Managing & Modeling Fisheries at Small Spatial Scales: A Case Study Using Giant Clams

Annie J Yau annie.yau@noaa.gov

Knauss Sea Grant Fellow Office of the Assistant Administrator Oceanic and Atmospheric Research, NOAA 17 May 2012

Small-scale, artisanal fisheries

Small-scale in terms of:

- Spatial scale of harvest
- Capital
- Technology and manpower
- Consumption and sale

Lack of funding, institutions, personnel, central organization, biological information

Giant clam fisheries

- Tropical/sub-tropical
- Sessile
- Hermaphrodites
- Pelagic larval duration ~7-11 days
- Form a symbiosis with photosynthesizing *Symbiodinium*

Giant clam fisheries exist throughout the Indo-Pacific

Range of Tridacna maxima, the small giant clam.

Managing at small-scales:

- Spatial scale of ~10s 100s of km
- Island or reef scale
- A mix of self-recruitment and external recruitment

Research Questions

Under uncertainty in the level of self-recruitment,

- 1. How do you model a population and its fishery, to determine trends in abundance?
- 2. How do you set a size limit that maximizes harvest while sustaining population abundance?

Mo'orea, French Polynesia

Research Questions

Under uncertainty in the level of self-recruitment,

- 1. How do you model a population and its fishery? Approach:
 - Modify an Integral Projection to model local population abundance
 - Measure demographic data on growth, survival, recruitment, & reproduction
 - Use this data to create an IPM for giant clams
- 2. How do you set a size limit that maximizes harvest while sustaining population abundance?

Integral Projection Models (and why they're better than matrix models)

(Easterling et al. 2000, Ellner & Rees 2006)

- IPMs describe individuals as continuous in size (or age), instead of binning them into size (or age) classes
 - This eliminates size-specific sensitivities
- IPMs require less data to parameterize than matrix models
- All analyses that managers use from matrix models can be performed with IPMs

General model of population at small spatial scales (with a mix of self-recruitment and external recruitment)

 $Abundance_{t+1} = Growth Rate * Abundance_t + External Recruitment$

Where Growth Rate combines survival, growth, and selfrecruitment

Integral Projection Model modified to account for a mix of
recruitment:
$$n(y,t+1) = \int_{L}^{U} (P(x,y) + F(x,y))n(x,t)dx + R(y,t+1)$$

METHODS: Gather data on demographic processes

Mark and recapture study: 99% recapture rate

- 12 sites, 44 permanent transects
- Surveyed Jun-Aug 2006-2010 (5 years)
- Clams tagged with unique 3-letter code
- n = 1,949 clams surveyed
- 2,340 m² covered

growth

fecundity

~4000 hours or 168 days underwater

survival: includes fishing and natural mortality

recruitment

RESULTS: Size-dependent functions for giant clam IPM

Assuming 100% slf-recruitment

Assuming 0% self-recruitment

RESULTS: Sensitivity and Elasticity

Size-Based Approaches to Modeling & Managing Local Populations

Under uncertainty in the level of self-recruitment,

- 1. How do you model a population and its fishery?
- How do you set a size limit that maximizes harvest while sustaining population abundance?
 Approach:
 - Simulate future harvest of giant clams for a range of minimum size limits across the range of possible self-recruitment

METHODS: Partition recruits in mixed recruitment model

 $Abundance_{t+1} = Growth Rate * Abundance_t + External Recruitment$

• Model a population from 0-100% self-recruitment in 5% increments

and

80 recruits are external recruits: R(y, t+1)

METHODS: Evaluate a range of minimum size limits

- Evaluate minimum size limits from 60-180 mm in 5 mm increments
- Assume enforcement of a given size limit
- For each combination of self-recruitment and size limit,
 - Run simulations for 30 years
 - Harvest = Remove 50% of the legal-sized clams each year
 - Calculate biomass of harvest at year 30

METHODS: Simulate annual harvest

RESULTS: Annual harvest at year 30

RESULTS: Annual harvest at year 30

RESULTS: A near-optimal size limit

RESULTS: Near-optimal size limits can be set for many different life histories

		Near-optimal
Life history characteristic	Values tested	size limit (mm)
asymptotic size	121.4 mm, 60.7 % of max size	N/A
	161.9 mm, 80.9 % of max size	135
	178.1 mm, 89.0 % of max size	150
time to asymptotic size	10 years	160
	38 years	135
	50 years	130
asymptotic size and time to asymptotic size [‡]	121.4 mm, 60.7 % of max size, 28 years	115
	161.9 mm, 80.9 % of max size, 38 years	135
	178.1 mm, 89.0 % of max size, 42 years	145
magnitude of variation in growth	51.3 mm	135
	68.5 mm	135
	85.6 mm	140
minimum reproductive size	33.1 mm, 16.5 % of max size	115
	66.1 mm, 33.1 % of max size	135
	99.2 mm, 49.6 % of max size	N/A
fecundity at asymptotic size	3.0 self-recruits	140
	4.0 self-recruits	135
	5.0 self-recruits	135
survival rate at asymptotic size	66.7 %	N/A
	88.6 %	135
	96.9 %	140
[‡] asymptotic size changed, time to asymptotic size re-calculated accordingly		

CONCLUSIONS

- In the worst case scenario, the abundance of clams on Moorea would decline by 7% if the local population has 0% self-recruitment. The local population of giant clams on Moorea can support the total mortality rate, including present-day fishing mortality.
- A single near-optimal size limit will maximize(or nearly maximize) annual harvest of giant clams on Moorea across all levels of self-recruitment.
- This near-optimal size limit is 135 mm, which is larger than the current minimum size limit of 120 mm.
- A near-optimal size limit can be applied to organisms with a wide variety of life history characteristics without knowing the level of selfrecruitment.

Policy Implications

- Integral Projection Models are a good alternative to matrix population models
 - Require less data to parameterize
 - Eliminate model sensitivities to size classes
- Even though we don't know how much self-recruitment is occurring, we can still:
 - Model (using IPMs) and manage populations at small spatial scales
 - Set a single minimize size limit to optimize (or nearly optimize) harvest

Acknowledgements

Committee: Hunter Lenihan, Bruce Kendall, Roger Nisbet Field work: L. Albertson, J. Creason, T. Minter, A. Rivera, S.Shaffiy The Moorea Coral Reef LTER Gump station staff The Brando Trust, Conservation Tetiaroa The Lenihan and Kendall labs My family and friends

Funding and support:

Moorea Coral Reef Long Term Ecological Research Site Gump Research Station Pacific Education and Research Laboratories (PEARL) Award

PADI Foundation

Bren School of Environmental Science & Management Luce Environmental Science to Solutions Fellowship UCSB

