Managing & Modeling Fisheries at Small Spatial Scales:
A Case Study Using Giant Clams
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Small-scale in terms of:

Small-scale, artisanal fisheries
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Lack of funding, institutions, personnel,
central organization, biological information
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Spatial scale of harvest
Capital

Technology and manpower

Consumption and sale



Giant clam fisheries

Tropical/sub-tropical
Sessile
Hermaphrodites
Pelagic larval duration ~7-11 days
Form a symbiosis with
photosynthesizing Symbiodinium
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Giant clam fisheries exist throughout the Indo-Pacific
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Managing at small-scales:

» Spatial scale of ~10s — 100s of km

» |sland or reef scale

* A mix of self-recruitment and external
recruitment



Research Questions

Under uncertainty in the level of self-recruitment,

1. How do you model a population and its fishery, to
determine trends in abundance?

2. How do you set a size limit that maximizes harvest
while sustaining population abundance?




Mo’orea, French Polynesia

minimum size limit: 120 mm
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Research Questions

Under uncertainty in the level of self-recruitment,

1. How do you model a population and its fishery?
Approach:
 Modify an Integral Projection to model local
population abundance
« Measure demographic data on growth, survival,
recruitment, & reproduction
 Use this data to create an IPM for giant clams
2. How do you set a size limit that maximizes harvest while
sustaining population abundance?




Integral Projection Models

(and why they’re better than matrix models)
(Easterling et al. 2000, Ellner & Rees 2006)

* |PMs describe individuals as continuous in size (or age),
Instead of binning them into size (or age) classes

— This eliminates size-specific sensitivities

* |IPMs require less data to parameterize than matrix
models

« All analyses that managers use from matrix models can
be performed with IPMs



General model of population at small spatial scales
(with a mix of self-recruitment and external recruitment)

Abundance,, ; = Growth Rate * Abundance, + External Recruitment

Where Growth Rate combines survival, growth, and self-
recruitment

Integral Projection Model modified to account for a mix of
recruitment:

n(y,t+1)= T(P(x,y) +F (X, y))n(x,t)dx +R(y,t +1)




METHODS: Gather data on demographic processes

fecundity

Mark and recapture study: 99% recapture rate

» 12 sites, 44 permanent transects

Surveyed Jun-Aug 2006-2010 (5 years) ~4000 hours or 168 days
Clams tagged with unique 3-letter code underwater

 n= 1,949 clams surveyed

» 2,340 m? covered

survival:
includes fishing and natural mortality

recruitment




RESULTS: Size-dependent functions for giant clam IPM

survival probability

number of self-recruits
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open RESULTS: Integral Projection Model

closed
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Harvest of giant clams on Moorea is sustainable.
l.e. The local population of giant clams can support the total
measured mortality rate.




RESULTS: Sensitivity and Elasticity
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Size-Based Approaches to Modeling & Managing
Local Populations

Under uncertainty in the level of self-recruitment,
1. How do you model a population and its fishery?

2. How do you set a size limit that maximizes harvest while
sustaining population abundance?
Approach:
o Simulate future harvest of giant clams for a range
of minimum size limits across the range of possible
self-recruitment
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METHODS: Partition recruits in mixed recruitment model

Abundance,, ; = Growth Rate * Abundance, + External Recruitment

 Model a population from 0-100% self-recruitment in 5% increments

open closed

0% self-recruitment / total recruitment 100%
20%

!

e Mixed recruitment example:
Assuming there are 100 recruits annually,
At 20% self-recruitment,
20 recruits are self-recruits:
and
80 recruits are external recruits: R(y, t+1)



METHODS: Evaluate a range of minimum size limits

e Evaluate minimum size limits from 60-180 mm in 5 mm
Increments

 Assume enforcement of a given size limit

e For each combination of self-recruitment and size limit,

— Run simulations for 30 years
— Harvest = Remove 50% of the legal-sized clams each year

— Calculate biomass of harvest at year 30

Minimum size limit;
3 120 mm

harvest from Moorea
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METHODS: Simulate annual harvest

Sample simulation:

20% self-recruitment, 120 mm size limit

population abundance over time
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RESULTS: Annual harvest at year 30

Maximum harvest = The maximum harvest possible (at year 30)
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RESULTS: Annual harvest at year 30

—8— maximum harvest

Minimum size limit (mm)
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RESULTS: A near-optimal size limit

-=-©-- size limit (mm) at max harvest
----- size limit (mm) within 10% of max harvest
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A single, near-optimal minimum size limit results in max or near-max

sustainable harvest for all levels of self-recruitment.

A near-optimal size limit can be set even when there is uncertainty regarding

the amount of self-recruitment.
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RESULTS: Near-optimal size limits can be set
for many different life histories

Near-optimal

Life history characteristic Values tested size limit (mm)
121.4 mm, 60.7 % of max size N/A
asymptotic size 161.9 mm, 80.9 % of max size 135
178.1 mm, 89.0 % of max size 150
10 years 160
time to asymptotic size 38 years 135
50 years 130
L . 121.4 mm, 60.7 % of max size, 28 years 115
asymptotic size and time to _
asymptotic size* 161.9 mm, 80.9 % of max s!ze, 38 years 135
178.1 mm, 89.0 % of max size, 42 years 145
magnitude of variation in °L.3mm 135
68.5 mm 135
growth
85.6 mm 140
33.1 mm, 16.5 % of max size 115
minimum reproductive size 66.1 mm, 33.1 % of max size 135
99.2 mm, 49.6 % of max size N/A
3.0 self-recruits 140
fecundity at asymptotic size 4.0 self-recruits 135
5.0 self-recruits 135
66.7 % N/A
survival rate at asymptotic size 88.6 % 135
- 96.9 % 140

asymptotic size changed, time to asymptotic size re-calculated accordingly




CONCLUSIONS

In the worst case scenario, the abundance of clams on Moorea would
decline by 7% if the local population has 0% self-recruitment. The
local population of giant clams on Moorea can support the total
mortality rate, including present-day fishing mortality.

A single near-optimal size limit will maximize(or nearly maximize)
annual harvest of giant clams on Moorea across all levels of self-
recruitment.

This near-optimal size limit is 135 mm, which is larger than the
current minimum size limit of 120 mm.

A near-optimal size limit can be applied to organisms with a wide
variety of life history characteristics without knowing the level of self-
recruitment.



Policy Implications

 Integral Projection Models are a good alternative to matrix
population models
— Require less data to parameterize
— Eliminate model sensitivities to size classes

« Even though we don’t know how much self-recruitment is
occurring, we can still:
— Model (using IPMs) and manage populations at small spatial scales
— Set a single minimize size limit to optimize (or nearly optimize)
harvest
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