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Pulsed coherent lidar principle of operation 
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 Transmitted optical 
signal is scattered from 
atmospheric aerosols 
advected by wind 

 Return signal optically 
mixed w/ local oscillator 

 Resulting beat frequency 
indicates Doppler shift 
due to moving particles 
 wind speed is 

proportional to Doppler 
shift 

 offset frequency added 
to local oscillator to 
distinguish between (+) 
and (-) velocities 

 Only line-of-sight 
velocity can be discerned 

Interferometer Laser Receiver 

Processing 

Doppler shift 

aerosols 

wind speed 

line-of-sight (LOS) 

component 

Fig: Leosphere 
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Lidar measurements taken usually under the 

assumption that the flow is homogeneous 
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𝑣LOS = −𝑢 sin 𝜃 cos𝜙 − 𝑣 cos 𝜃 cos𝜙 − 𝑤 sin𝜙 

𝑣LOS = 𝑎 + 𝑏 cos(𝜃 − 𝜃max) 
v = (𝑢, 𝑣, 𝑤) = (−𝑏 sin 𝜃max/ cos𝜙,−𝑏 cos 𝜃max/ cos𝜙,−𝑎/ sin𝜙) 

Statistical model    

fit to lidar 

measurements for 

each height interval 

Figs: Werner (2005) 
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Lidar applications to wind energy 

 Data assimilation for 
improved forecasting 

 Nacelle-based turbine control 
systems 
 increase energy output 

 decrease structural damage 

 Resource assessment 
 reduce uncertainty in annual 

energy production (AEP) 

 lower borrowing costs 

 improve return on investment 
(ROI) 

 Wind turbine wake 
characterization 
 CFD model verification 
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Fig: Alfred Wegener Institute 

Fig: FT Technologies 

Fig: Pentalum 

Fig: Christian Steiness 
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Wind turbine wakes are characterized by (1) 

velocity deficit & (2) increased turbulence… 
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…leading to (1) lower 

power performance 

and (2) higher 

structural loading for 

downwind turbines  

Fig: National Renewable 

Energy Laboratory 
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Motivation: to optimize turbine layouts and 

controls at wind farms 
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Sparse       turbine       layouts       limit       wake-induced     

power       losses       and       structural       loading… 

…but dense 

layouts limit 

costs due to 

land, roads, and 

transmission. 

Thus, there exists some 

intermediate spacing that 

optimizes levelized cost. 

Power is maximized while 

capital, O&M, and transmission 

costs are minimized. 
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Wind turbine layout optimization 

 Wind turbine wake modeling suffers from too much uncertainty 

 negatively impacts optimization of wind farm layouts 

 more experimental data needed for model verification 

 Innovation in measurement techniques is increasingly important 

 scanning remote sensors offer fine resolution w/o disturbing flow 

 new methods are required to extract wake characteristics 

Fig: Sandia National Laboratory 
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Velocity deficit profile in the near and far 

wake 
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turbulent mixing 

causes the two local 

minima to merge 

into a single global 

minimum 

amplitude decreases 

and width increases 

with distance behind 

the turbine 

no rigid definition, but 

near wake usually taken 

to extend a few rotor 

diameters behind turbine 

curve taken to be a Gaussian 

based on experimental 

evidence and similarity theory 

(Pope 2000) 

 
Fig: Trujillo (2005) 

IEA Annex XXIII workshop 
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Velocity deficit profile as simulated by WRF 

 Just behind the turbine, the 
wake expands initially b/c of 
mass conservation 
 profile has two local minima 

 In the far wake, the velocity 
deficit decreases and the 
wake boundary increases 
with downstream distance 
 turbulent mixing causes the 

ambient flow to be entrained 
within the wake 

 profile has one global 
minimum 

 x = downstream distance 

 D = rotor diameter 
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Previous wake measurements made using 

met towers, sodar, UAS, lidar, and radar 
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%100VD
ambient

wakeambient 



u

uu

Aitken et al. (2014) 

J. Atmos. Ocean. Tech., 31, 765–787 

similarity theory: 

VD ~ x -2/3 
similarity theory: 

w ~ x1/3 
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Wake meandering driven by eddies with 

length scales on the order of the rotor 

16 Fig: Larsen et al. (2008) 

Wind Energy, 11, 377–395 
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Uncertainty in the literature as to the vertical 

location of the wake centerline 

 Wake center located above 
hub height 
 Magnusson and Smedman 

(1994); Helmis et al. (1995) 

 Wake center located at hub 
height 
 Elliott and Barnard (1990); 

Kambezidis et al. (1990) 

 Wake center located near 
hub height 
 Barthelmie et al. (2003) 

 Wake center located below 
hub height 
 Crespo et al. (1988) 
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Improving upon wake characterization from 

previous remote sensing experiments 

 Käsler et al. (2010): first long-range lidar study, but very brief analysis 
limited to a single scan 

 Bingöl et al. (2010) and Trujillo et al. (2011) 
 nacelle-mounted ZephIR lidar with max range of 200 m 

 stall-regulated 95-kW test turbine w/ 29-m hub and 19-m rotor diameter 

 analysis focuses on horizontal wake meandering and is limited to just 10-min 

 Hirth et al. (2012) and Hirth & Schroeder (2013): dual-Doppler radar 
methodology and wake tracking algorithm not readily generalized for 
application to other datasets 
 does not incorporate wake expansion 

 focuses mostly on tracking horizontal position of wake centerline 

 analysis limited to 1-hr period during rainfall 

 Iungo et al. (2013): focuses mostly on testing various lidar scanning 
strategies 
 limited analysis of a few scans lasting 11 min each 
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Improving upon wake characterization from 

previous remote sensing experiments 

 Need rigorous, general methodology for quantifying 
various wake characteristics 
 applicable to both remotely sensed measurements and 

numerical simulation output 

 Need observations from modern pitch-regulated 
multi-MW turbines 

 Need much more data to verify CFD models and to 
study effect of different atmospheric conditions 
 wind speed 

 turbulence 

 stability 
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Lidar typically measures line-of-sight 

velocity (uLOS) using two scanning strategies 
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wind 

direction 

PPI or 

“horizontal 

sector” 

wind 

direction 

RHI or 

“vertical 

slice” 

Aitken et al. (2014) 

J. Atmos. Ocean. Tech., 31, 765–787 
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Plan view of the coordinate systems with 

modeled parameters in purple 
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x´ x 

y 

y´ 

uLOS u 

d 

r 

α 

φ 

lidar 

(r,α) 

 d = distance from lidar to 

            turbine 

 

 r = lidar range gate 

 

 α = lidar azimuth angle 

 

 u = ambient wind speed 

 

 φ = ambient wind direction 

 

 uLOS = line-of-sight velocity 

               measured by lidar 

Aitken et al. (2014) 

J. Atmos. Ocean. Tech., 31, 765–787 
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Wake modeled as Gaussian function 

subtracted from uniform ambient flow 
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For each beam sweep, and at each range gate r, 

three models are fit to the lidar data to identify 

the wake, if any 

Extra sum-of-squares F-

test used to find simplest 

model to fit data 

ambient flow model 

far 

wake 

model 

near 

wake 

model 



UNIVERSITY OF COLORADO BOULDER 

Example fit to data from horizontal scan 
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width = 4sw 

a 

u 

yc 

yc: algorithm capable of tracking 

wake meandering 

 

wake width ≡ 4sw 

(Hansen et al. 2012) 

Aitken et al. (2014) 

J. Atmos. Ocean. Tech., 31, 765–787 
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Side view of the coordinate systems used for 

vertical scan model 
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x´ 

d 

(r,δ) 

r 

δ 

y´ 

z´ z 

hub height H 

u 

uLOS 

z = height above ground 

 

δ = lidar elevation angle 

lidar 

Aitken et al. (2014) 

J. Atmos. Ocean. Tech., 31, 765–787 
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Wake modeled as Gaussian subtracted from 

logarithmic wind speed profile 
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For each beam sweep, and at each range gate r, 

three models are fit to the lidar data to identify the 

wake, if any 

Extra sum-of-squares F-

test used to determine 

simplest model to fit data 

ambient 

flow 

model 

far 

wake 

model 

near 

wake 

model 
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Example fit to data from vertical scan 
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zc 

a 

height = 4sh 

Aitken et al. (2014) 

J. Atmos. Ocean. Tech., 31, 765–787 

zc: algorithm capable of tracking 

vertical location of wake center 

 

wake height ≡ 4sh 

(Hansen et al. 2012) 

line-of-sight velocity [m s-1] 
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Lidar used to measure utility-scale turbine 

wakes in two experiments 

29 Figs: NOAA and  

Windpower Engineering & Development 

Experiment 1 Experiment 2 

Location National Wind Tech. Center wind farm in western U.S. 

Lidar type ground-based | NOAA HRDL nacelle-based | Galion G4000 

Scan type horizontal and vertical horizontal 

Data length ~100 hours 1 month 

Reference Aitken et al. (2014) J. Atmos. 

Ocean. Tech., 31, 765–787 

Aitken/Lundquist (2014) J. Atmos. 

Ocean. Tech., 31, 1529–1539 
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Nacelle-based lidar experiment conducted at 

a wind farm in the western U.S. 
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 Galion G4000 lidar 
 max range = 4 km 

 range resolution = 60 m 

 4-min scan duration over 84° sector 

 

 First analysis in the published literature 

of a utility-scale turbine wake using 

nacelle-based lidar 

 

 Nacelle-based systems advantageous 

over ground-based ones b/c scans 

more closely transect wake centerline 

Aitken and Lundquist (2014) 

J. Atmos. Ocean. Tech., 31, 1529–1539 
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Wake detection rate 
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 Lidar field-of-view (84° sector) 

not wide enough to capture 

wake near the turbine 
 need larger scan sector in 

future experiments 

 

 Near wake lasts until ~3D 

downwind 

 

 Wakes detected w/ diminishing 

frequency after x = 3D 
 velocity deficit scales 

increasingly with ambient 

variability 

 velocity measurements are 

less precise at longer range 

gates 

 

 Detection rate on par with 

España et al. (2011) Wind 

Energy, 14, 923–937 
 particle image velocimetry in 

wind tunnel study 

Aitken and Lundquist (2014) 

J. Atmos. Ocean. Tech., 31, 1529–1539 
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Velocity deficit decreases with downstream 

distance because of turbulent mixing 

32 Aitken and Lundquist (2014) 

J. Atmos. Ocean. Tech., 31, 1529–1539 

rated 

speed 
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Wake boundary expands with downstream 

distance because of turbulent mixing 

33 Aitken and Lundquist (2014) 

J. Atmos. Ocean. Tech., 31, 1529–1539 
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Wind turbine performance depends on 

turbulence and atmospheric stability 

 Rotating actuator disk model recently implemented in WRF-LES 
by Branko Kosović (NCAR) and Jeff Mirocha (LLNL) 
 comprehensive verification of this model requires simulating different 

turbines and atmospheric conditions 
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Simulation 1 Simulation 2 

Corresponding 

experiment 

Experiment 1 (ground-based 

lidar @ NWTC) 

Experiment 2 (nacelle-based 

lidar @ commercial wind farm) 

Reference Mirocha et al. (2014) J. Renew. 

Sust. Energy, 6, 013104 

Aitken et al. (2014) J. Renew. 

Sust. Energy, 6, 033137 

Stability unstable stable 

Features well-mixed 

surface heating 

convective cells 

thick boundary layer 

large characteristic eddies 

wind shear 

surface cooling 

suppressed buoyancy 

shallow boundary layer 

small characteristic eddies 



UNIVERSITY OF COLORADO BOULDER 

Rotating actuator disk model in WRF-LES 

implemented by Kosović and Mirocha 
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Mirocha et al. (2014) 

J. Renew. Sust. Energy, 6, 013104 

Wang et al. (2013) 

J. Sol. Energy Eng., 136, 011018 

Blade Element Theory 

calculates the lift and drag forces 

generated by the airfoil at various 

sections along the blade 

Momentum Theory 

analyzes the momentum balance 

on a rotating annular stream tube 

passing through the turbine 

+ 

tangential force ↔ rotation normal force ↔ drag 
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Modifications to actuator disk model: rotor 

tilt (δ ) and drag from tower/nacelle 
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x 

x' 

z z' 

δ 

Ft cosζ 

Ft cosζ cosδ 

Ft cosζ sinδ 

Fn cosΦ + Ft sinζ sinΦ 

(Fn cosΦ + Ft sinζ sinΦ)sinδ 

(Fn cosΦ + Ft sinζ sinΦ)cosδ 

Aitken et al. (2014) 

J. Renew. Sust. Energy, 6, 033137 

By Newton’s third law, rotor tilt should 

cause the wake to be shifted upward 
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Case study 
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wind speed varied between 4 and 8 m s-1, 

with an average value of 6.5 m s-1 

wind direction 

varied over a range 

of about 20 deg 

average cooling rate = 0.2 K h-1 

Aitken et al. (2014) 

J. Renew. Sust. Energy, 6, 033137 
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WRF simulation of wake dynamics 
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Simulated inflow conditions closely match 

met tower measurements 

40 Aitken et al. (2014) 

J. Renew. Sust. Energy, 6, 033137 

measured range 

measured 

range 

measured avg 

6.5 m s-1 
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Simulation is capable of representing the 

transition from the near to far wake 
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Simulated flow field transitions from 

a double-Gaussian to a single-

Gaussian profile around x = 2–3D 

Aitken et al. (2014) 

J. Renew. Sust. Energy, 6, 033137 

Measured 
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Good agreement between measured and 

simulated results 

42 Aitken et al. (2014) 

J. Renew. Sust. Energy, 6, 033137 
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Vertical location of wake center is shifted 

upward because of rotor tilt 
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(analogous to results 

from Experiment 1) 

Aitken et al. (2014) 

J. Renew. Sust. Energy, 6, 033137 

Aitken et al. (2014) 

J. Atmos. Ocean. Tech., 31, 765–787 
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Summary 

 Developed statistical model for 
wind turbine wake 
characterization 
 generally applicable to experiment 

and simulation 

 allows for categorization of results 
by atmospheric conditions 

 Conducted first analysis of 
utility-scale turbine wake using 
nacelle-based lidar 

 Simulated stable conditions 

 Added rotor tilt and 
tower/nacelle drag to actuator 
disk model in WRF-LES 
 demonstrated upward shift in 

wake centerline 

 Good agreement between 
measured and simulated results 
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x 

x' 

z z' 

δ 

Ft cosζ 

Ft cosζ cosδ 

Ft cosζ sinδ 

Fn cosΦ + Ft sinζ sinΦ 

(Fn cosΦ + Ft sinζ sinΦ)sinδ 

(Fn cosΦ + Ft sinζ sinΦ)cosδ 
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Thank you 

46 Fig: John De Bord 

Photography 


