Wind turbine wake characterization with optical remote sensing and computational fluid dynamics

MATTHEW L. AITKEN

ORISE Research Fellow, Environmental Protection Agency (Former affiliation: Dept. of Physics, University of Colorado)

October 21, 2014

Acknowledgments

- Advisor: Julie Lundquist (CU/NREL)
- Dissertation committee
 - Michael Ritzwoller (CU)
 - Robert Banta (NOAA)
 - Judah Levine (CU/NIST)
 - Dmitri Uzdensky (CU)
- Other collaborators
 - Branko Kosović (NCAR)
 - Jeff Mirocha (LLNL)
 - Yelena Pichugina (NOAA)
 - Andy Clifton (NREL)

Outline

- Lidar background
- Wind turbine wake characterization
 - theory and previous work
 - wake detection algorithm
 - experiment
 - simulation
- Summary

Outline

Lidar background

- Wind turbine wake characterization
 - theory and previous work
 - wake detection algorithm
 - experiment
 - simulation
- Summary

Pulsed coherent lidar principle of operation

- Transmitted optical signal is scattered from atmospheric aerosols advected by wind
- Return signal optically mixed w/ local oscillator
- Resulting beat frequency indicates Doppler shift due to moving particles
 - wind speed is proportional to Doppler shift
 - offset frequency added to local oscillator to distinguish between (+) and (-) velocities
- Only line-of-sight velocity can be discerned

Lidar measurements taken usually under the assumption that the flow is homogeneous

$$v_{\text{LOS}} = -u \sin \theta \cos \phi - v \cos \theta \cos \phi - w \sin \phi$$
$$v_{\text{LOS}} = a + b \cos(\theta - \theta_{\text{max}})$$
$$\mathbf{v} = (u, v, w) = (-b \sin \theta_{\text{max}} / \cos \phi, -b \cos \theta_{\text{max}} / \cos \phi, -a / \sin \phi)$$

Figs: Werner (2005)

Lidar applications to wind energy

- Data assimilation for improved forecasting
- Nacelle-based turbine control systems
 - increase energy output
 - decrease structural damage
- Resource assessment
 - reduce uncertainty in annual energy production (AEP)
 - lower borrowing costs
 - improve return on investment (ROI)
- Wind turbine wake characterization
 - CFD model verification

Fig: Alfred Wegener Institute

Outline

- Lidar background
- Wind turbine wake characterization
 - theory and previous work
 - wake detection algorithm
 - experiment
 - simulation
- Summary

Wind turbine wakes are characterized by (1) velocity deficit & (2) increased turbulence...

UNIVERSITY OF COLORADO BOULDER

Fig: National Renewable Energy Laboratory

Motivation: to optimize turbine layouts and controls at wind farms

Wind turbine layout optimization

- Wind turbine wake modeling suffers from too much uncertainty
 - negatively impacts optimization of wind farm layouts
 - more experimental data needed for model verification
- Innovation in measurement techniques is increasingly important
 - scanning remote sensors offer fine resolution w/o disturbing flow
 - new methods are required to extract wake characteristics

Wind direction

Blade rotation

Fig: Sandia National Laboratory

Velocity deficit profile in the near and far wake turbulent mixing

no rigid definition, but near wake usually taken to extend a few rotor diameters behind turbine curve taken to be a Gaussian based on experimental evidence and similarity theory (Pope 2000)

UNIVERSITY OF COLORADO BOULDER

Fig: Trujillo (2005) IEA Annex XXIII workshop

Velocity deficit profile as simulated by WRF

- Just behind the turbine, the wake expands initially b/c of mass conservation
 - profile has two local minima
- In the far wake, the velocity deficit decreases and the wake boundary increases with downstream distance
 - turbulent mixing causes the ambient flow to be entrained within the wake
 - profile has one global minimum

Velocity deficit profile as simulated by WRF

- Just behind the turbine, the wake expands initially b/c of mass conservation
 - profile has two local minima
- In the far wake, the velocity deficit decreases and the wake boundary increases with downstream distance
 - turbulent mixing causes the ambient flow to be entrained within the wake
 - profile has one global minimum
- x = downstream distance
- D = rotor diameter

x = 0.70D6 wind speed [m s⁻¹ 5 4 3 2 0 -2 2 y [D]

Previous wake measurements made using met towers, sodar, UAS, lidar, and radar

UNIVERSITY OF COLORADO BOULDER

Aitken et al. (2014) J. Atmos. Ocean. Tech., **31**, 765–787

Wake meandering driven by eddies with length scales on the order of the rotor

UNIVERSITY OF COLORADO BOULDER

Fig: Larsen et al. (2008) *Wind Energy*, **11**, 377–395

Uncertainty in the literature as to the vertical location of the wake centerline

 Wake center located *above* hub height Magnusson and Smedman (1994); Helmis et al. (1995) Wake center located *at* hub height Elliott and Barnard (1990); Kambezidis et al. (1990) Wake center located near hub height Barthelmie et al. (2003) Wake center located *below* hub height Crespo et al. (1988)

Improving upon wake characterization from previous remote sensing experiments

- Käsler et al. (2010): first long-range lidar study, but very brief analysis limited to a single scan
- Bingöl et al. (2010) and Trujillo et al. (2011)
 - nacelle-mounted ZephIR lidar with max range of 200 m
 - stall-regulated 95-kW test turbine w/ 29-m hub and 19-m rotor diameter
 - analysis focuses on horizontal wake meandering and is limited to just 10-min
- Hirth et al. (2012) and Hirth & Schroeder (2013): dual-Doppler radar methodology and wake tracking algorithm not readily generalized for application to other datasets
 - does not incorporate wake expansion
 - focuses mostly on tracking horizontal position of wake centerline
 - analysis limited to 1-hr period during rainfall
- Iungo et al. (2013): focuses mostly on testing various lidar scanning strategies
 - limited analysis of a few scans lasting 11 min each

Improving upon wake characterization from previous remote sensing experiments

- Need rigorous, general methodology for quantifying various wake characteristics
 - applicable to both remotely sensed measurements and numerical simulation output
- Need observations from modern pitch-regulated multi-MW turbines
- Need much more data to verify CFD models and to study effect of different atmospheric conditions
 - wind speed
 - turbulence
 - stability

Outline

- Lidar background
- Wind turbine wake characterization
 - theory and previous work
 - wake detection algorithm
 - experiment
 - simulation
- Summary

Lidar typically measures line-of-sight velocity (u_{LOS}) using two scanning strategies

UNIVERSITY OF COLORADO BOULDER

Aitken et al. (2014) J. Atmos. Ocean. Tech., **31**, 765–787

Plan view of the coordinate systems with modeled parameters in purple

- d = distance from lidar to turbine
- r = lidar range gate
- α = lidar azimuth angle
- *u* = ambient wind speed
- φ = ambient wind direction
- u_{LOS} = line-of-sight velocity measured by lidar

Wake modeled as Gaussian function subtracted from uniform ambient flow

For each beam sweep, and at each range gate *r*, three models are fit to the lidar data to identify the wake, if any

Extra sum-of-squares F→ test used to find simplest model to fit data

Example fit to data from horizontal scan

UNIVERSITY OF COLORADO BOULDER

Aitken et al. (2014) J. Atmos. Ocean. Tech., **31**, 765–787

Side view of the coordinate systems used for vertical scan model

UNIVERSITY OF COLORADO **BOULDER**

Aitken et al. (2014) J. Atmos. Ocean. Tech., **31**, 765–787

Wake modeled as Gaussian subtracted from logarithmic wind speed profile

For each beam sweep, and at each range gate *r*, three models are fit to the lidar data to identify the -wake, if any

$$u_{\text{LOS}}(z,r) = \frac{u_*}{k} \ln\left[\frac{z}{z_0}\right] \cos\delta = \frac{u_*}{k} \ln\left[\frac{z}{z_0}\right] \sqrt{1 - (z/r)^2}$$

$$u_{\text{LOS}}(z,r) = \left(\frac{u_*}{k} \ln\left[\frac{z}{z_0}\right] - a \exp\left[\frac{-(z-z_c)^2}{2s_h^2}\right]\right) \sqrt{1 - (z/r)^2}$$

$$u_{\text{LOS}}(z,r) = \left(\frac{u_*}{k} \ln\left[\frac{z}{z_0}\right] - a \left\{ \exp\left[\frac{-(z-z_l)^2}{2s_h^2}\right] + \exp\left[\frac{-(z-z_u)^2}{2s_h^2}\right] \right\} \right) \\ \times \sqrt{1 - (z/r)^2}$$

Extra sum-of-squares F-→ test used to determine simplest model to fit data

Example fit to data from vertical scan

UNIVERSITY OF COLORADO BOULDER

Aitken et al. (2014) J. Atmos. Ocean. Tech., **31**, 765–787

Outline

- Lidar background
- Wind turbine wake characterization
 - theory and previous work
 - wake detection algorithm
 - experiment
 - simulation
- Summary

Lidar used to measure utility-scale turbine wakes in two experiments

	Experiment 1	Experiment 2
Location	National Wind Tech. Center	wind farm in western U.S.
Lidar type	ground-based NOAA HRDL	nacelle-based Galion G4000
Scan type	horizontal and vertical	horizontal
Data length	~100 hours	1 month
Reference	Aitken et al. (2014) <i>J. Atmos.</i> <i>Ocean. Tech.</i> , 31 , 765–787	Aitken/Lundquist (2014) J. Atmos. Ocean. Tech., 31 , 1529–1539

UNIVERSITY OF COLORADO BOULDER

Figs: NOAA and Windpower Engineering & Development

Nacelle-based lidar experiment conducted at a wind farm in the western U.S.

Wake detection rate

- Lidar field-of-view (84° sector) not wide enough to capture wake near the turbine
 - need larger scan sector in future experiments
- Near wake lasts until ~3D downwind
- Wakes detected w/ diminishing frequency after x = 3D
 - velocity deficit scales increasingly with ambient variability
 - velocity measurements are less precise at longer range gates
- Detection rate on par with España et al. (2011) Wind Energy, 14, 923–937
 - particle image velocimetry in wind tunnel study

Velocity deficit decreases with downstream distance because of turbulent mixing

UNIVERSITY OF COLORADO BOULDER

Wake boundary expands with downstream distance because of turbulent mixing

UNIVERSITY OF COLORADO BOULDER

Outline

- Lidar background
- Wind turbine wake characterization
 - theory and previous work
 - wake detection algorithm
 - experiment
 - simulation
- Summary

Wind turbine performance depends on turbulence and atmospheric stability

- Rotating actuator disk model recently implemented in WRF-LES by Branko Kosović (NCAR) and Jeff Mirocha (LLNL)
 - comprehensive verification of this model requires simulating different turbines and atmospheric conditions

	Simulation 1	Simulation 2
Corresponding experiment	Experiment 1 (ground-based lidar @ NWTC)	Experiment 2 (nacelle-based lidar @ commercial wind farm)
Reference	Mirocha et al. (2014) <i>J. Renew.</i> <i>Sust. Energy</i> , 6 , 013104	Aitken et al. (2014) <i>J. Renew.</i> <i>Sust. Energy</i> , 6 , 033137
Stability	unstable	stable
Features	well-mixed surface heating convective cells thick boundary layer large characteristic eddies	wind shear surface cooling suppressed buoyancy shallow boundary layer small characteristic eddies

Rotating actuator disk model in WRF-LES implemented by Kosović and Mirocha

Blade Element Theory

+

Momentum Theory

 UNIVERSITY OF COLORADO BOULDER
 Mirocha et al. (2014)
 Wang et al. (2013)
 36

 J. Renew. Sust. Energy, 6, 013104
 J. Sol. Energy Eng., 136, 011018

Modifications to actuator disk model: rotor tilt (δ) and drag from tower/nacelle

By Newton's third law, rotor tilt should cause the wake to be shifted upward

UNIVERSITY OF COLORADO BOULDER

UNIVERSITY OF COLORADO BOULDER

WRF simulation of wake dynamics

Simulated inflow conditions closely match met tower measurements

UNIVERSITY OF COLORADO BOULDER

Simulation is capable of representing the transition from the near to far wake

Simulated flow field transitions from a double-Gaussian to a single-Gaussian profile around x = 2-3D

Good agreement between measured and simulated results

UNIVERSITY OF COLORADO BOULDER

Outline

- Lidar background
- Wind turbine wake characterization
 - theory and previous work
 - wake detection algorithm
 - experiment
 - simulation

Summary

Summary

- Developed statistical model for wind turbine wake characterization
 - generally applicable to experiment and simulation
 - allows for categorization of results by atmospheric conditions
- Conducted first analysis of utility-scale turbine wake using nacelle-based lidar
- Simulated stable conditions
- Added rotor tilt and tower/nacelle drag to actuator disk model in WRF-LES
 - demonstrated upward shift in wake centerline
- Good agreement between measured and simulated results

Thank you

UNIVERSITY OF COLORADO **BOULDER**

Fig: John De Bord Photography