Round gobies in the Great Lakes Basin: how the spreading invasion is affecting diets and growth of top predators in Lake Huron tributaries.

Clarence Fullard 2014 Knauss Sea Grant Fellow Aquatic invasive species analyst, NMFS

Two Themes:

Invasive species & habitat fragmentation

Source: USACE National Inventory of Dams

Location

Three Saginaw Bay tributaries, Lake Huron, Michigan

Great Lakes Invasive Species

- > 150 invasive species are established
 - Crustaceans
 - Mollusks
 - Plants
 - Viruses

Round Goby Neogobius melanostomus

- Euryhaline/eurythermal
- Repeat spawner
- Highly adaptable diet

Round Goby

- Well distributed throughout the Great Lakes
 - Primary invasion = lakes
 - Secondary invasion = tributaries

Ecological Impacts

- Negative:
 - Macroinvertebrates
 - Fish egg and fry predation
 - Competition
 - Displace unionid mussel hosts

- Positive?
 - Smallmouth bass growth

Cass River: dam

Shiawassee River: rock ramp

Flint River: free-flowing

Invasive Species + Habitat Fragmentation = Gradient of Round Goby Abundance

Native Predators

- Smallmouth bass
 - Common top predator
 - Piscivorous to generalist
 - Known to consume round gobies in Great Lakes

- Rock bass
 - Similar diet to smallmouth bass
 - Not well studied

Goal

- Describe how the round goby invasion is affecting the diets, trophic positions, and growth of smallmouth bass and rock bass
 - Are round gobies in rivers causing similar food web perturbations in streams as they are in the Great Lakes proper?

Data Collection

- Fish assemblages
- Diets
- Stable isotopes
- Growth

Diet Analysis

 Gut content information is only a snapshot of dietary habits

- Gut content analysis + stable isotope analysis
 - Greater temporal representation of feeding patterns

Why would round goby invasion cause changes in trophic positions of predators?

Crayfish & Round Goby Trophic Positions

Vander Zanden et al. 1999

Growth

- Analyzed dorsal scales, back-calculated growth
 - 5 sites
 - Taken in August to reflect summer growth

Results

Summary of Round Goby Consumption

Diet Analysis

Graphical diet analysis (Costello diagram)
Identify dominant/rare prey types

Smallmouth Bass	High-BPC (steak)	Dominant (ham sam)	Rare (caviar)	High-WPC (carrots)
Cass downstream _{June}				
Cass downstream _{July}				
Cass downstream _{August}				
Shi upstream _{June}				
Shi upstream _{July}				
Shi upstream _{August}	CARA REAL			
Shi downstream _{June}				
Shi downstream _{July}				
Shi downstream _{August}				
Flint_{June}				
Flint _{July}				
Flint _{August}				

Rock Bass	High-BPC (steak)	Dominant (ham sam)	Rare (caviar)	High-WPC (carrots)
Cass downstream _{June}				
Cass downstream _{July}				
Cass downstream _{August}				
Shi upstream _{June}				
Shi upstream _{July}				
Shi upstream _{August}				
Shi downstream _{June}				
Shi downstream _{July}				
Shi downstream _{August}				
Flint_{June}				
Flint _{July}				
Flint _{August}				

More Round Gobies = More Round Goby Consumption

Trophic Positions

- Trophic position does not increase with total length
 - Fish were examined collectively

Remember!

- You are what you eat!
 - Eat more $\delta^{15}N$ prey, become more $\delta^{15}N$ enriched

Trophic Position vs. Proportion (W_i) Round Goby in <u>Diet</u>

More Round Gobies = Higher Consumer Trophic Position

*Round goby abundance a better predictor of trophic position

Growth Results

- Examined back-calculated growth increment in 2012 (outer ring only)
 - mm growth in 2012
 - Can't make assumptions about round goby abundance and predator feeding habits in past years
- Examined growth for each age group at 5 sites
 - Compared to round goby abundance

Growth Results

- No significant relationships between predator growth and round goby abundances
 - For age groups 2-5 for each predator
- Rationale:

Round goby are dominant prey only briefly, not making a substantial contribution to growth

- Opportunistic, diverse feeding
- Prey aren't limiting predator growth

Growth Results

Contrary to findings for YOY SMB in Lake Erie

High Growth Rate of Young-of-the-year Smallmouth Bass in Lake Erie: a Result of the Round Goby Invasion?

Geoffrey B. Steinhart^{1,*}, Roy A. Stein, and Elizabeth A. Marschall

Conclusion

- Round goby invasion has:
 - Created novel prey (consumed opportunistically)
 - Lengthened food chain of rock bass and smallmouth bass
 -but no changes to predator growth, why?
 - Highly opportunistic and diverse predator diets
 - Smallmouth and rock bass may not be prey limited
 - Already highly productive systems

Next steps

- Examine contaminant transfer up the food web
 - Cass River dam slated for replacement with rock ramp in fall 2014
 - Increase in trophic position may cause increase in contaminant burden in fish tissue

Acknowledgments

 Thanks to Central Michigan University, Michigan State University, and US Fish & Wildlife Service
Committee: Brent Murry (FWS), Tracy Galarowicz (CMU), Daniel Hayes (MSU), and Justin Chiotti (FWS)

US Fish & Wildlife Service East Lansing Ecological Services office & Alpena Fishery Resources Office Michigan DNR Aaron Fisk & University of Windsor Stable Isotope Laboratory

• Funding:

Great Lakes Fisheries Trust Saginaw Bay Watershed Initiative Network (WIN) Central Michigan University & Michigan State University Cities of Frankenmuth, Flushing, and Chesaning, Michigan

NOAA Aquatic Invasive Species Information

- NOAA is co-chair to:
 - Aquatic Nuisance Species Task Force (ANSTF)
 - National Invasive Species Council (NISC)
- NMFS & NOS work with:
 - Lionfish
 - Asian tiger shrimp
 - Chesapeake Bay invasive species
 - Tunicates
 - Green crabs
 - Non-natives & salmon in PNW
 - More

Questions?

Cass River Diet Results

Cass River Diet Results

Shiawassee River Diet Results

Flint River Diet Results (free-flowing)

