An Improved Multi-Scale Modeling Framework for WRF Over Complex Terrain

NOAA Central Library Brown Bag Seminar Series, May 19th 2015 David Wiersema

Civil & Environmental Engineering, UC Berkeley

Katherine Lundquist

Lawrence Livermore National Laboratory

Fotini Katopodes Chow

Civil & Environmental Engineering, UC Berkeley

BAY AREA AIR QUALITY Management

DISTRICT

Outline

- Neighborhood-scale air quality modeling
- Introduction to multi-scale modeling
- Weather Research and Forecasting (WRF) model
- The immersed boundary method and WRF
- Vertical grid nesting in WRF
- WRF to WRF-IBM grid nesting (in development)

Urban Topography

- LiDAR dataset of building heights above ground level
 - Provided by the San
 Francisco Department of
 Public Health
- Combined with National Elevation Dataset 1/3rd arcsecond ground topography

PM2.5 Emissions

- Provided by the Bay Area Air Quality Management District.
- ~2m resolution.
- Weighted depending on the time of day and weekday.

Options For Modeling of Urban Dispersion

- 1) Add atmospheric physics to a computational fluid dynamics (CFD) model.
- 2) Couple a CFD model to a numerical weather prediction (NWP) model.
- 3) Downscale to CFD-scales within a NWP model.

Multi-Scale Atmospheric Modeling

• Resolves features between synoptic-scale and turbulent-scale.

dx=dy=2.66m

dx=dy=40m

Meso-Scale to Micro-Scale

	Scale	Feature Size		Features Resolved		
	Meso-alpha	2000km – 200km		tropical cyclones, weather fronts		
	Meso-beta	200km – 20km		land-sea breeze, lake effect snow storms	1980-1990	
	Meso-gamma	20km – 2km		thunderstorm convection, large-scale terrain effects		
	Micro	1km – 1m		turbulent mixing, convection		

Current Generation Models

Wyngaard's "Terra-Incognita"

Potential Applications for Multi-Scale Modeling

- Wind energy forecasting and turbine siting
- Mountain meteorology
- Urban meteorology
- Dispersion modeling

• Operational forecasting (someday)

Aitken ML, Kosovic B, **Mirocha JD**, Lundquist JK, 2014: Large-eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting model, *J. Renewable and Sustainable Energy*, 6

Photo credit: Ralph Turncotte. From <u>Sea Breeze and</u> 13 <u>Local Winds</u> by John E. Simpson.

What's Needed for Multi-Scale Modeling?

- Meso-scale model
 - Weather Research and Forecasting (WRF) model
- Turbulence modeling at high resolutions
 - Large Eddy Simulation (LES)
- Ability to handle complex terrain
 - Immersed boundary method (WRF-IBM)
- Ability to downscale information
 - Vertical grid nesting in WRF

• Adaptive or scale-dependent parameterizations

Numerical Mosth	or Dradiction Madel	Horizontal	Operational	.1	
Numerical weatr	ier Prediction Model	At Launch	Currently	Operationa	11
NGM	Nested Grid Model	90km		1987-2000	
ECMWF	European Center for Medium-Range Weather Forecasting	125km	16km	1987+	
RUC	Rapid Update Cycle	60km	13km	1994-2012	
	Eta	29km		1995-2006	
NAM	North American Meso-scale	12km		2006+	
GFS	Global Forecast System	28km	13km	2002+	
RAP	Rapid Update Cycle	13km		2012+	
HRRR	RR High-Resolution Rapid Refresh		3km		
Flow-Following FIM9.5 Finite-Volume		15	2014+	15	

The Weather Research and Forecasting Model

- Meso-scale, regional, numerical weather prediction (NWP) model
- Open-source, community developed
- Maintained by the National Center for Atmospheric Research

- Fully compressible and nonhydrostatic
- Large eddy simulation capable
- Parameterizations for land surface model physics, long and shortwave radiation, subgridscale cumulus development, microphysics, etc...
- Downscaling using grid-nesting

Downscaling With Grid Nesting

- Coarse-resolution "parent" grid provides data for initialization and boundary conditions of fineresolution "child" grid.
- Enables large-scale features to influence the child domain.

WRF's Vertical Coordinate

- Terrain-following and pressure-based.
- Grid skewness over steep slopes results in numerical errors and can cause model failure.
- Skewness only becomes an issue when terrain slopes are >25%, which only happens while approaching the micro-scale.

• To set the value of a ghost point,

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

- To set the value of a ghost point,
- Locate the image point by reflecting the ghost point across the interface
- Determine the nearest computational nodes to the image point
- Set the image point's value by interpolation
- Using image point's value, determine forcing at ghost point to maintain the desired boundary condition

WRF-IBM's Vertical Coordinate

- Pressure-based but not terrain-following.
- No grid skewness due to terrain slopes.

Image courtesy of Katherine Lundquist

WRF-IBM Setup

- Inverse Distance Weighting interpolation scheme
- Smagorinsky turbulence closure
- No-slip bottom boundary
- Two nested domains with the parent being flat and the nested domain containing buildings
- Periodic lateral boundary conditions on the parent domain
- Rigid, no-flux, top boundary
- Initialized with an idealized sounding
- Line source of emissions with zero initial concentration everywhere

Picking the Grid Resolution

Wind Speed at 2m AGL

Vertical Velocity at 2m AGL

Passive Tracer at 2m AGL

East-West Slice of Passive Tracer

Vertical Grid Nesting in WRF

- WRF requires all concurrently nested domains to use the same number and placement of vertical grid levels.
- Vertical grid nesting...
 - allows for additional vertical levels in a nested domain.
 - prevents an excessive number of vertical levels on the parent domain.
 - provides control over the grid aspect ratio of each domain
 - Vital if nesting in a LES model.

Existing Vertical Grid Nesting in WRF

- Concurrent simulation
 - All domains must have identical vertical levels

- Sequentially run simulations with "ndown" ⁽¹⁾
 - Nest boundary conditions update at the frequency of parent grid history
- Uses integer refinement of parent vertical levels

(1) Moustaoui, M., A. Mahalov, J. Dudhia, and D. Gill, 2009: Nesting in wrf with vertical grid refinement and implicit relaxation.
 45
 WRF Users' Workshop 2009, Boulder, CO, National Center for Atmospheric Research.

Concurrent Vertical Grid Nesting

- Utilizes the interpolation scheme from ndown
 - Cubic Hermite interpolation
 - Matches value at known points and first derivative
 - Can use an arbitrary number of vertical levels for nested domain compared to parent domain
- Included in the public release of WRFv3.6.1
 Still in dovelopment and currently undecument.
 - Still in development and currently undocumented
- Enabled by one new variable in namelist.input

Validation of Vertical Grid Nesting

- Flat plate
- Periodic lateral boundary conditions
- No atmospheric physics
- Initialized with idealized sounding
 - 10 m s⁻¹ wind speed at all heights
 - Dry and neutral temperature profile
- Forced by maintaining initial conditions in top 3000 meters of domain

With & Without Vertical Grid Nesting

Flow Over A Flat Plate

Vertical Nesting with Atmospheric Physics

- Flat plate with uniform land surface and soil properties
- Initialized with a stable, dry, quiescent idealized sounding
- Periodic lateral boundary conditions
- Parameterizations and sub-models:
 - Longwave radiation (RRTM)
 - Shortwave radiation (Dudhia)
 - Land surface model (Noah)
 - Surface layer (Monin-Obukhov)
- Difficulties with radiation schemes
 - We are currently evaluating which schemes are working properly with our modifications and enabling the use of several popular schemes with vertical nesting

Heating of a Flat Plate

WRF Meso-Scale Test Case

- Parameterizations and sub-models:
 - Microphysics (WSM 3-class)
 - Longwave radiation (RRTM)
 - Shortwave radiation (Dudhia)
 - Land surface model (Thermal diffusion)
 - Surface layer (Monin-Obukhov)
 - Planetary Boundary Layer (YSU)
 - Cumulus Parameterization (Kain-Fritsch)

GOES-8 IMAGER - 10.7 IR - 10:45 UTC 25 JAN 2000 - CIMSS

GOES-8 IMAGER - VISIBLE - 15:15 UTC 26 JAN 2000 - CIMSS

Without Vertical Grid Nesting

Vertical Levels

Parent: 60 Nest: 60

With Vertical Grid Nesting

Vertical Levels

Parent: 30

Nest: 60

With and Without Vertical Grid Nesting

Vertical Levels Parent: 60 Nest: 60

Nest: 60

East-West Slice of Potential Temperature (from the nested domain)

Vertical Levels Parent: 60 Nest: 60

East-West Slice of Wind Speed [m s-1] (from the nested domain)

Vertical Levels Parent: 60 Nest: 60

East-West Slice of Vertical Velocity [m s-1] (from the nested domain)

Modeling the Bay Area With Vertical Grid Nesting

Western US, June 18th 2012

Oakland Radiosonde

Terrain Height & Wind Vectors from Lowest Model Level

0 150 300 450 600 750 900 Terrain Height [m]

Wind Speed at Lowest Model Level

East-West Slice of Wind Speed

- Vertical grid nesting is necessary to force a WRF-IBM child domain that is nested within a WRF parent domain.
- WRF's solver is passed variables that are "coupled" with the dry air mass in the column.
- The parent and nest have different values for the dry air mass in the column because the domains have different bottoms.

WRF to WRF nesting

- Couple parent domain with μ_{parent}
- Couple nested domain with μ_{nest}
- Vertically interpolate coupled parent on to the nest
- Horizontally interpolate results on to the nest
- Save results to nested domain
- Uncouple parent domain with μ_{parent}
- Uncouple nested domain with μ_{nest}

WRF to WRF-IBM nesting

- Vertically interpolate parent on to the nest
- Horizontally interpolate results on to the nest
- Couple results with μ_{nest}
- Save results to nested domain

Thank you for your attention

- Neighborhood-scale air quality modeling
- Introduction to multi-scale modeling
- Weather Research and Forecasting (WRF) model
- The immersed boundary method and WRF
- Vertical grid nesting in WRF
- WRF to WRF-IBM grid nesting (in development)
- Thank you to Lawrence Livermore National Laboratory, Jeff Mirocha, Megan Daniels, and EFMH at UC Berkeley

Dave Wiersema, wiersema@berkeley.edu

Johnny von Neumann's Simulations

 J. G. Charney, R. Fjörtoft, J. von Neumann, 1950: Numerical Integration of the Barotropic Vorticity Equation. Tellus, Volume-2 Issue-4, 237-254, doi: 10.1111/j.2153-3490.1950.tb00336.x

Approaches to Downscaling

• Adaptive Mesh Refinement (AMR), used in the Model for Prediction Across Scales (MPAS).

- Increase resolution near regions of interest.
- Saves computational resources by minimizing overall number of cells.