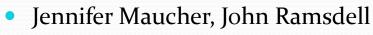
Impacts of *Karenia brevis* Harmful Algal Blooms on Piscivorous Birds in Sarasota Bay, Florida

> Deborah Fauquier 2012 Knauss Sea Grant Fellow Office of Protected Resources, NMFS


Co-Investigators

- Leanne Flewelling, Jan Landsberg
 - Fish and Wildlife Research Institute, FWC, FL
- Charles Manire, Elizabeth Berens McCabe, Sandra Camilleri
 - Mote Marine Laboratory, FL
- Damon Gannon
 - Bowdoin Scientific Station, Bowdoin College, ME
- Randall Wells
 - Chicago Zoological Society, c/o Mote Marine Laboratory, FL

- Marine Biotoxin Program, NOS, SC
- Michael Kinsel
 - Zoological Pathology Program, University of Illinois, IL
- Christine Kreuder
 - Wildlife Health Center, UC Davis, CA
- Martha Keller
 - Pelican Man's Bird Sanctuary, FL

Harmful Algal Blooms

- HABS are any algal bloom that causes harm through production of toxins or accumulation of biomass
- HABS increasing worldwide over the last 30 years
- Only 2% of marine algae are known to be toxic

Brevetoxin

- Produced by *Karenia sp.* a dinoflagellate
- Neurotoxic Shellfish
 Poisoning in humans
- Binds to receptor site 5 of voltage-gated sodium channels in cell membranes
- Causes neuronal & muscle cell depolarization

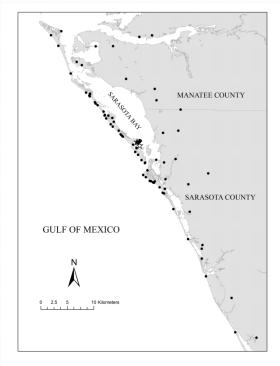
- Hist. records 1600s in humans
- Ingestion of shellfish or inhalation of aerosols
- Mouse LD50 = 500 ng/g PO; 90 ng/ml IV
- Metabolized by liver & kidney
- Fat soluble toxin

Effects of Brevetoxin on Wildlife

- 1996-Manatee deaths
 - Bossart et al 1999 Tox Path
- 1997-Cormorant illness
 - Kreuder et al 2002 JZWM
- 1999, 2002, 2005-2006 Dolphin deaths
 - Mase et al 2000; Flewelling et al 2005 Nature; Fire et al 2007 Mar Bio; Fire et al 2008 Mar Mam Sci
- 1996, 2005-2006-Sea Turtle deaths

 Exposed by inhalation or ingestion of the toxin

Photo credit FWC


Research Questions?

- What are the clinical signs of brevetoxicosis in sea birds?
- How quickly do live sea birds metabolize brevetoxin?
- What brevetoxin levels do dead sea birds have in their tissues?
- Why are Double-Crested Cormorants most impacted by brevetoxicosis?
- What is happening on the ecosystem/habitat level during *K. brevis* blooms?

Material and Methods - Rehab

- Sampled animals from 2005-2006
- Document clinical signs of brevetoxin, necropsies
- Brevetoxin testing by ELISA
 - Test whole blood, plasma, feces from live animals
 - Test tissues-stomach contents, feces, liver, kidney, lung, bile from dead animals

Brevetoxin Levels in Sea Birds

Clinical signs

- Inability to stand
- No blink/anal reflex
- Ataxia, incoordination
- Seizures
- 12 species positive incl. Double-Crested Cormorants*, Brown Pelicans, Great Blue Herons, Common Loons, Sanderlings

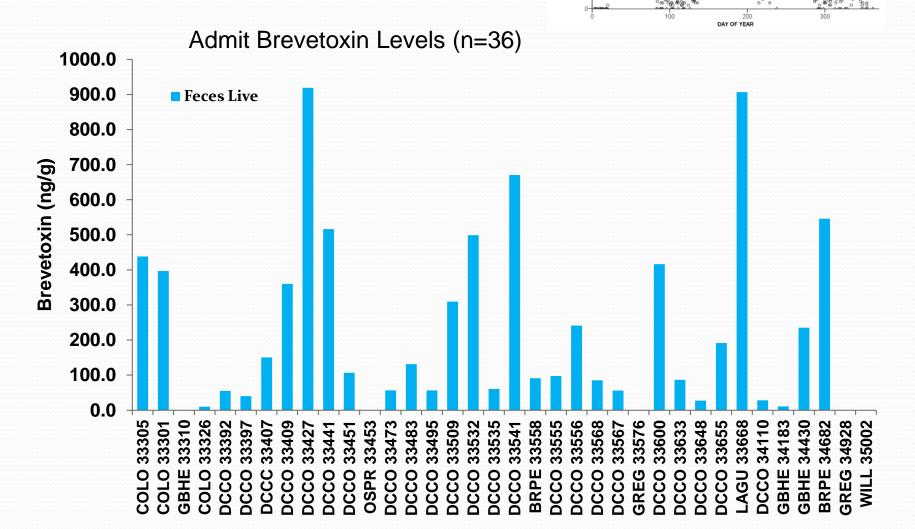
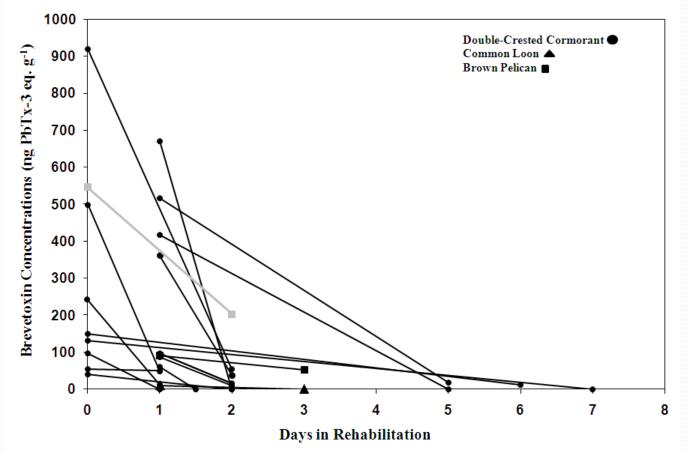

- 69% sea birds positive (65 of 94)
- 42% Released
- Brevetoxicosis COD 72%

Photo credit SDRP

(Fauquier et al. Brevetoxicosis in sea birds naturally exposed to *Karenia brevis* blooms along the central west coast of Florida. In Review)

Results- Admission


1.000.000

ELLS/ML

100,000

2005

Results – Clearance of Brevetoxin

Birds that died or were euthanized are marked in black and the one released brown pelican is marked in light grey (n=19).

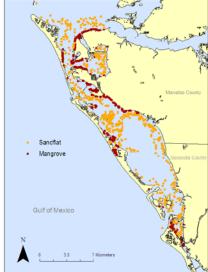
(Fauquier et al. Brevetoxicosis in sea birds naturally exposed to Karenia brevis blooms along the central west coast of Florida. In Review)

Results-Tissue Levels (ng/g)

Sea Bird Rehab 0-3 days (n=24)


Tissue	Lung	Liver	Kidney	St Cnts	Feces	Bile	Brain	Feces Live
Mean	3.9	33.3	17.8	66.1	20.0	430.7	10.2	233.1
StDev	3.6	24.9	15.9	83.4	24.7	315.5	9.1	273.5
Count	24	24	24	9	24	2	24	15

Sea Bird Rehab >5 days (n=6)

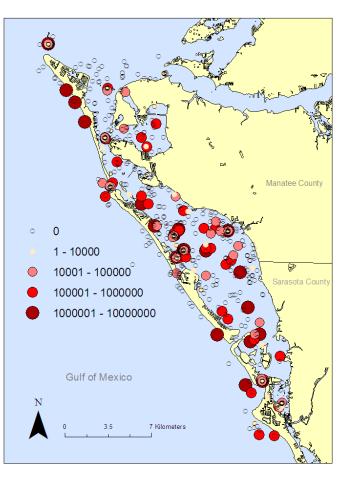

Tissue	Lung	Liver	Kidney	St Cnts	Feces	Bile	Brain	Feces Live
Mean	ND	16.6	5.1	NA	7.3	NA	ND	238.3
StDev	0.0	9.3	4.8	NA	6.3	NA	0.0	218.0
Count	6	6	6	0	6	0	6	5

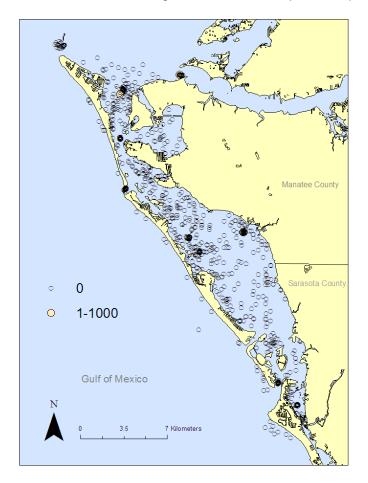
Material and Methods - Surveys

- June 20, 2006-Sept 2, 2009
- Boat-based point-count seasonal surveys of birds, *K. brevis* cell counts, and water quality
- Summer and winter surveys in four habitats (mangrove fringe, open bay, sandflat and seagrass)
- Analysis = T-test, MW, Shannon-Wiener

Mangrove & Sandflat Habitats

Results - Surveys


- Summer 06, 07, 08, 09
 - *K. brevis* Summer o6
- 1540 surveys (117 days)
- >20,000 bird observations
- >30 species


- Winter 07, 08, 09
 - *K. brevis* Winter 07
- 1160 surveys (87 days)
- >14,000 bird observations
- >40 species, including winter migrants
 - American White Pelicans
 - Merganser sp.

Karenia Brevis Cell Counts (cell/L)

Summer 2006 & Winter 2007 (n=541)

Summer 2007 through Summer 2009 (n=1093)

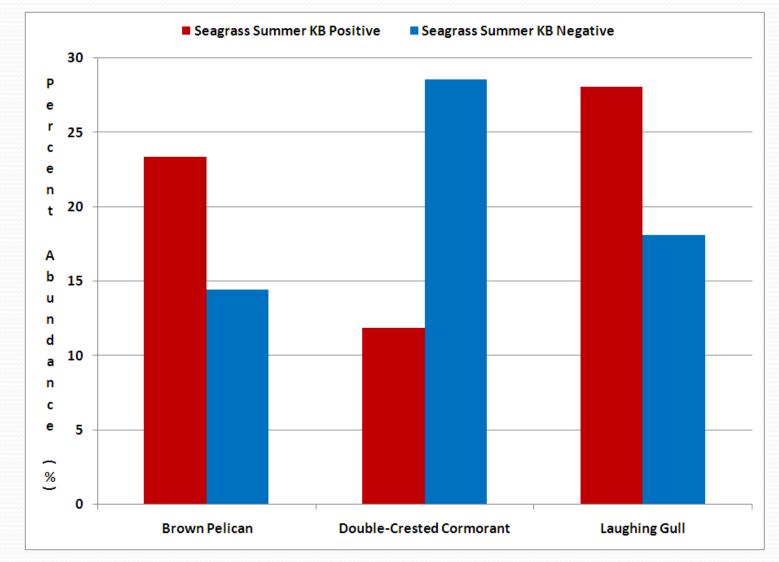

Results - All Habitats

Photo credit SDRP

- Common Species (~50% Overall Abundance)
 - Double-Crested Cormorants (7525)
 - Brown Pelicans (4536)
 - Laughing Gulls (7524)
 - ↓ SPUE in Cormorants during *K. brevis* blooms
 - ↑SPUE in Gulls/Pelicans during K. brevis blooms
 - (man/open)

- Species Richness
 - Greatest Species Richness in Mangrove; Lowest in Open Bay
 - Lower Overall Species Richness during *K*. *brevis* blooms
 - All Habitats

Results – Seagrass Summer

Habitats - Foraging

 Gannon et al. (2009), Effects of *K. brevis* on Fish (04-07)

- ↓Fish sp richness & abd in all habitats w/K. brevis
- Seagrass, mangrove most impacted
- ↓Demersal feeders(pinfish) vs pelagic filter feeders (herring/sardines)

- Cormorants demersal prey, large size
- Pelicans/Gulls pelagic prey, smaller size
- Fire et al (2008);
 VanDeventer (2007)
 - A Brevetoxin in pinfish, herring during K. brevis blooms

Photo credit SDRP

Conclusions

- 69% sea birds tested positive in 2005-2006
- Sea birds cleared the toxin in 5-10 days
- Overall decreased species richness and diversity during *K. brevis* blooms
- Largest impacts seen in Seagrass & Mangrove habitats
- Overall decreased abundance of Cormorants
- Brevetoxin may play a greater role in regulating populations by negatively impacting individual health and decreasing survival

Acknowledgments

We would like to thank the staff, interns & volunteers of Pelican Man's Bird Sanctuary, Mote Marine Laboratory, and the Sarasota Dolphin Research Program

Funding and Support provided by:

- Florida Fish and Wildlife State Wildlife Grant
- Morris Animal Foundation
- EPA Star Fellowship

Photo credit SDRP

Questions?