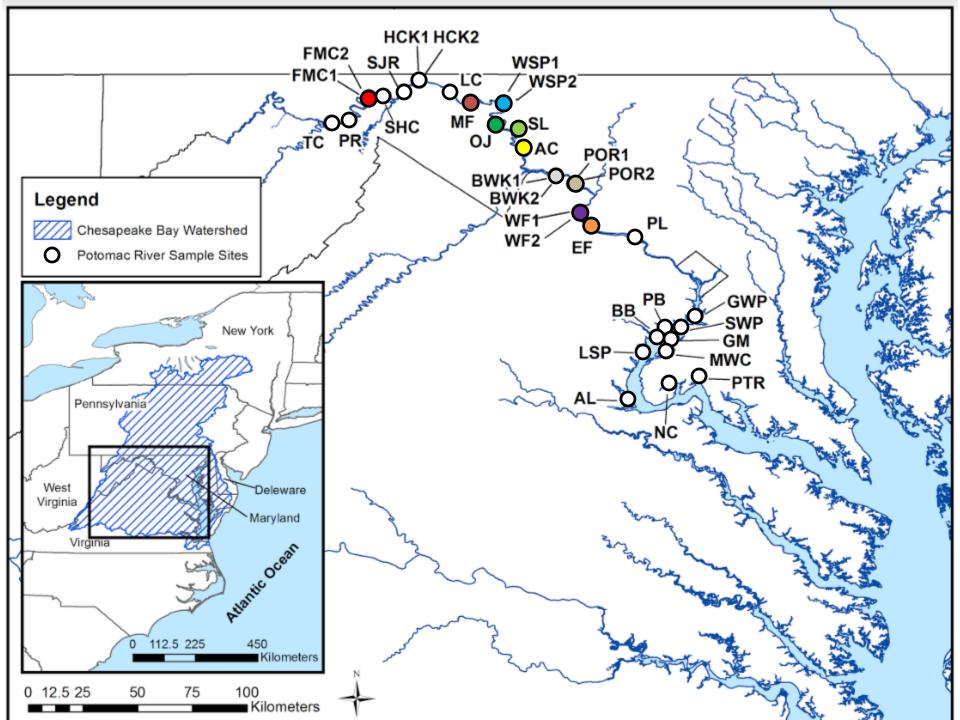

## **Restoration Implications**

- If D1 and D2 are found to be "super-performers", including them in restoration plantings:
  - may increase the chance of success of plantings.
    - alternatively, might reduce diversity in restoration
      patches, making them less resilient over time.
- If no difference in performance is observed, the lack of diversity may be viewed more negatively and could provide insight into why *V. americana* populations declined.

## Hypothesis

- Under the same conditions, dominant genotypes will outperform rare genotypes in <u>at</u> <u>least</u> one of the following traits:
  - percent success of sprouting (germ. rate)
  - ramet production
  - total biomass
  - turion production






## Experimental Design

- 2 Dominant genotypes ("D1"&"D2")
- 10 Rare genotypes ("R1"-"R10")
- Monoculture of each genotype (n=4)
- Duoculture of each genotype vs. itself (n=4)
- D1 vs. D2 (n=4)
- Each Dominant vs. each Rare (n=4 per combination)
- Monoculture of each Dominant genotype sampled from 5 additional sites (n=6 per site)

## Sample Selection

| ID             | # Turions      | Site                              | Sample                 | ID Extra             | Site                 | Sample               |
|----------------|----------------|-----------------------------------|------------------------|----------------------|----------------------|----------------------|
| D1             | 103            | MF (D2)                           | 2D05, 2D06, 2D10       | Sites D1             |                      |                      |
| D2             | 165            | BWK2 (F2)                         | 2F01, 2F02, 2F16, 2F19 | D1s1                 | WSP2 (E2)            | 2E09                 |
| R1             | 80             | WF2 (H2)                          | 2H04                   | D1s2                 | POR2 (G1)            | 1G24                 |
| R2             | 25             | WF2 (H2)                          | 2H24                   | D1s3                 |                      | 1F06                 |
| R3             | 55             | WSP2 (E2)                         | 2E20                   | D1s4                 | OJ (D1)              | 1D06                 |
| R4             | 50             | WSP2 (E2)                         | 2E25                   | D1s5                 | FMC1 (B2)            | 2B20                 |
| R5             | 50             |                                   |                        | ID Extra             | Site                 | Sample               |
|                | 511            |                                   |                        |                      |                      |                      |
|                |                | EF (H1)                           | 1H03                   | Sites D2             |                      | ·                    |
| R6             | 34             | EF (H1)<br>EF (H1)                | 1H03<br>1H08           | Sites D2<br>D2s1     | MF (D2)              | 2D22                 |
|                |                | . ,                               |                        | D2s1                 | MF (D2)<br>FF (H1)   | 2D22                 |
| R6             | 34             | EF (H1)                           | 1H08                   | D2s1<br>D2s2         | EF (H1)              | 2D22<br>1H15         |
| R6<br>R7       | 34<br>32       | EF (H1)<br>POR2 (G1)              | 1H08<br>1G01           | D2s1<br>D2s2<br>D2s3 | EF (H1)<br>POR2 (G1) | 2D22<br>1H15<br>1G28 |
| R6<br>R7<br>R8 | 34<br>32<br>22 | EF (H1)<br>POR2 (G1)<br>POR2 (G1) | 1H08<br>1G01<br>1G22   | D2s1<br>D2s2         | EF (H1)              | 2D22<br>1H15         |



### **Experimental Practices**

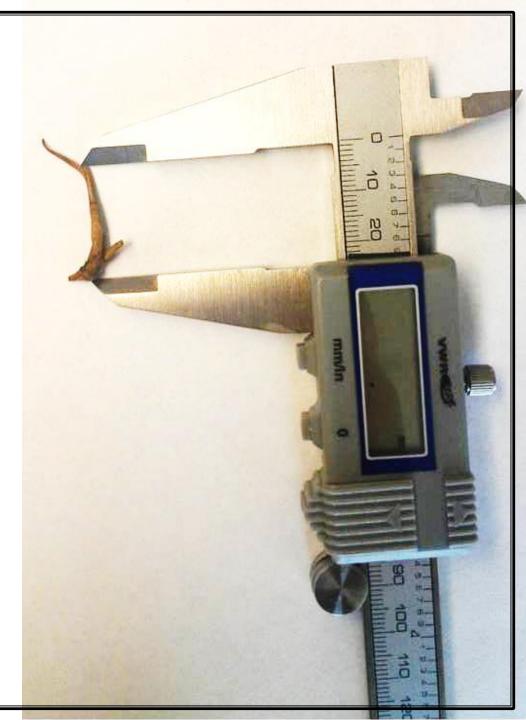
- Buckets with sterilized HWC Chesapeake Bay sediment, tap water
- 1 or 2 turions planted per bucket
- Random arrangement of buckets within greenhouse
- Irrigation system
- Weekly cleaning and removal of algae and flower monitoring
- Bi-weekly measurements and data collection
- Bi-weekly re-randomization
- Buckets with failed growth were replicated in week 9.










## **Data Collection**

- Length/width of original turions
- Initial sprouting date
- Tracking of each genotype with colored toothpicks (identity unknown)
- Number of ramets
- Number of leaves per ramet
- Length and width of longest leaf per genotype
- Number of flowers, tracked with colored toothpicks
- 25 weeks from planting to senescence (June 14, 2013-December 2, 2013)



## Harvest Data

- Harvest of all turions from each bucket
- All turions counted, length/width measured
- In competition buckets where both genotypes grew, all turions were genotyped to determine their source
- In competition buckets where only one genotype grew, a random sample of 10 turions were genotyped to determine which genotype grew





## **Genotyping Techniques**

#### Single-Stranded DNA extraction:

- 10% Chelex slurry, manual tamping.
   Dilute DNA template 1:2
- LGC Sbeadx maxi plant DNA Extraction (Synergy?)
   Microsatellite PCR:
- TDOWN2 touchdown program

#### **Fragment Analysis:**

3730XL 96-capillary high-throughput DNA sequencer

#### **Electropherogram Software:**

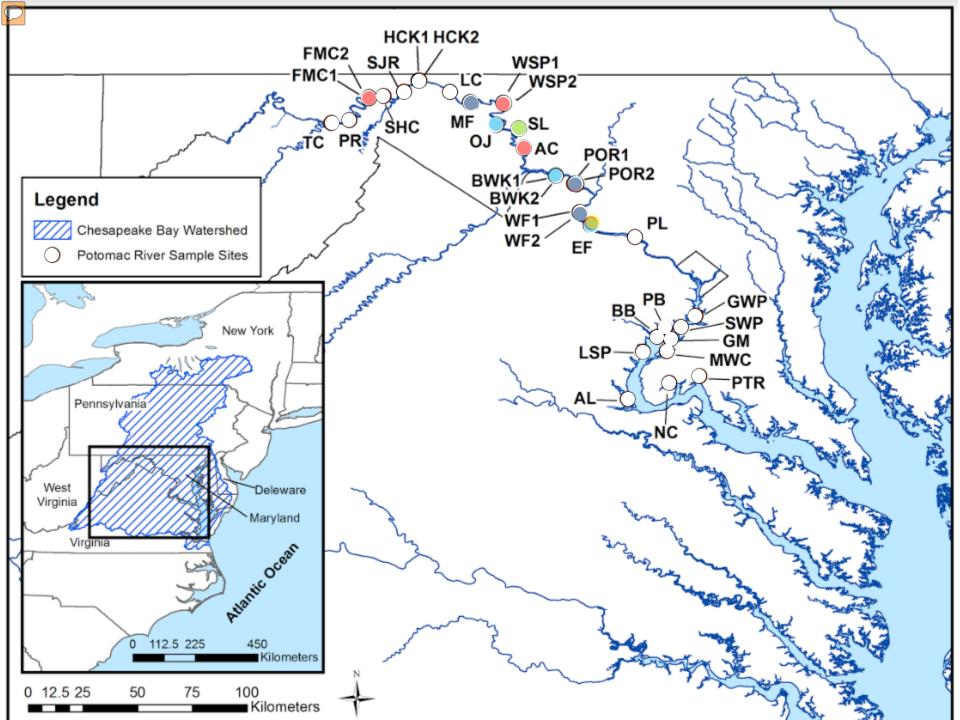
GeneMapper

## Distinguishing Microsatellite Loci

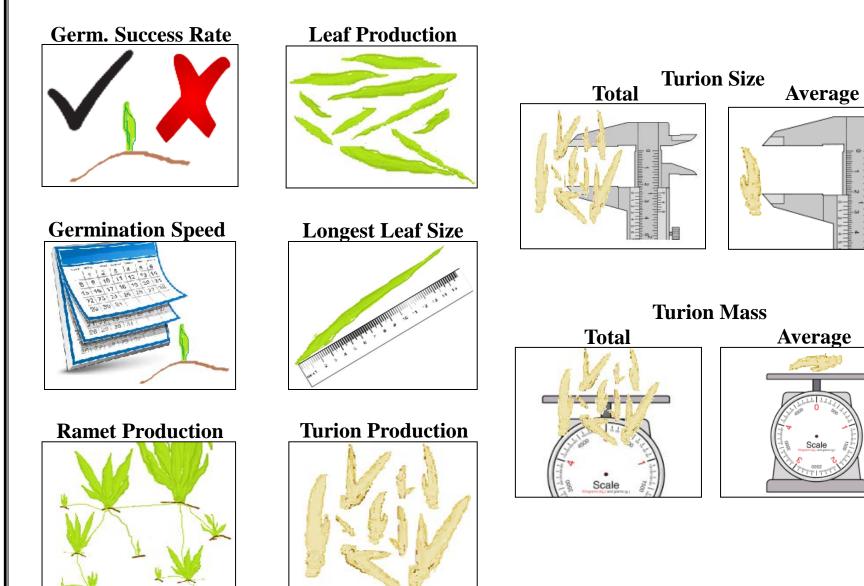
|           | atg002 | aagx051 | m13    | aagx071 | m49    |
|-----------|--------|---------|--------|---------|--------|
| D1        | 151157 | 184190  | 263271 | 224233  | 168180 |
| D2        | 154157 | 178181  | 266271 | 230230  | 168168 |
| R1        | 154154 | 178178  | ?????? | 230230  | 168168 |
| R2        | 151157 | 178184  | 263271 | 224224  | 168180 |
| R3        | 151157 | 184190  | 263271 | 224233  | 159180 |
| R4        | 154157 | 178181  | 271271 | 230230  | 162168 |
| R5        | 151154 | 190190  | 271271 | 230230  | 168168 |
| R6        | 151171 | 184190  | 263271 | 224233  | 168180 |
| R7        | 151157 | 184190  | 269271 | 224233  | 168180 |
| <b>R8</b> | 154154 | 178178  | 271271 | 230230  | 168168 |
| R9        | 154157 | 178184  | 271271 | 230233  | 168168 |
| R10       | 151154 | 178184  | 271271 | 224230  | 168180 |

## Corrected Microsatellite Loci

|        | atg002        | aagx051 | m13           | aagx071       | m49           |
|--------|---------------|---------|---------------|---------------|---------------|
| D1     | 151157        | 184190  | 263271        | 224233        | 168180        |
| D2     | 154157        | 178181  | 266271        | 230230        | 168168        |
| R1=D2  | 154157        | 178181  | <u>266271</u> | 230230        | 168168        |
| R2=D1  | 151157        | 184190  | 263271        | <u>224233</u> | 168180        |
| R3=D1  | 151157        | 184190  | 263271        | 224233        | <u>168180</u> |
| R4=D2  | 154157        | 178181  | <u>266271</u> | 230230        | <u>168168</u> |
| R5     | 151154        | 178190  | 271271        | 230230        | 168168        |
| R6=D1  | <u>151157</u> | 184190  | 263271        | 224233        | 168180        |
| R7=D1  | 151157        | 184190  | <u>263271</u> | 224233        | 168180        |
| R8=D2? | 154157        | 178181  | <u>266271</u> | 230230        | 168168        |
| R9     | 154157        | 178184  | 271271        | 230233        | 168168        |
| R10    | 151154        | 178184  | <u>263271</u> | 224230        | 168180        |

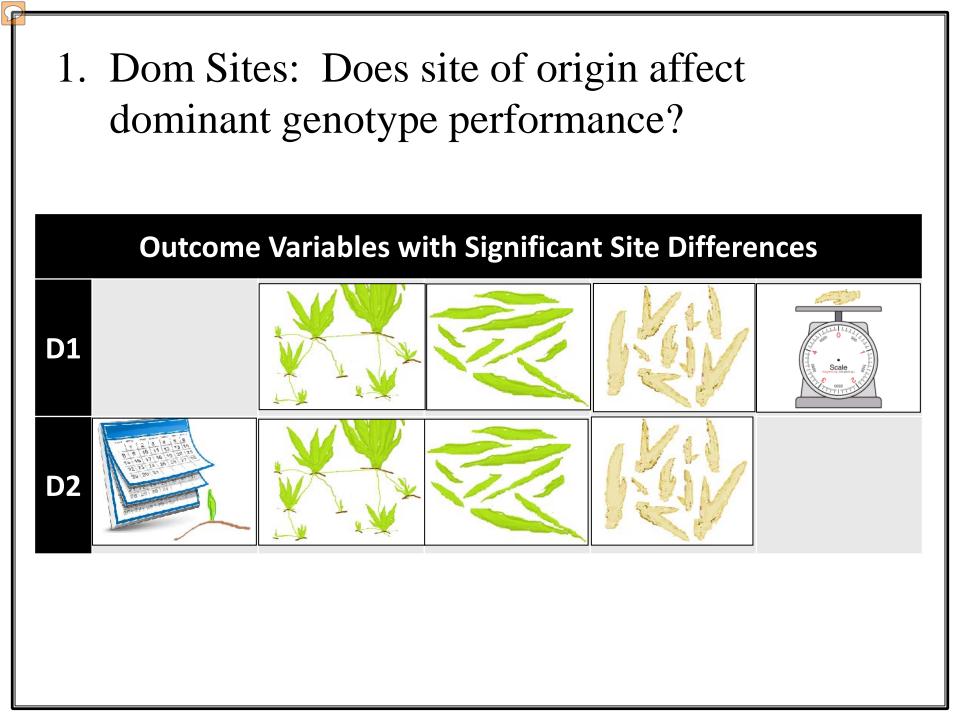

## Sample Selection

| ID                                        | Site                                         | Sample                       | ID Extra                 | Site               | Sample         |
|-------------------------------------------|----------------------------------------------|------------------------------|--------------------------|--------------------|----------------|
| D1                                        | MF (D2)                                      | 2D05, 2D06, 2D10             | Sites D1                 |                    |                |
| D2                                        | BWK2 (F2)                                    | 2F01, 2E02, 2E16, 2F19       | D1s1                     | WSP2 (E2)          | 2E09           |
| R1 = D2 ~                                 | WF2 (H2)                                     | 2H04                         | D1s2                     | POR2 (G1)          | 1G24           |
| R2 = D1 -                                 | WF2 (H2)                                     | 2H24                         | D1s3                     |                    | 1F06           |
| R3 = D1 -                                 | WSP2 (E2)                                    | 2E20                         | D1s4                     | OJ (D1)            | 1D06           |
| R4 = D2 —                                 | WSP2 (E2)                                    | 2E25                         | D1s5                     | FMC1 (B2)          | 2B20           |
|                                           | VV <del>SI</del> Z(LZ)                       |                              |                          |                    |                |
| R5                                        | EF (#1)                                      | 1H03                         | ID Extra                 | Site               | Sample         |
|                                           |                                              |                              | Sites D2                 |                    |                |
| R5                                        | EF (#1)                                      | 1H03                         | ►                        | Site<br>MF (D2)    | Sample<br>2D22 |
| R5<br>R6 = D1 <                           | EF (H1)<br>EF (H1)<br>POR2 (G1)              | 1H03<br>1H08                 | Sites D2                 |                    |                |
| R5<br>R6 = D1 /<br>R7 = D1 /              | EF (H1)<br>EF (H1)<br>POR2 (G1)<br>POR2 (G1) | 1H03<br>1H08<br>1G01         | Sites D2<br>D2s1         | MF (D2)            | 2D22           |
| R5<br>R6 = D1 /<br>R7 = D1 /<br>R8 = D2 / | EF (H1)<br>EF (H1)<br>POR2 (G1)              | 1H03<br>1H08<br>1G01<br>1G22 | Sites D2<br>D2s1<br>D2s2 | MF (D2)<br>EF (H1) | 2D22<br>1H15   |


| Rares | Site    | Sample |
|-------|---------|--------|
| R5    | EF (17) | 1H03   |
| R9    | SL (11) | 1E10   |
| R10   | SL (11) | 1E03   |

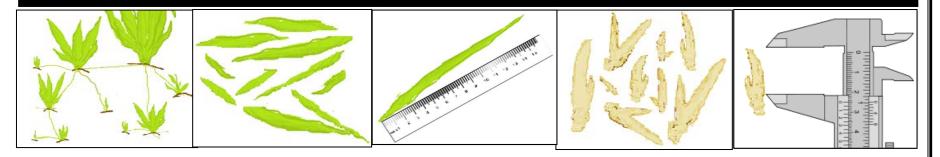
## **Corrected Samples**

| D1          | Site      | Sample           | D2   | Site      | Sample                 |
|-------------|-----------|------------------|------|-----------|------------------------|
| D1          | MF (8)    | 2D05, 2D06, 2D10 | D2   | BWK2 (13) | 2F01, 2F02, 2F16, 2F19 |
| D1s1        | WSP2 (9)  | 2E09             | D2s1 | MF (8)    | 2D22                   |
| D1s2        | POR2 (15) | 1G24             | D2s2 | EF (17)   | 1H15                   |
| D1s3        |           | 1F06             | D2s3 | POR2 (15) | 1G28                   |
| D1s4        | OJ (10)   | 1D06             | D2s4 | SL (11)   | 1E06                   |
| D1s5        |           | 2B20             | D2s5 | OJ (10)   | 1D03                   |
| <b>D1s6</b> | WF2 (16)  | 2H24             | D2s6 | WF2 (16)  | 2H04                   |
| D1s7        | WSP2 (9)  | 2E20             | D2s7 | WSP2 (9)  | 2E25                   |
| <b>D1s8</b> | EF (17)   | 1H08             | D2s8 | POR2 (15) | 1G22                   |
| D1s9        | POR2 (15) | 1G01             |      |           |                        |

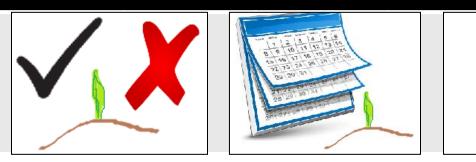


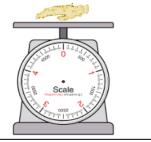

## **Outcome Variables**




## **Results: Questions of Interest**

- 1. Dom Sites: Does site of origin affect dominant genotype performance?
- 2. Mono vs Duo: Does competition within the bucket limit performance of each genotype?
- 3. D1 v D2: How does performance of the two dominant genotypes compare?
- 4. Dominant v Rare: Do dominant genotypes perform better than rare genotypes?
- 5. How do DR competition buckets compare in overall performance to Dominant duocultures and Rare duocultures?

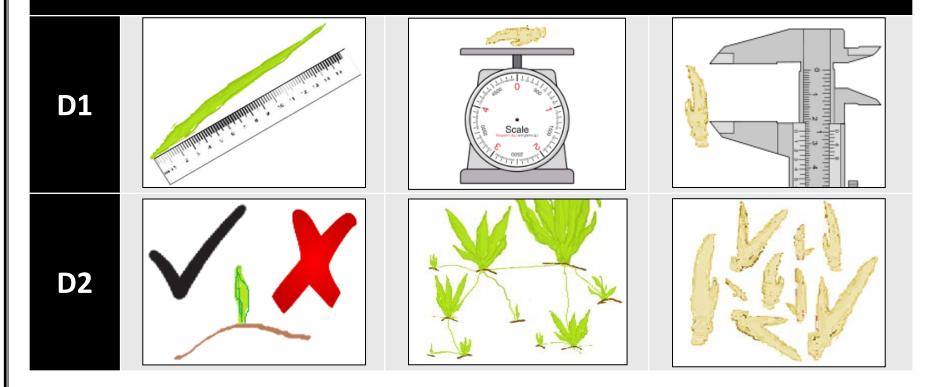


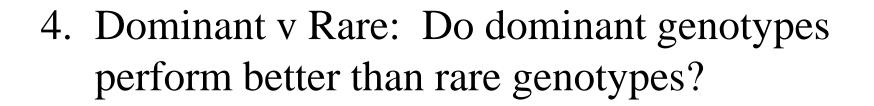


# 2. Mono vs Duo: Does competition within the bucket limit performance of each genotype?

#### **Outcome Variables Significantly Limited by Competition**



#### **Outcome Variables NOT Limited by Competition**



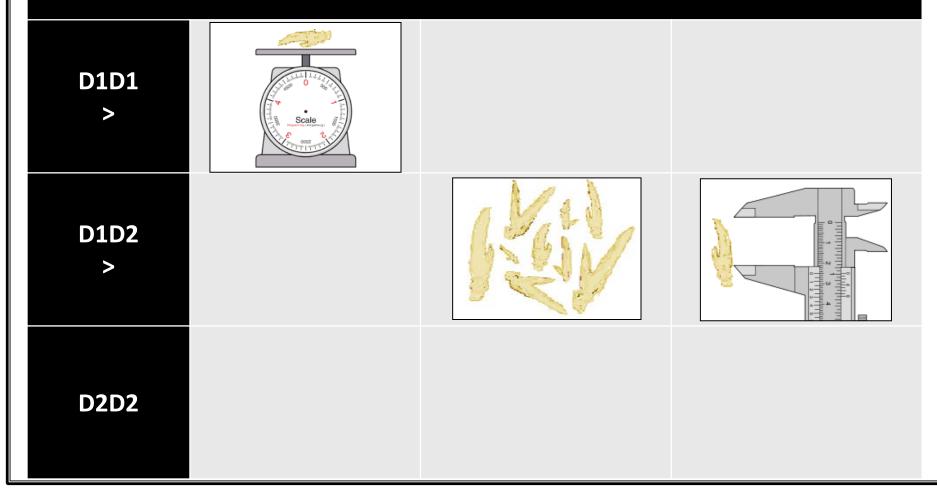



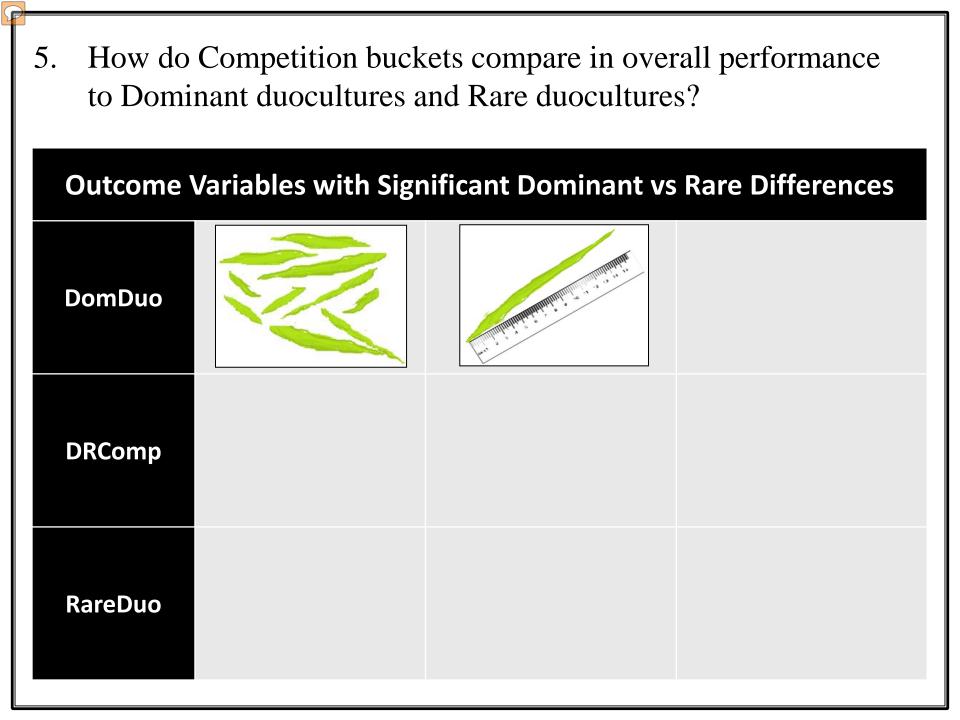

## 3. D1 v D2: How does performance of the two dominant genotypes compare?

There are significant differences between D1 and D2, and each has its own strengths:

**Outcome Variables with Significant Dominant Genotype Differences** 



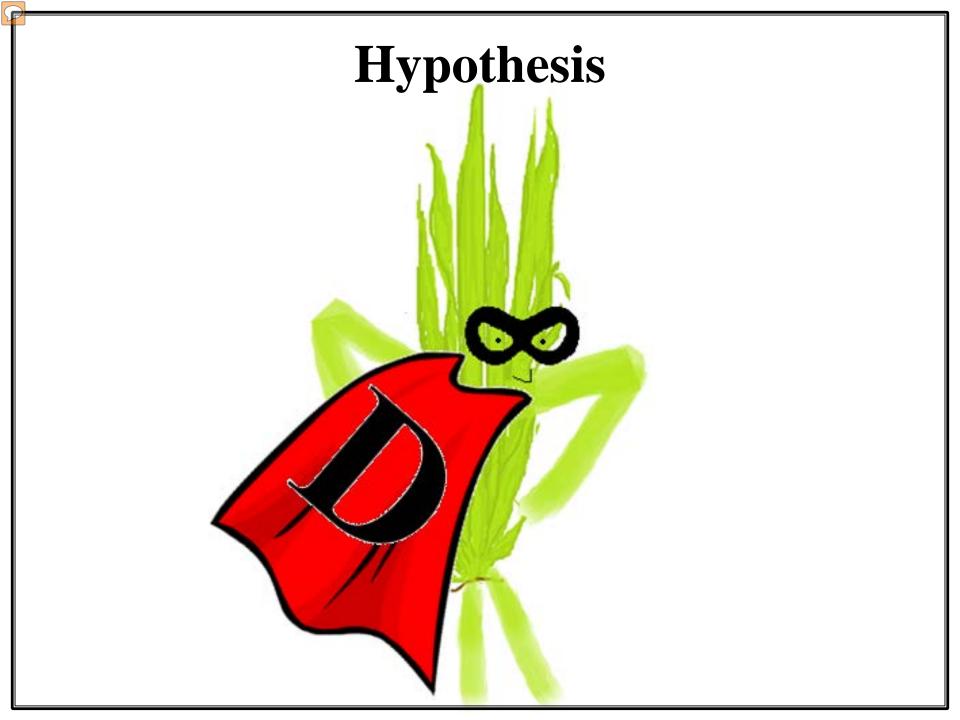


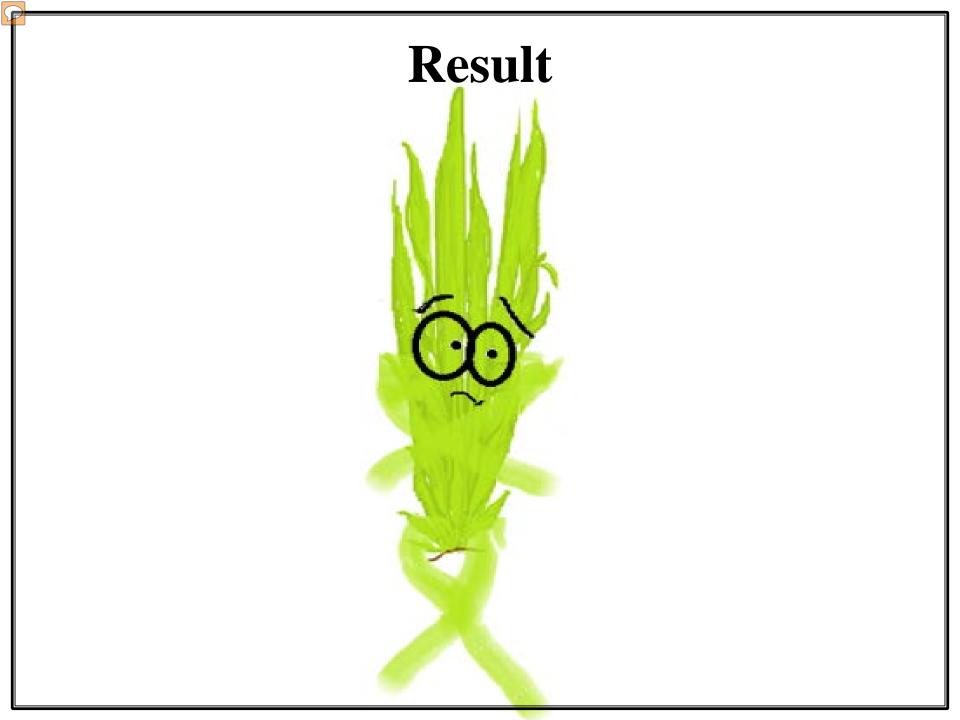


**Outcome Variables with Significant Dominant vs Rare Differences** 



5. How do Competition buckets compare in overall performance to Dominant duocultures and Rare duocultures?

**Outcome Variables with Significant SelfComp vs DRComp Differences** 




| Sun | nmar | y of | Find | lings | • |   |
|-----|------|------|------|-------|---|---|
|     |      |      |      | 10.1  |   | 1 |

|                    |    |    |               |               |               | Key            | Tanananan (jelika) |               |
|--------------------|----|----|---------------|---------------|---------------|----------------|--------------------|---------------|
| Dom<br>SiteDifs    |    | D2 | D1<br>&<br>D2 | D1<br>&<br>D2 |               | D1<br>&<br>D2  |                    | D1            |
| Comp<br>Effect     |    |    | Yes           | Yes           | Yes           | Yes            | Yes                |               |
| D1<br>vs<br>D2     | D2 |    | D2            |               | D1            | D2             | D1                 | D1            |
| All<br>D vs R      |    |    |               | D             |               |                |                    |               |
| Pairwise<br>D vs R |    |    |               |               |               | D1>R9<br>D2>R5 | D2>R5<br>R10>D1    |               |
| Dduos vs<br>DRComp |    |    |               |               |               | D1D2><br>D2D2  | D1D2><br>D2D2      | D1D1><br>D1D2 |
| Dduo vs<br>DRComp  |    |    |               | D2D2><br>D2R5 | D1D1><br>D1R9 |                |                    |               |

## Conclusions





## Conclusions

- Important differences exist between and within dominant genotypes.
- D1 and D2 employ different resource allocation.
- D1 was found in more Potomac River samples than D2. However, from the results of this experiment we would expect D2 to dominate over D1. D1 allocates resources to leaf length and size/weight of turions. However, this investment in turions did not translate to higher germination success. D2 dominated in all of the most important categories: germination success, ramet production, and turion production.
- The impact of site of origin on performance is surprising, especially after 2 years of greenhouse propagation. This makes restoration recommendations even more difficult.
- Based on this limited experiment, D1 and D2 do no appear to be "superperformers". Few significant differences were detected between dominant and rare genotypes. However, sample size of rare trials may have impacted the results.
- This experiment was conducted in ideal water conditions and results may not reflect what is happening in the Chesapeake Bay.

# **Ongoing Questions**

- How does genetic diversity relate to resilience in *V. americana* Chesapeake Bay populations?
- What were the important bottleneck events that affected the Chesapeake Bay, and when did they occur?
- Are D1 and D2 older than other genotypes?
- How related is each Chesapeake Bay genotype to D1 and D2? Possible development of additional primers?
- How does the condition of Chesapeake Bay waters impact the performance of these genotypes? (in situ vs. laboratory experiments needed)
- What restoration recommendations can be made regarding which genotypes should be used in plantings?

## **Interns & Acknowledgements**



## Sources

- Burnett, R.K., Lloyd, M.W., Engelhardt, K.A.M., Neel, M.C., 2009. Development of 11 polymorphic microsatellite markers in a macrophyte of conservation concern, Vallisneria americana Michaux (Hydrocharitaceae). *Mol. Ecol. Res.* 9, 1427–1429.
- Engelhardt, K. A., Lloyd, M. W., & Neel, M. C. (2014). Effects of genetic diversity on conservation and restoration potential at individual, population, and regional scales. *Biological Conservation*, *179*, 6-16.
- Lloyd M.W., Burnett R.K., Engelhardt K.A. & Neel M.C. (2011) The Structure of Population Genetic Diversity in *Vallisneria americana* in the Chesapeake Bay: Implications for Restoration. *Conserv Genet* 12(5):1269-1285.
- Lloyd M.W., Widmeyer P.A. & Neel M.C. (in prep) Landscape Connectivity of *Vallisneria americana* in the Chesapeake Bay Provides Guidance for Conservation and Restoration Prioritization.
- Marsden, B.W., Engelhardt, K.A.M., Neel, M.C., 2013. Genetic rescue versus outbreeding depression in Vallisneria americana: Implications for mixing seed sources for restoration. *Biol. Conserv.* 167, 203–214.



### Results: D1Site Differences

|                                  | s5<br>(n=4) | s0<br>(n=6) | s1<br>(n=4) | s7<br>(n=7) | s4<br>(n=5) | s3<br>(n=6) | s9<br>(n=4) | s2<br>(n=5) | s6<br>(n=4) | s8<br>(n=7) | avg      | Kruskal-                                      |
|----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|-----------------------------------------------|
| POSITION ON MAP                  | 3           | 8           | 9           | 9           | 10          | 12          | 15          | 15          | 16          | 17          |          |                                               |
| Ramets (#)                       | 15.75       | 20.83333    | 19.75       | 25.42857    | 19.4        | 21.83333    | 16.25       | 17          | 15.5        | 16.42857    | 18.81738 | χ <sup>2</sup> = 25.4<br><b>p = 0.002</b>     |
| Turions (#)                      | 29.25       | 37          | 32          | 56.28571    | 38.2        | 41          | 30.25       | 36.4        | 34.75       | 34.71429    | 36.985   | χ <sup>2</sup> = 20.4<br><b>p = 0.01</b>      |
| Ave Turion Area<br>(mm²)         | 37.245      | 31.11167    | 32.0125     | 31.83714    | 31.598      | 31.98167    | 37.9225     | 31.358      | 28.6575     | 30.40571    | 32.41297 | χ <sup>2</sup> = 11.4<br>p = 0.248            |
| Tot Turion Area<br>(mm²)         | 1101.848    | 1149.62     | 1010.148    | 1787.169    | 1244.142    | 1311.272    | 1126.87     | 1142.774    | 1020.247    | 1088.776    | 1198.287 | χ <sup>2</sup> = 16.4<br>p = 0.057            |
| Ave Turion Mass<br>(g)           | 0.0684      | 0.06056667  | 0.06855     | 0.0553      | 0.0545      | 0.05701667  | 0.085775    | 0.05976     | 0.045225    | 0.05552857  | 0.061062 | χ <sup>2</sup> = 19.1<br><b>p =0.023</b>      |
| Tot Turion Mass<br>(g)           | 2.02        | 2.245       | 2.19        | 3.092857    | 2.15        | 2.356667    | 2.54        | 2.206       | 1.6225      | 1.954286    | 2.237731 | χ <sup>2</sup> = 10.7<br>p = 0.291            |
| Num Leaves (#)                   | 40.75       | 54          | 34.75       | 60.42857    | 43.8        | 67          | 45.5        | 45.6        | 35.5        | 41.28571    | 46.86143 | χ <sup>2</sup> = 25.3<br><b>p = 0.002</b>     |
| Leaf Area (cm²)                  | 138.375     | 149.0833    | 128.75      | 136.1429    | 134.4       | 149.25      | 183         | 140.4       | 125.25      | 141.6429    | 142.6294 | χ <sup>2</sup> = 6.89<br>p = 0.648            |
| Germ Speed<br>(weeks)            | 2           | 2           | 3           | 2           | 2           | 2           | 2.5         | 2           | 2.5         | 2.285714    | 2.228571 | χ² = 13.1<br>p = 0.157                        |
| Germination<br>(see other slide) |             |             |             |             |             |             |             |             |             |             |          | Yates Co<br>χ <sup>2</sup> =2.311<br>p=0.9855 |
| Biomass                          | n/a         |          | n/a                                           |



## Results: D2Site Differences

|                                    | s1<br>(n=5) | s7<br>(n=4) | s5<br>(n=6) | s4<br>(n=6) | s0<br>(n=6) | s8<br>(n=4) | s3<br>(n=4) | s6<br>(n=4) | s2<br>(n=4) | Avg      | Kruskal-Wallis χ²                                               |
|------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|-----------------------------------------------------------------|
| POSITION ON MAP                    | 8           | 9           | 10          | 11          | 13          | 15          | 15          | 16          | 17          |          |                                                                 |
| Ramets (#)                         | 19          | 21.75       | 29.5        | 29.5        | 32.83333    | 21.5        | 22.25       | 20.5        | 20.5        | 24.14815 | χ <sup>2</sup> = 15.4246, df = 8<br><b>p = 0.0514</b>           |
| Turions (#)                        | 33.5        | 47.25       | 58.83333    | 63.5        | 59.66667    | 27.75       | 41          | 38          | 54          | 47.05556 | χ <sup>2</sup> = 15.6366, df = 8<br><b>p = 0.04789</b>          |
| Ave Turion Area (mm <sup>2</sup> ) | 29.61       | 24.56       | 23.625      | 24.14       | 22.81       | 25.92       | 26.3225     | 29.685      | 26.1975     | 25.87444 | χ <sup>2</sup> = 7.2963, df = 8,<br>p = 0.505                   |
| Tot Turion Area (mm <sup>2</sup> ) | 1121.84     | 1139.4275   | 1412.72     | 1539.8483   | 1354.265    | 759.3225    | 1073.555    | 1115.535    | 1430        | 1216.279 | χ <sup>2</sup> = 8.3902, df = 8,<br>p = 0.3963                  |
| Ave Turion Mass (g)                | 0.0457      | 0.040225    | 0.04178333  | 0.04188333  | 0.03798333  | 0.044125    | 0.04195     | 0.051275    | 0.0475      | 0.043603 | χ <sup>2</sup> = 7.1704, df = 8,<br>p = 0.5184                  |
| Tot Turion Mass (g)                | 1.515       | 1.9225      | 2.568333    | 2.696667    | 2.248333    | 1.27        | 1.68        | 1.92        | 2.575       | 2.043981 | χ² = 11.3659, df = 8<br>p = 0.1818                              |
| Num Leaves (#)                     | 30.5        | 40.5        | 68.83333    | 72.83333    | 74.66667    | 50.25       | 39.75       | 53          | 40.25       | 52.28704 | χ <sup>2</sup> = 17.7752, df = 8<br><b>p = 0.02298</b>          |
| Leaf Area (cm <sup>2</sup> )       | 127.75      | 157.625     | 152.25      | 121.1667    | 121.8333    | 126.75      | 130.25      | 195.125     | 177.625     | 145.5972 | χ <sup>2</sup> = 14.0527, df = 8<br>p = 0.0804                  |
| Germ Speed (weeks)                 | 4           | 2           | 2           | 2           | 2           | 3           | 2           | 2           | 2           | 2.333333 | χ <sup>2</sup> = 17.9211, df = 8<br><b>p = 0.02183</b>          |
| Germination<br>(see other slide)   |             |             |             |             |             |             |             |             |             |          | Yates Corrected<br>χ <sup>2</sup> =8.068, df=8,<br>p=0.42685604 |
| Biomass                            | n/a         |          | n/a                                                             |

| Rares | Site    | Sample |
|-------|---------|--------|
| R5    | EF (H1) | 1H03   |
| R9    | SL (E1) | 1E10   |
| R10   | SL (E1) | 1E03   |

#### Sample Selection

| D1   | Site      | Sample           | D2   | Site      | Sample                 |
|------|-----------|------------------|------|-----------|------------------------|
| D1   | MF (D2)   | 2D05, 2D06, 2D10 | D2   | BWK2 (F2) | 2F01, 2F02, 2F16, 2F19 |
| D1s1 | WSP2 (E2) | 2E09             | D2s1 | MF (D2)   | 2D22                   |
| D1s2 | POR2 (G1) | 1G24             | D2s2 | EF (H1)   | 1H15                   |
| D1s3 |           | 1F06             | D2s3 | POR2 (G1) | 1G28                   |
| D1s4 | OJ (D1)   | 1D06             | D2s4 | SL (E1)   | 1E06                   |
| D1s5 |           | 2B20             | D2s5 | OJ (D1)   | 1D03                   |
| D1s6 | WF2 (H2)  | 2H24             | D2s6 | WF2 (H2)  | 2H04                   |
| D1s7 | WSP2 (E2) | 2E20             | D2s7 | WSP2 (E2) | 2E25                   |
| D1s8 | EF (H1)   | 1H08             | D2s8 | POR2 (G1) | 1G22                   |
| D1s9 | POR2 (G1) | 1G01             |      |           |                        |