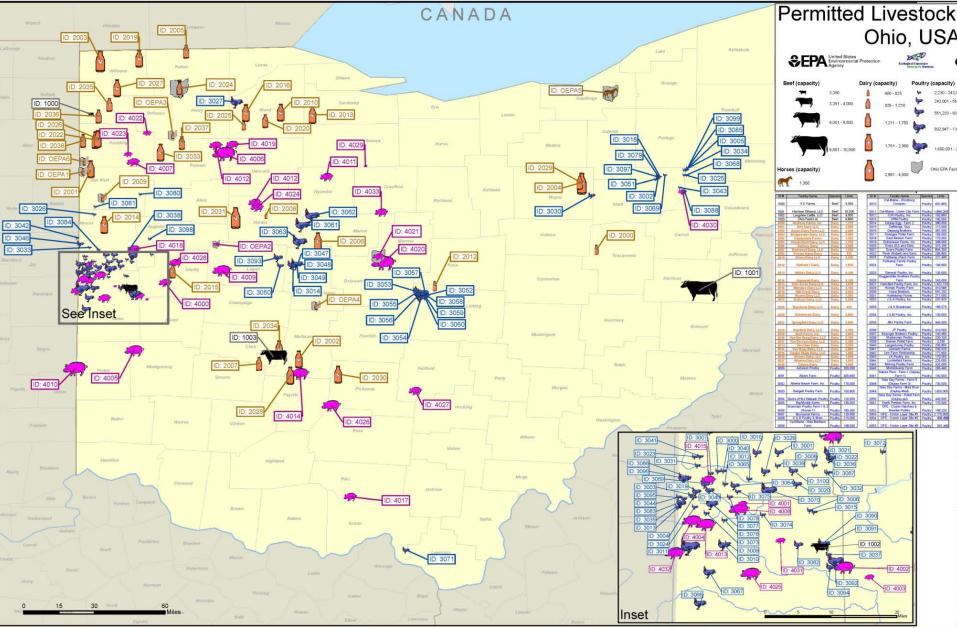
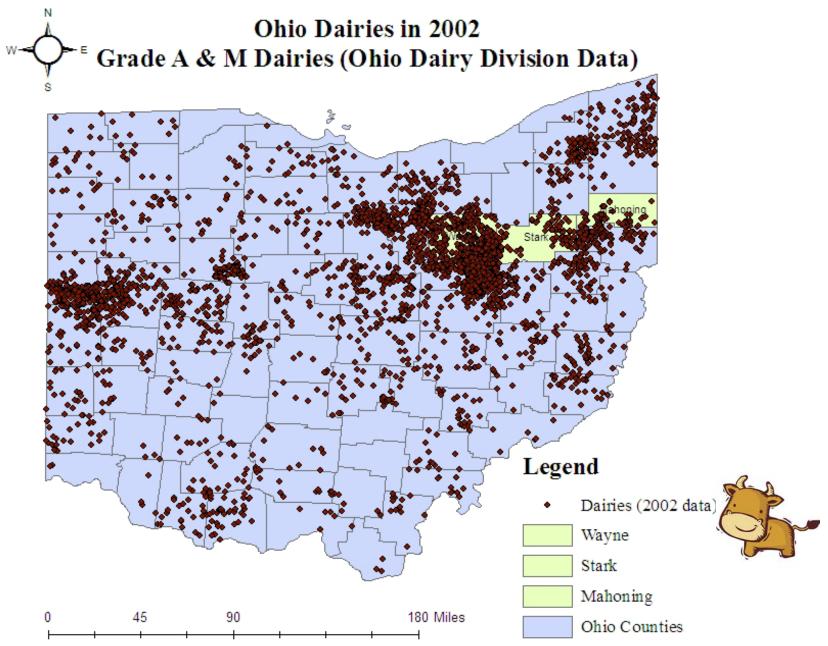

LINKING PROFITABILITY, RENEWABLE ENERGY, AND EXTERNALITIES: A SPATIAL ECONOMETRIC ASSESMENT OF THE SUSTAINIBILITY OF OHIO DAIRIES

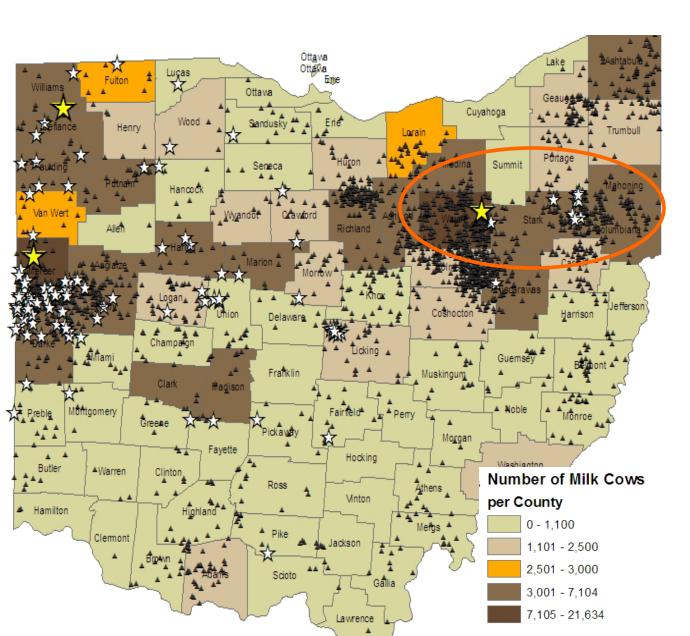
K. Dabrowska 9.29.10

- Focus: Valuation of externalities & remedies...
- Motivation
- Data: Livestock operations across Ohio
- Modeling
- Results & implications
- The remedy (?)



- Between 1997 and 2002 agriculture was responsible for about 22% of the 356 fish kills in the state of Ohio and over 70% of these were due to livestock manure spills.
- Between 2000 and 2003, **98** cases of animal waste (most dairy or swine) leakage documented in Ohio. Improper manure storage practices were responsible for 33% of these spills.



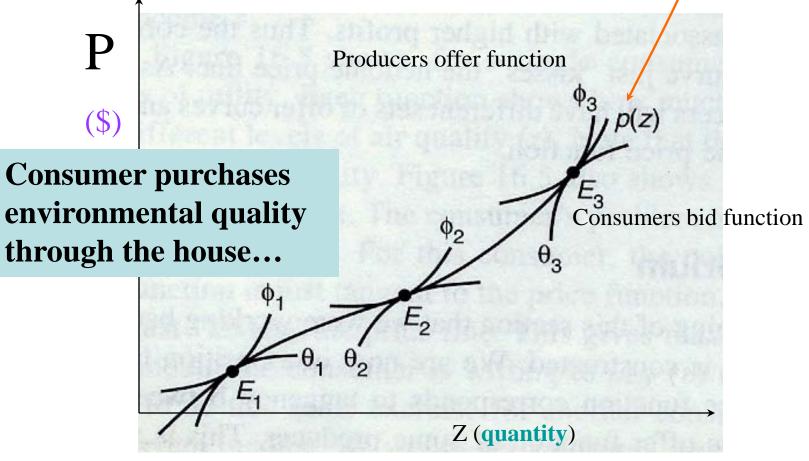

Runoff from farming operations contributes to eutrophication in near and far off water bodies...

What is the actual cost of the environmental pollution stemming from livestock operations in dollar terms?

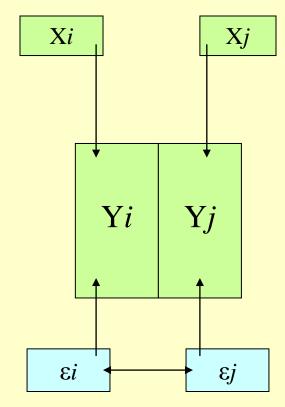
Source: http://www.epa.state.oh.us/portals/35/cafo/FacilityLocations_8x14_061308a.pdf

 Quantified monetary value of impact (assumed cost, could be benefit).

2. Estimated potential **benefits** *of reduction of* impact.

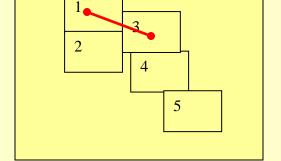


2000-2001	Mahoning	Stark	Wayne
Number of properties within 3 miles of a dairy	100	147	107
Average proximity of a property to a dairy	0.92	0.64	0.43
Number of dairies within county borders	59	144	628
Number of milk cows (1999)*	4,400	9,200	30,500


2003-2004	Mahoning	Stark	Wayne
Number of properties within 3 miles of a dairy	121	157	103
Average proximity of a property to a dairy	0.98	0.69	0.45
Number of dairies within county borders	60	116	519
Number of milk cows (2003)*	4,700	9,100	33,300
17% of Ohio's Dairy cattle are found	in these 3	counties (USDA, 2009).

Hedonic Price Function -

P = price of environmental quality = price of *proximity to amenity* / or disamenity


As an alternative to the lag specification, the interaction may be "located" in the error term so that the model is constructed as...

$$Y = X\beta + \mu,$$

$$\mu = \lambda W\mu + \varepsilon \qquad \varepsilon \sim (0, \sigma^{2} In)$$

Estimated using MLE.

Using OLS would yield inefficient, but *not* biased estimates (incorrect significance &fit).

2000-2001

Variable	Coefficient	Std. Error	Z	Probability
Constant	-722.704	157.209	-4.60	0.000
ln Acres	4.573	2.125	2.15	0.031
Basement (dummy)	13.149	3.247	4.05	0.000
ln Year built	-24.630	11.776	-2.09	0.036
Other structures (dummy)	9.812	4.582	2.14	0.032
In Bedroom	19.234	6.485	2.97	0.003
In Full bath	16.996	4.446	3.82	0.000
In Half bath	22.863	10.891	2.10	0.036
In Stories	11.154	4.522	2.47	0.014
In Fireplaces	32.869	7.094	4.63	0.000
In Living area	33.514	6.165	5.44	0.000
In Grade Marginal price = $$0.57$ per	foot 185 171	14.226	13.02	0.000
In Dist to dairy	10.403	2.499	4.16	0.000
In Dist to city (2% decline in property va	alue) 4.377	3.370	1.30	0.194
In med. Household income per mile	36.872	7.714	4.78	0.000
In School quality	43.814	28.136	1.56	0.119
Wayne County (dummy)	-7.646	8.310	-0.92	0.358
Stark county (dummy)	23.246	4.917	<mark>4</mark> .73	0.000
Lambda	0.371	0.019	19.54	0.000

2000-2001

Marginal price = \$0.57 per foot

Impact: 2% decline in property value per mile (on average)

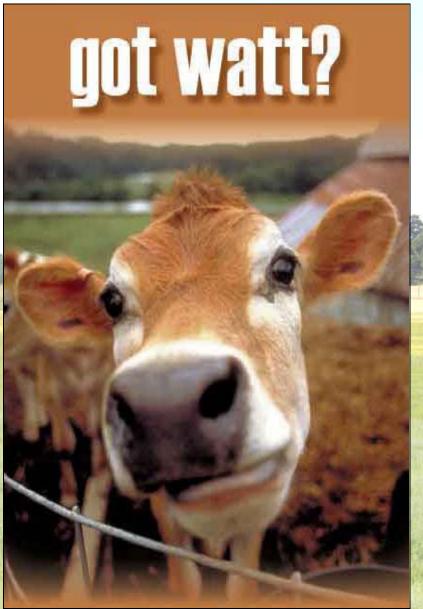
2003-2004

Marginal price = \$0.51 per foot

Impact: 1.5% decline in property value per mile (on average)

* The results indicate that a **10% increase in environmental quality** consumed at the average (distance) would yield a **\$502 benefit to the household.**

* A 25% increase in environmental quality consumed at the average would yield a **\$1140 benefit**.


* A 10% increase in distance for all households, relative to the actual *q* consumed by a household *across the whole region* (which includes 10,090 homeowners) would generate a consumer **surplus of \$3.975 million**.

Local Estimation of Benefits	Mahoning	Stark	Wayne
Number of properties within 3 m of a dairy ('03)	121	157	103
Benefits to home owners within 3 m	\$60,742	\$78,814	\$51,706
Number of dairies within county borders ('03)	60	116	519

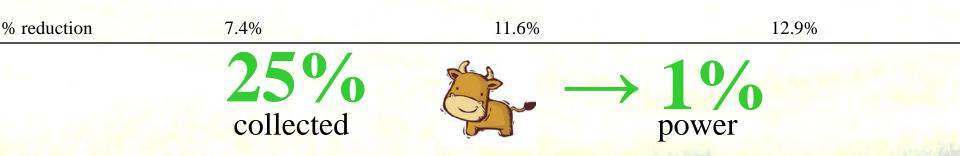
REMEDY ?

Ghafoori et al. (2006) found that net power generation (on site via biogas produced by an AD system) emits 90% less GHGs than proportional conventional grid production...

(results based upon data derived from a 50,000 head feedlot operation in Canada, *measured via life* cycle analysis).

REMEDY ?

Ohio is currently home to 235,000 dairy cows, which may be capable of producing 958,000 kWh to 1.8 million kWh of electricity per day, and decreasing emissions (relative to coal) by up to 30% (depending on collection, methane content, and conversion efficiency).

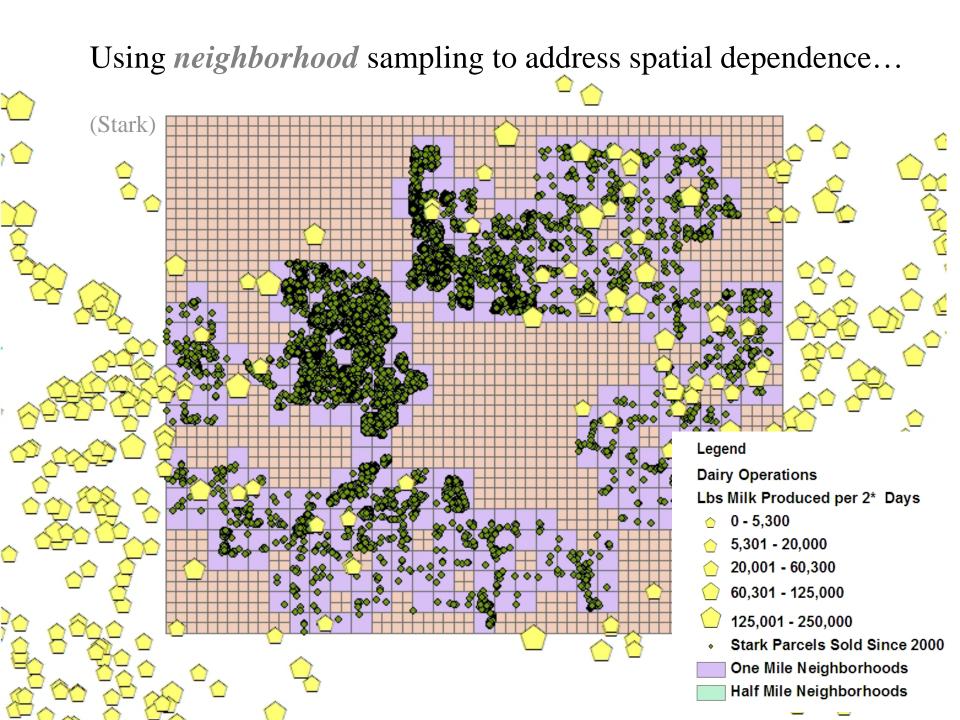


REMEDY ?

A medium 95-100 cow, 180 animal operation can provide enough power to sustain at least 15 homes (consuming on average over 900 kWh per month).

State-wide Annual Emissions (assuming 25% reduction due to treatment by AD, 65% of waste kept in dry, 35% kept in liquid form in storage)

Kg CO ₂	60% methane 25% C	coal	60% methane 40% C	coal	70% methane 40% C	coal
Electricity	251,579,746	215,890,370	251,583,309	345,4 <mark>24,59</mark> 2	265,976,935	402,995,357
N2O as CO2 e	282,908,286	377,211,048	282,908,286	377,211,048	282,908,286	377,211,048
CH4 as CO2 e	293,042,567	390,723,423	293,042,567	390,723,423	293,042,567	<mark>390,723,423</mark>
Enteric	1,817,231,999	1,817,231,999	1,817,231,999	1,817,231,999	1,817,231,999	1,817,231,999
TOTAL	2,644,762,599	2,801,056,840	2,644,766,161	2,930,591,062	2,659,159,788	2,988,161,827



(end)

Thanks to: F. Hitzhusen, F. Schanbacher, E. Irwin, B. Sohngen, P. W. Jeanty, S. Kiger, & M. Eastridge

Funding provided by the U.S. DOE, the Environmental Science Graduate Program (OSU) & the Environmental Policy Initiative (OSU).

Fred

Financial & Economic Assessment (spreadsheet)

	` 1	
Number of Neighbors		200
Average distance of neighbor (in feet)	16,260	16,260
Value of externality per foot	0.51	0.51
Value of 10% reduction (WTP estimate)	0	1,000
Externality Reduction Benefits based on MP of externality	829,260	829,260
Externality Reduction Benefits for by value of 25% reducion	0	200,000
Externality Reduction Benefits based on \$/cow		
	0	0
Revenue (Energy & Benefits)	166,368	166,368
Transportation Costs (If relevant)		
Transportation Costs (If relevant)		
Operator Costs	9,125	9,125
Other maintenance expenditures	6,210	6,210
TOTAL OPERATING EXPENSES	15,335	15,335
Operating expenses less avoided costs	15,335	15,335
Revenue less operating expenses	151,033	151,033
Total Depreciation	75,550	65,550
Total Deprecation & Operating costs	90,885	80,885
Interest	0	0
Total cost of depreciation and interest	75,550	65,550
Net returns over system & operating costs	75,483	85,483
Simple Pay Back Period (based on Lazarus, 2007)	7.6	6.3
Planned Payback (investment/depreciation)	15	15

Greenhouse Gas Emissions (IPCC, 2006)

Substance	Source/ Activity			Emissions (kg per year)	Emissions as CO ₂ e (kg per year)
Methane	Animals	Enteric fermentation (TOTAL)	*	17436.80786	366172.9651
		Lactating cows	*	13548.46471	284517.7588
		Dry cows	*	846.7479296	17781.70652
		Heifers	*	2761.955964	58001.07524
		Calves	*	279.6392646	5872.424557
	Manure				
		Anaerobic lagoon		0	0
		Lagoon (LG)		32645.79043	685561.599
		Liquid/ slurry (LS)		8408.764201	176584.0482
		Storage Pond (SP)		19290.69434	405104.5812
		Composting (CM)		247.3165942	5193.648477
		Deep Pit (<1 month) (D1)		0	0
		Deep Pit (>1 month) (D2)		12118.51311	254488.7754
		Stacked Solids (SS)		741.9497825	15580.94543
		Digester (DG)		4946.331883	103872.9695
		Burned for fuel (BF)		4946.331883	103872.9695
		Daily spread (DS)		49.46331883	1038.729695
		Housing:		0	
		Dry lot (DL)			
		Pasture range/ paddock (PS)		494.6331883	10387.29695
		Free stall barn flush		NA	
		Free stall barn scrape		NA	
		(Land application)		NA	
		Manure total		83889.78874	1761685.563

Land based emissions

Measure via:

- 1. IPCC methodology or,
- 2. estimate by type of crop and quantity of land in production... kg CH4 per ha per year

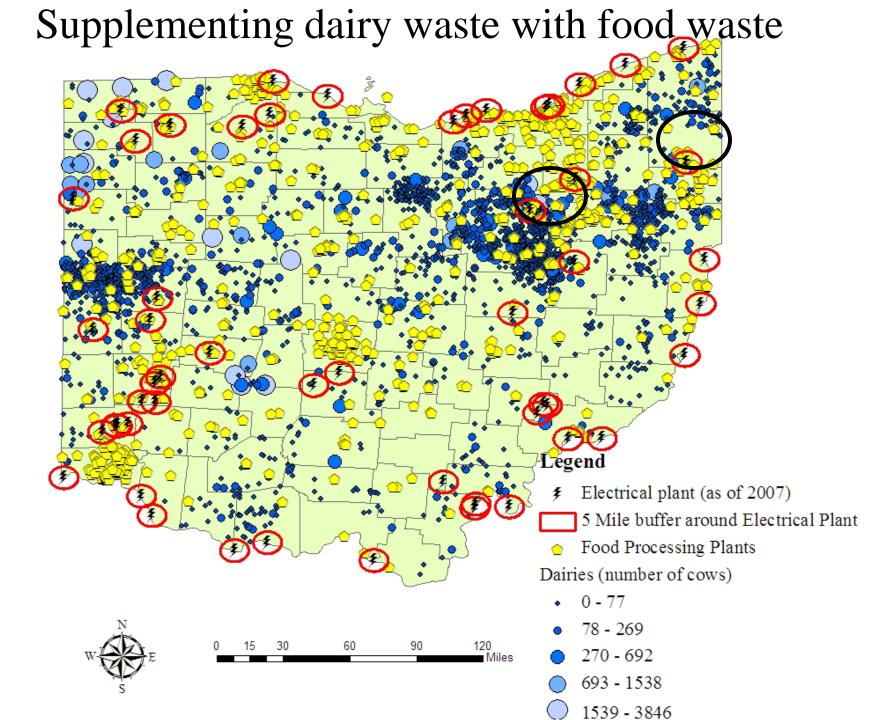
		Acres Planted	Hectares Planted	CH ₄ Emission Factor	CH ₄ Emissions
Corn	Grain	45	18.21085394	-1.5	-27.3162809
	Silage	2	0.809371286	-1.5	-1.214056929
Wheat	Winter	0	0	-1.9	0
	All	10	4.04685643	-1.9	-7.689027217
Forage	Hay*	15	6.070284645	-1.4	-8.498398503
Soybeans		60	24.28113858	-1.4	-33.99359401
Oats		1	0.404685643	-1.4	-0.5665599
Tobacco*		1	0.404685643	-1.4	-0.5665599
Tomatos		1	0.404685643	-1.4	-0.5665599
Grass		20	8.09371286	-1.5	-12.14056929
Fallow		30	12.14056929	-0.14	-1.699679701
SUM		185	74.86684396		

```
N_2O_{Direct}--N = N_2O-N_{N inputs} +N_2O-N_{OS} + N_2O-N_{PRP}
```

IPCC (2006) Soil N Emission Estimation

$$\mathbf{N}_{2}\mathbf{O}-\mathbf{N}_{\mathrm{N \ inputs}} = (\mathbf{F}_{\mathrm{SN}} + \mathbf{F}_{\mathrm{ON}} + \mathbf{F}_{\mathrm{CR}} + \mathbf{F}_{\mathrm{SOM}}) * \mathbf{EF}_{1} + (\mathbf{F}_{\mathrm{SN}} + \mathbf{F}_{\mathrm{ON}} + \mathbf{F}_{\mathrm{CR}} + \mathbf{F}_{\mathrm{SOM}}) * \mathbf{EF}_{1\mathrm{FR}}$$

 $N_2 O-N_{os} = \Sigma (F_{OS,land,temp} * EF_{2 \ land,temp})$ $N_2 O-N_{PRP} = \Sigma (F_{PRP} * EF_{3PRP})$


animals, kg N₂O-N per kg N input

 N_2O_{Direct} -N = annual direct N₂O-N emissions produced from managed soils, kg N₂O-N per year $N_2O-N_{Ninputs}$ = annual direct N_2O-N emissions from N input to managed soils, kg N_2O-N per year N_2O-N_{OS} = annual direct N_2O-N emissions from managed organic soils (kg N_2O-N per year) N_2O-N_{PRP} = annual direct N_2O-N emissions from urine and dung inputs to grazed soils (kg N_2O-N per year) F_{sn} = annual amount of **synthetic** fertilizer applied to soils (kg N per year) **E** F_{ON} = annual amount of animal manure, compost... applied (kg N per year) E F_{CP} = annual amount of N in crop residues (above & below ground) returned to soils (kg N per year) F_{SOM} = annual amount of N in mineral soils that is mineralized, is association with loss of soil C from soil organic matter as a result of changes to land use or management (kg N per year) F_{OS} = annual area of managed/drained *organic* soils (ha) F_{PRP} = annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock (kg N per year) E EF_1 = is the emission factor for N₂O emissions from N inputs, kg N₂O-N per kg N input EF_2 = is the emission factor for N₂O emissions from drained/managed *organic* soils, kg N₂O-N per kg N input EF_{3PRP} = emission factor for urine and dung N deposited on pasture, range and paddock by grazing

*summing up (above) for all land categories, nutrient quality, and temperature

estimated from input/data below
estimated from input/data below
estimated from input/data below
? can assume 150lb/acre for corn etc. (based on yield data from NASS)
? can estimate on a case by case basis (as proportion of manure produced ?)
?
?
75 (average size of Ohio farm)
? can estimate by taking proportion of total produced assumed to be left outside
0.001 (IPCC default)
8 (IPCC default)

0.02 (IPCC default)

Energy & Emission Generation

Cuellar and Webber (2008)

Energy: 1 m³ biogas \rightarrow 36 MJ/m³ * 1 kWh/3.6 MJ * 0.60 * 0.25 = 1.5 kWh.

The total amount of carbon dioxide produced from one cubic meter of biogas can be determined by the following equation:

 $\begin{array}{l} \mbox{kg CO}_{2 \ (total)} = 1 \ \mbox{m}^3 \mbox{biogas}^* \ (\mbox{X\% CH}_4 \ \mbox{* 0.65 \ \mbox{kg/m}^3 \ \mbox{* 2.75} + 1.8 \\ \mbox{kg/m}^3 (1 \ \mbox{- X\% CH}_4)), \end{array}$

where 0.65 kg/m³ is the density of methane, and 1.8 kg/m³ is the density of carbon dioxide. The methane component of the equation is multiplied by 2.75 because this is the ratio of the mole weight of carbon dioxide to methane (2.75 kg of CO2 is produced from the combustion of 1 kg of CH4).

Energy & Emission Generation: Efficiency/Conversion Scenarios

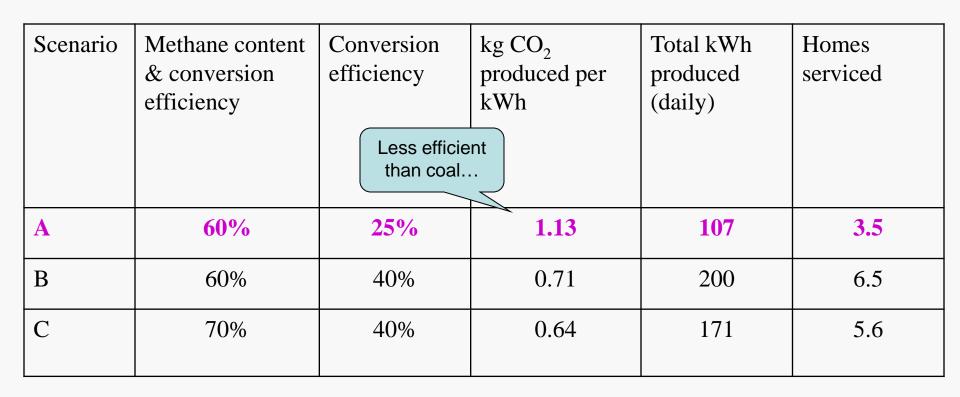


Table 4.12 Emission factors & potential biogas generated electricity yield scenarios at the farm level (for a 183 animal operation), assuming all waste material was collected.