Sea Scallop Surveys in the 21st Century: Could Advanced Optical Technologies ultimately replace the dredge-based survey?

Laura Oremland¹, Dvora Hart², Larry Jacobson^{2,} Scott Gallagher³, Amber York³, Richard Taylor³, and Norman Vine³

1.NMFS Office of Science and Technology, Silver Spring, MD
 2. Northeast Fisheries Science Center, Woods Hole, MA
 3. Woods Hole Oceanographic Institution, Woods Hole, MA

Talk Organization

- I. Background information Atlantic Sea Scallops (Biology, the fishery, management)
- II. Dredge Surveys and Optical Surveys
 - What are they?
 - What information do they provide?
- III. How do dredge and optical surveys compare -A calibration experiment
- IV.Address question "Could optical surveys replace the traditional dredge survey?"
- V. Future research

Part I. Atlantic Sea Scallop Background

Placopecten magellanicus (Atlantic sea scallop)

From: http://seagrant.gso.uri.edu/research/georges_bank/Species_List/Pectinidae.htm

Atlantic Sea Scallop - Biology (*Placopecten magellanicus*)

- Found in NW Atlantic (Newfoundland to N.Carolina)
- Filter Feeders
- Main Habitat: Sand and gravel bottoms
- Ideal temperature < 17 C</p>
- Size: Typically < 17 cm (6.7 in); Depth: 25 - 200 m depending on location
- Life span: Up to 20 years.

Atlantic Sea Scallop

Dvora Hart: http://www.nefsc.noaa.gov/sos/spsyn/iv/scallop/

Atlantic Sea Scallops - Fishery

New Bedford Style Dredge; Photo by Laura Oremland

- One of most valuable fisheries in U.S.
- Ex-vessel value in 2007: > ~\$385 M
- Primary U.S. Fishing areas include Gulf of Maine, Georges Bank, Mid-Atlantic
- Harvesting begins at age 4-5
- Fishery year around
- Primarily harvested by New Bedford Style Dredge

Sea Scallops and the Law

 Magnuson-Stevens Reauthorization Act of 2006 (MSRA)

- Mandates management measures that:

- (1) Prevent overfishing while achieving optimum yield from each U.S. (commercial) fishery
- (2) Be based on the best scientific information available

(3) Minimize costs and duplication where practicable

 In addition, MSRA reaffirms support for Cooperative Research

Sea Scallops and the Law

Magnuson-Stevens Reauthorization Act of 2006 (MSRA)

- Mandates the following requirements:

- (1) Prevent overfishing while achieving optimum yield from each U.S. (commercial) fishery
- (2) Be based on the best scientific information available

 (3) Minimize costs and duplication where practicable
 In addition, MSRA reaffirms support for Cooperative Research

What this means for scallops:

 Monitor scallop populations (e.g., abundance, size)
 Provide best available science to support scallop fishery management

The Importance of Scallop Size to Management

- Shell Height Distance in mm between the umbo and shell margin
- Important in stock assessments and fishery management
 - Scallops hard to age (false age annuli), size important
 - Biological reference points, fishing gear
- Size frequencies can indicate overfishing



Photo from:

http://www.mbl.edu/marine_org/marine_org.php?f unc=reveal&myID=D165


Management Measures

- Gear Size Restrictions (scallop dredge ring size)
- Fishing Effort Limitations (# permits, DAS, Max crew size)
- Closed and rotational fishing areas

Part II. Sea Scallop Surveys: Dredge and Optical Methods
Dredge Surveys
Optical Surveys

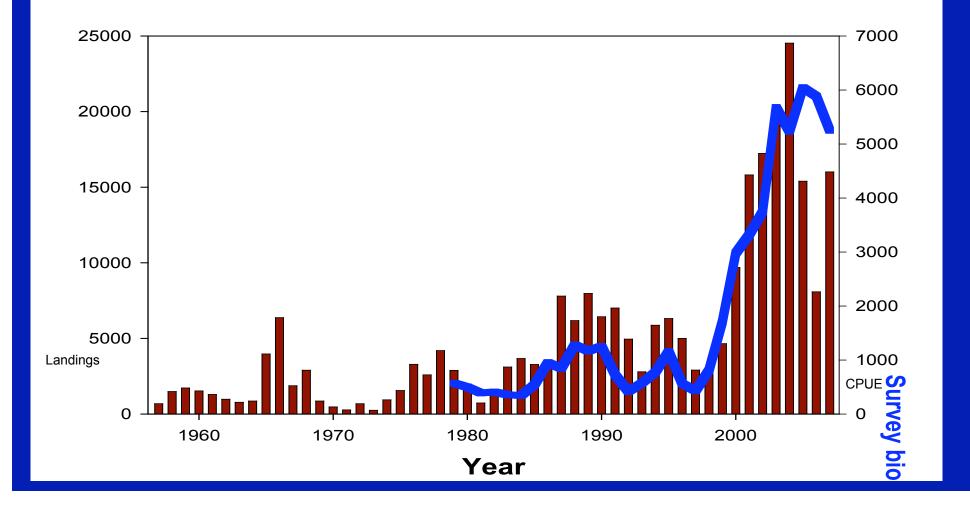
Habcam
SMAST

New Bedford Dredge

New Bedford Dredge:

Photo from: http://www.fishingnj.org/diascall.htm

Dredge Survey


R/V Hugh R. Sharp Photo: Dvora Hart

Dredge Survey tow analysis

- •Conducted aboard R/V Sharp
- •Former boat, Albatross, was recently retired from the scallop survey
- •Conducted annually since late 1970s

The NEFSC sea scallop survey has been conducted annually since 1979. The survey index is closely related to commercial landings and CPUE.

Optical Survey Options

HABCAM

- HabCam is short for "Habitat mapping camera system"
- Developed by WHOI scientists and Cape Cod scallop fishermen
- Looking for non-invasive survey method
- Tow body, takes images of sea floor to count and measure scallops on bottom
- Tows camera 3 m above bottom

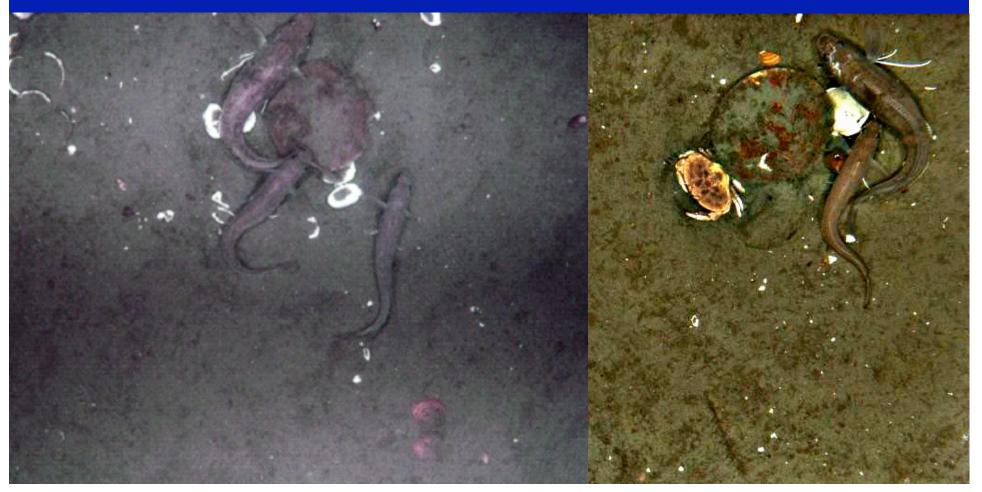
HABCAM

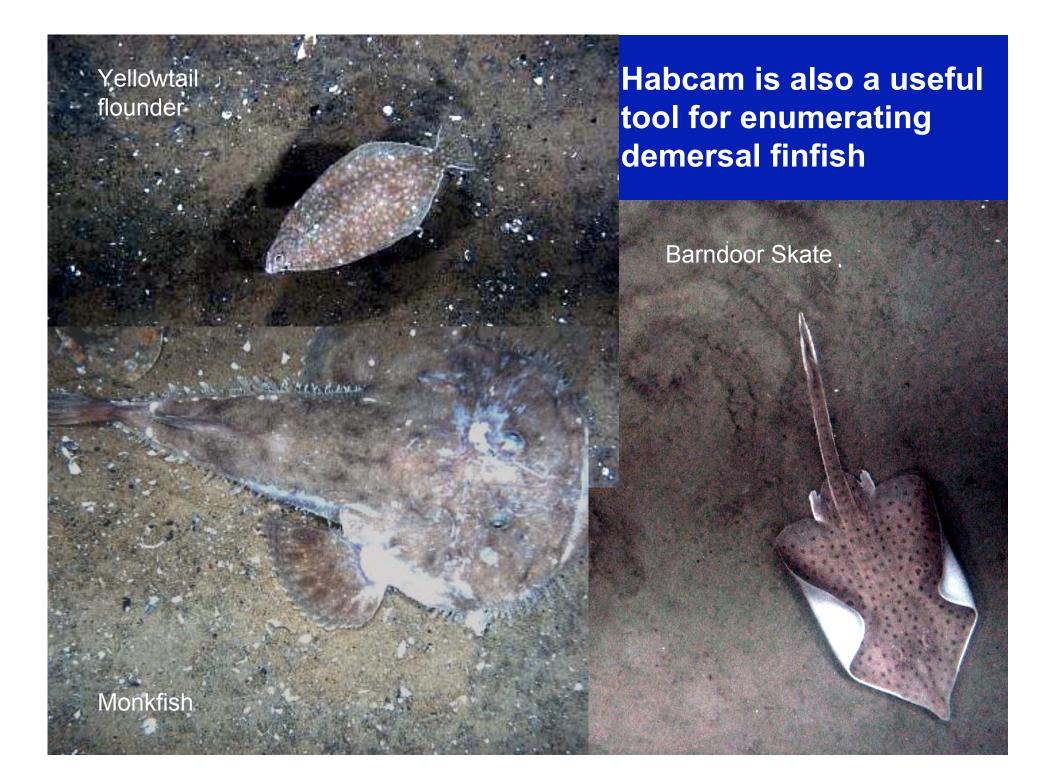
- 300k images/day, 1 GB data/day
- Piece images together to form mosaic
- Collect raw .tiff images, process, color correct to end up w/ .jpg images of manageable size
- Matlab software (written by Amber York) to measure scallops and translate image to a true size measurement

SCALLOP IMAGES

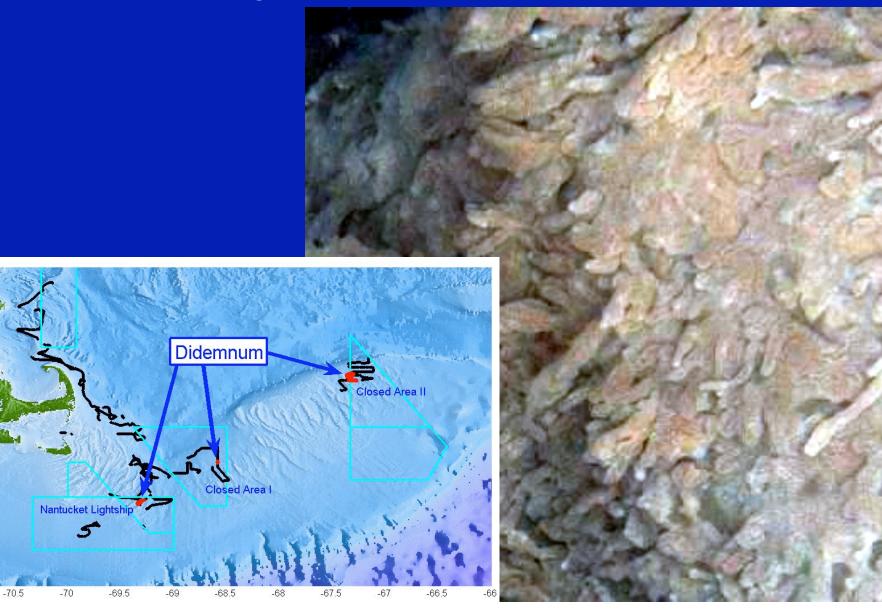
Habcam shows Predatory/Prey Interactions

Predation of sea scallops by *Asterias vulgaris* sea stars


Predation of sea scallops by *Buccinum undatum* whelks



Habcam also shows other ecosystem interactions - mutualism


Red hake (Urophycis chuss) and sea scallops

Invasive species

Didemnum sp. a.k.a., "the tunicate from hell"

43

42.5

42

41.5

41

40.5

40

University of MA, Dartmouth School for Marine Science and Technology (SMAST)

- Video Survey conducted since1999
- Conducted by joint effort of SMAST researchers and commercial fisherman

Photos from: http://www.smast.umassd.edu/Fisheries/Scallops/

SMAST Video Survey Objectives **Spatially Specific Estimates Abundance / Density Size Distribution** Recruitment **Natural Mortality Benthos Mapping / Gear Impacts Survey Characteristics Cooperative** Inexpensive Non-Invasive (vs. Mobile Gear) **Technologically Simple (Biologists not Engineers)** Adaptable to Management Changes (Spatial Management) Step off the vessel with estimate (Real-Time)

SMAST Video Survey Digital Still Camera = 1.3 m² 1.3m² 0.8m 3.2m² Large Camera = 3.2 m² Small Camera = 0.8 m^2 **Side Camera** 200 mm

How do the dredge survey and the Habcam optical survey compare?

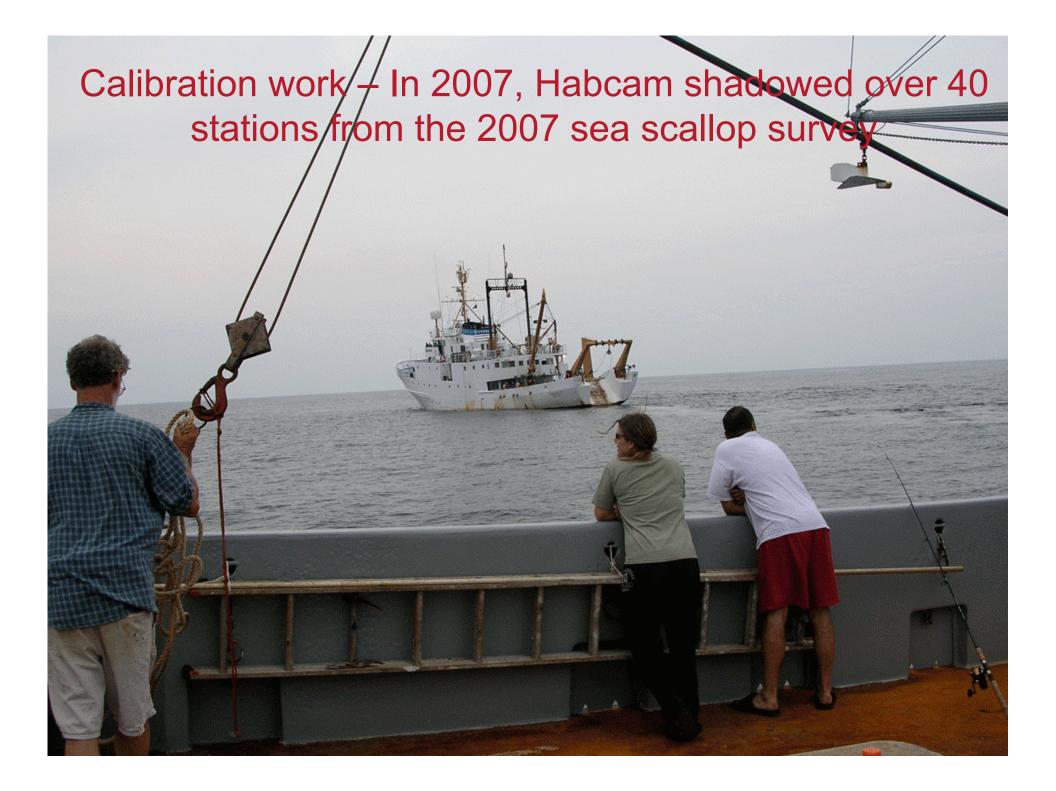
Basic Comparisons

	Dredge Survey	Optical Survey (Habcam Specifics)
Platform	UNOLS Vessel (formerly NOAA vessel)	Commercial Vessel
Survey Gear	Modified New Bedford Dredge	High resolution video camera, towed by vessel
Station Selection	Stratified Random sampling	Continuous Imaging System
Sampling Method	Dredge tows (3.8 knots; over 4500 m^2)	Line, pinwheel Transects (5 knots); Best design up for question
Purpose	Scallop Biomass Estimate	R&D Small scale surveys & investigations; Potential for widespread scallop biomass estimate

Cost comparisons

	Dredge Survey	Optical Survey (Habcam)
Cost	High: ~\$20K √	Lower: ~12K (60% less) √ √ BUT: High capital investment
Staff needed	20-22 (Boat:8; Scientific 12-14)	6-8 (3x less; Boat: 4; Scientific 2-4) √
Sampling Area Covered/Survey	Over 500 stations; 17,000 NM	TBD; Habcam can cover 2x area /day as Dredge survey √
Tow Analysis	 5 people √ 30-60 minutes to count, measure 1 tow Post Cruise QA/QC: 3-4 wks 	 Depends on decimation, # of scallops; Range: 1-10 hrs/person/tow. If count 1/100 image, likely 1-2 hrs/tow Post Cruise: TBD
Survey DAS	32 - 36 per Summer	Unclear; Estimate 16-24 days

Information Comparisons


	Dredge Survey	Optical Survey (Habcam)
Scallop Biology	Scallop weights, shells for age and growth √	Limited biological sampling capacity
Ecosystem level information	Limited capacity	Obtains information on habitats, other species, & interactions √
Credibility	 Historic time series √ Sampling methodology accepted 	 Support from industry Appropriate survey design not yet understood
Causes habitat damage?	Yes	No 🔨
Abundance?	Yes- Relative Index	Yes - Absolute Abundance √
Size frequency?	Yes, dredge efficiency, selectivity √	Yes, measurement error

Comparison Overview

- Cost Winner: Habcam
- Information Winner: Both
 - Dredge and optical surveys each provide unique sets of information
- Habcam still in R&D phase; If both were to measure the same scallops in the same area, how would they compare?
- 2007 Calibration Experiment

Part III.Calibration Experiment between Dredge Survey and Optical Survey (Habcam)

2008 NRAP Project Focus

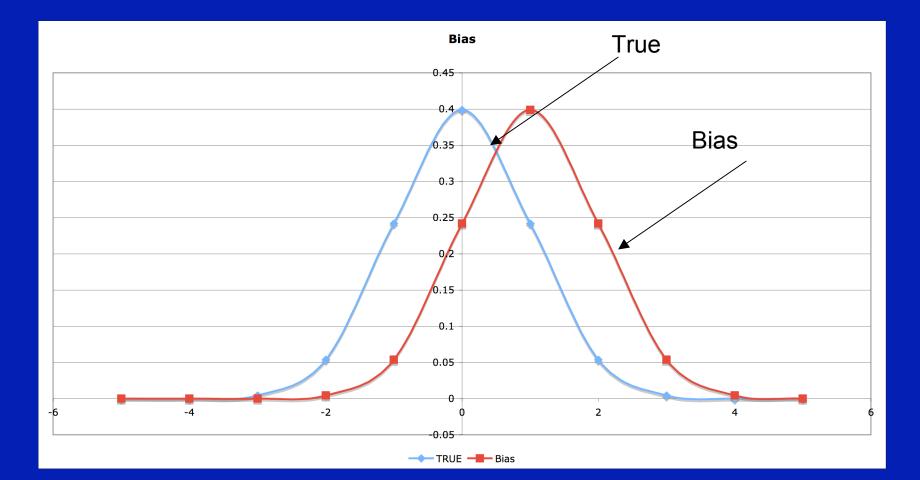
Comparison of dredge survey and Habcam at the same sites

Calibration Requires Analysis of:

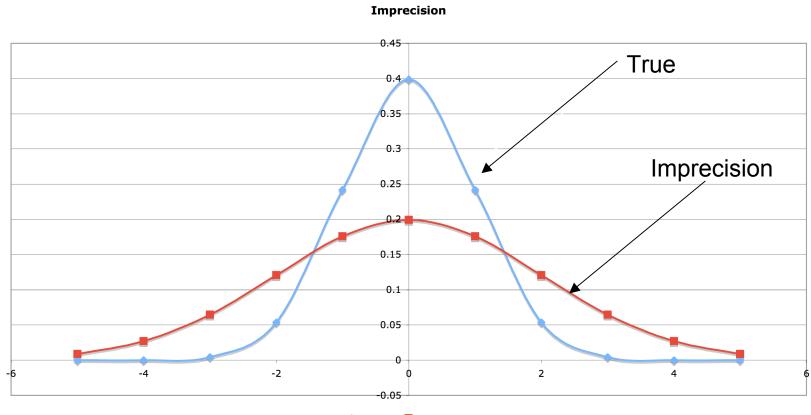
- Measurement Error
- Dredge Selectivity
- Dredge Efficiency

The first step is to look at Measurement Error: (2008 NRAP project)

Measurement Error Analysis


Methodology based on recent, combined work of NMFS and SMAST researchers

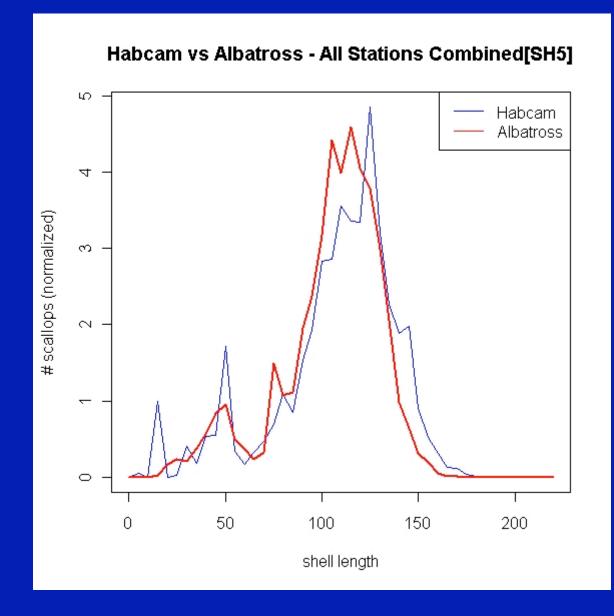
Two Types of Measurement Errors


Bias: Systematic Error

- Effects all obsevations equally; Shell height measurements off by a given amount on average
- Imprecision: Random error
 - Shell heights would fall within a given range of +/- mm on average
- Bias easier to correct

Types of Measurement Errors: Bias

Types of Measurement Errors: Imprecision


Methods

Overview

- R (Language and environment for stat computing and graphics)
- Determine, compare size frequencies for dredge and Habcam to nearest groups of 5mm (SH5)
- Standardize size frequencies per tow, by total number of scallops
- Assess for measurement error
- Determine possible sources of measurement error if it exists

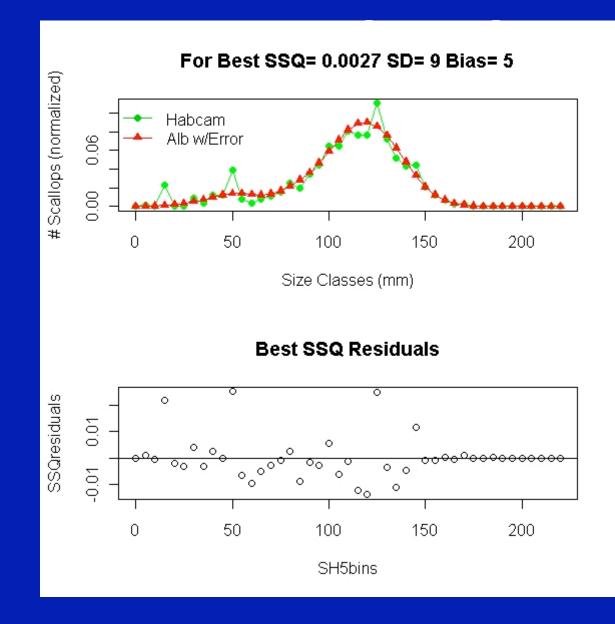
Initial Comparison of Albatross (Dredge) vs Habcam using SH5 size classes combined over all tows

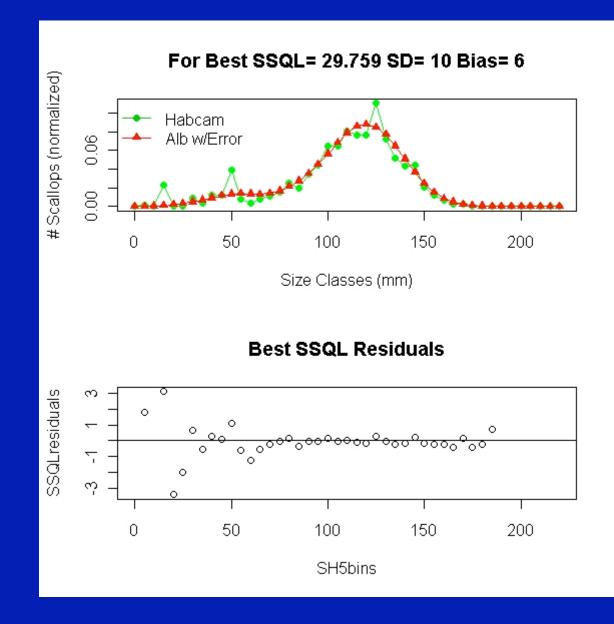
Assess for Measurement Error

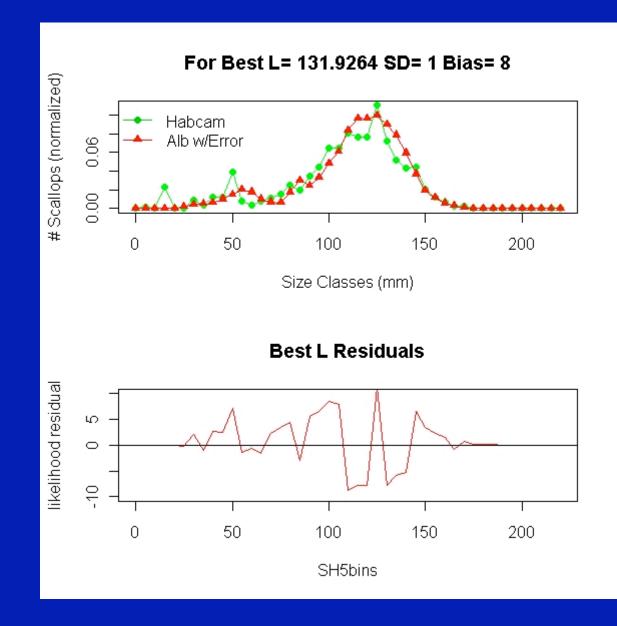
Assessment of Measurement Errors - Step 1

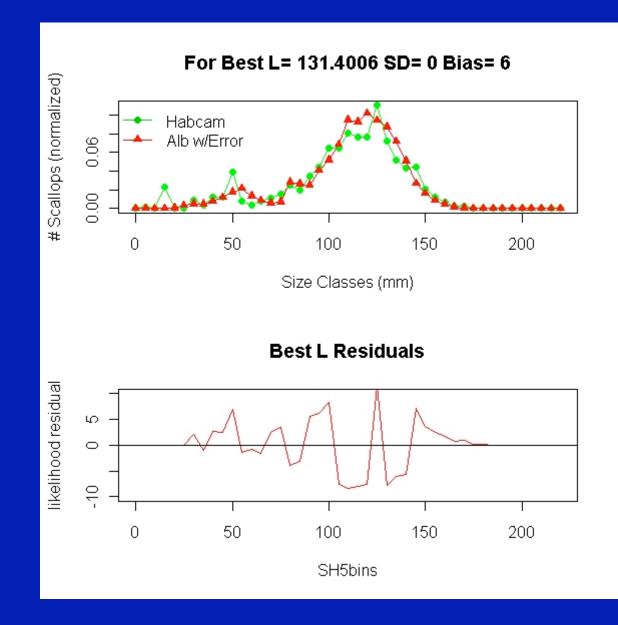
How to compare Albatross and Habcam

- Assumption: Dredge survey scallop size measurements are "true values"
- Apply measurement error estimates to dredge size distribution and try to best fit Habcam data
- Easy to add measurement errors; difficult to remove them
- Imprecision: Affects spread of data; Measured by Standard Deviation
- Bias: Affects mean of the data


Assessment of Measurement Errors - Step 2


- 3 Indices of Goodness of Fit
- Observed = Habcam
- Predicted = Albatross w/Meas Errors Applied
- Sum of Squares (SSQ)
 - (Observed Predicted)^2
- Sum of Logarithmic Differences (SSQL)
 - (Log[Observed] Log[Predicted])^2
- Negative Log Likelihood (L)
 - = n * $(^{z}\sum_{j=1} p_{j} \ln (\Omega_{j}))$
 - Symbols (n=# tows; z=# of size classes; p_j = observed proportions (habcam) (j); Ω_j = predicted proportions (Albatross w/ meas error)


Assessment of Measurement Errors - Step 3


- Apply different combinations of standard deviation (imprecision) and bias to minimize SSQ, SSQL, L
 - SD: 0 15 (+/- 15 mm)
 - Bias: -10 to 10 (range of 20 mm)
- Minimize SSQ, SSQL, L

Review the residuals of SSQ, SSQL, L by size class

Preliminary Summary of Error Analysis

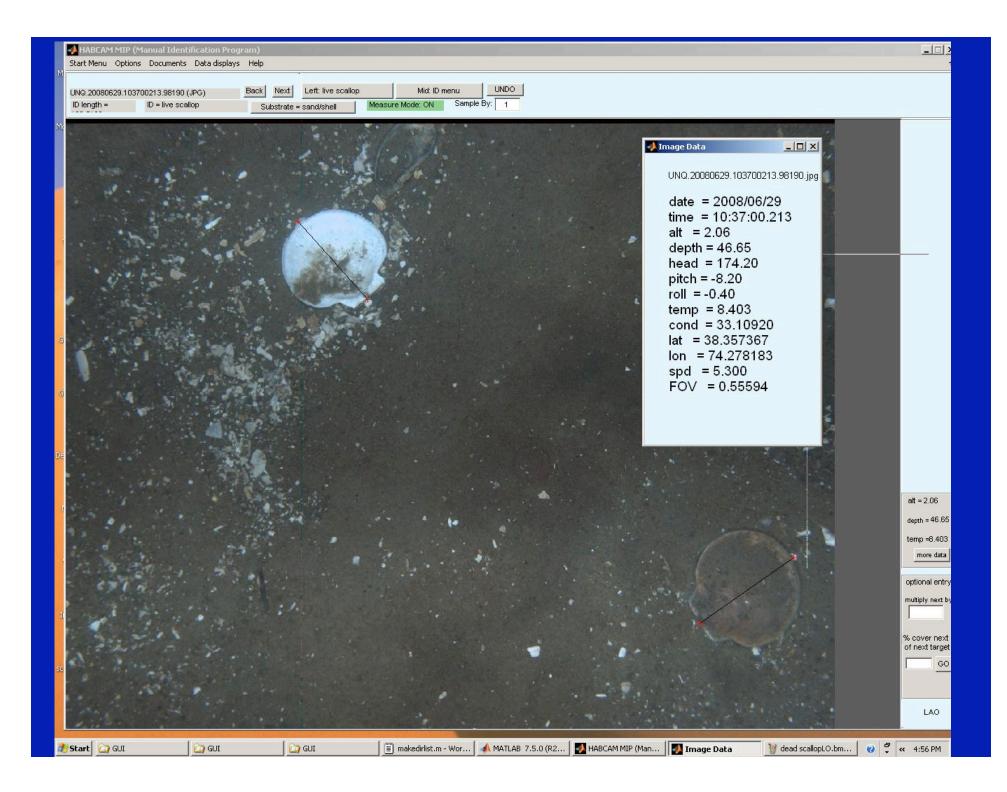
	Minimum Value	Standard Deviation	Bias
SSQ	.0027	9	5
SSQL	29.76	10	6
L - Best	131.40	0	6
L- Alternative	131.9	1	8

The possible range of parameters to describe measurement errors over a normal distribution is then

Imprecision:

- Either High
 - (+/- 9 -10 mm)
- Or Low (+/- 0-1 mm)

Bias
– Range: [5 -8 mm]


What can we say then about measurement error?

- Estimates for bias and variance are correlated if there are good fits to a wide range of parameter values
 - The data are unclear on this point
- L provides an interesting perspective (no variance, high bias) but results seems surprising
- Differences between the answers probably results from how well we fit the low proportions which have low expected variance in the L-based solution

If Measurement Error exists in Habcam, what could be the source?

Possible Sources of Measurement Error

- Scallop size only a function of altitude
- Sensitivity of size measurements to pixel variations is unknown
 - Could lead to up to 3 mm measurement error, though it may vary by altitude
- Scallops at angles on bottom

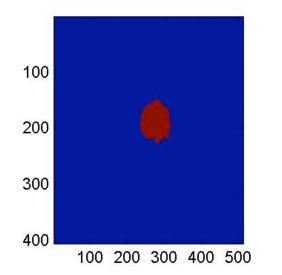
So, can an Optical Survey Replace the Dredge Survey?

- Not by itself
- BUT, the combination of a dredge and optical survey would obtain the best possible information on scallop populations
- Combined surveys would:
 - Maintain historical dredge survey time series
 - Obtain relative and absolute abundance estimates
 - Biological sampling
 - Ecosystem information and Interactions
 - Reduce bottom damage

Conclusions

- Scallop Surveys of the future
- A unique combination of dredge and optical survey methods that:
 - Maximizes information on scallop populations
 - Provide ecosystem information (e.g., scallops, habitats, other species of interest)
 - Minimizes fiscal costs

Ongoing work with Habcam also includes


- New stereo imaging system being developed would reduce potential measurement errors
- Automated image classification
- Combination of Habcam with sidescan and multibeam sonar
- More calibration work

Automated image classification

Acknowledgements

NOAA:

- Dvora Hart
- Larry Jacobson
- John Boreman
- Paul Rago
- Toni Chute
- Liz Brooks
- Colleen Close
- NRAP Program

WHOI

- Scott Gallagher
- Richard Taylor
- Amber York
- Norman Vine
- Munroe Tyler
- Crew of Kathy-Marie

 (Paul, Jerry, Tony, Donald)

More info at website: http://habcam.whoi.edu

Appendix Slides

Dredge Surveys

	Albatross	Sharp	Habcam	SMAST
Platform	NOAA Vessel	UNOL vessel	Commercial vessel	Commercial Vessel
Survey Gear	New Bedford Dredge (2.44 m w; 5.1 cm rings, 3.8 cm liner)	Same as Albatross with some modifications	High resolution video camera, towed by vessel	3 streaming video cameras and 1 high-res digital still camera
Station Selection	Stratified Random sampling	Stratified Random Sampling	Cont. imaging system	Systematic Grid
Sampling Method	Dredge tows (Each 15 min @ 3.8 knots over ~ 4500 m^2)	Same as Albatross	Transects (e.g., line, pinwheel); Best design is up for question	4 quadrats (3.2 m ² each) per station

Dredge Surveys

	Albatross	Sharp	Habcam	SMAST
Stations or Area Sampled Per survey	Over 500 stations; Survey area= 17,000 NM, Sample area is >2.25Million m^2	Same as Albatross	TBD; Habcam can cover 2x area /day that Dredge survey can sample	~1850 stations (23K m^2)
Tow Analysis	5 people, 30-60 minutes to count/measure 1 tow on ave	Same as Albatross	Depends on decimation, # of scallops; Range: 1- 10 hrs/person/tow. If count 1/100 image, likely 1-2 hrs.	1 person; 2 min/quad (8 min/stn)
Survey DAS	~ 30/summer	32- 36/ summer	Unclear; Estimate 16- 24 days	54 days (9 6- day cruises)*
Post cruise data analysis	3-4 wks (2-4 staff) for QA/QC	Same as Albatross	TBD; Tow analysis (above) and QA/QC	47 days; During field collection

Dredge Surveys

	Albatross	Sharp	Habcam	SMAST
Boat Crew	18	8	4	2
Science Personnel	12-14	12-14	2-4	2
Cost/day of boat and crew only	\$15-20K	\$13K	\$8K	\$0; boat, crew, time, etc- donated by scallop fishing fleet, industries
Cost/day of Science Personnel	\$6K	\$6K	\$2.4K	\$346
Cost/day supplies	\$1.5-2K	\$1.5-2K	Unknown	~\$30-45K/year*

Dredge Surveys

	Albatross	Sharp	Habcam	SMAST
Purpose	Scallop Biomass estimate	Scallop Biomass estimate	Small scale surveys & investigations; R&D Potential for widespread scallop biomass estimate	Scallop Biomass Estimate
Image Collection	N/A	N/A	4 images/sec	32 images/hour (8 images/hr, 4 cameras)
Image Capacity	N/A	N/A	2006 Alone: 2.2 Million images over 672 Nautical Miles in 163 hours	1998-2008: Examined 245,916 quadrats (video); 31,535 images of seafloor along 60,000 km^2 shelf

Comparison Overview

	Dredge	Habcam	SMAST
Unique Capabilities	 Sampling History Minimal Measurement Error Bio Sampling (e.g., weights, shells for age/growth) Stratified Random Sampling significant; Adaptive sampling 	 In -situ Absolute abundance Non-invasive Cooperative Research Provides ecosystem info (e.g., habitats, other spp.) Images high resolution Low operating cost Sample greatest area in least amt of time 	 In situ Absolute abundance Non-invasive Coop. Research Ecosystem info Technologically simple Adaptable survey design Real time estimate Inexpensive
Drawbacks	 Labor Intensive High Cost Relative index of abundance only Dredge efficiency uncertain Habitat damage 	 Lacks bio sampling Measurement Error Add. Time required for tow analysis Appropriate survey design not understood High capital investment 	 Lacks bio sampling Measurement Error, but less due to fixed camera position Lower res. images Covers smaller sampling area Weather, turbidity dependent