
An Improved Multi-Scale Modeling 
Framework for WRF Over Complex Terrain 
NOAA Central Library Brown Bag Seminar Series, May 19th 2015 

David Wiersema 
Civil & Environmental Engineering, UC Berkeley 

Katherine Lundquist 
Lawrence Livermore National Laboratory 

Fotini Katopodes Chow 
Civil & Environmental Engineering, UC Berkeley 



Outline 

• Neighborhood-scale air quality modeling 
• Introduction to multi-scale modeling 
• Weather Research and Forecasting (WRF) model 
• The immersed boundary method and WRF 
• Vertical grid nesting in WRF 
• WRF to WRF-IBM grid nesting (in development) 
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San Francisco Air Quality Modeling 

Image from Google Earth 2013 
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San Francisco Air Quality Modeling 

Site of interest 

Image from Google Earth 2013 

UC Berkeley 
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San Francisco Air Quality Modeling 

Image from Google Maps 2015 

Site of interest 
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San Francisco Air Quality Modeling 

Image from Google Earth 2013 
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Urban Topography 

• LiDAR dataset of building 
heights above ground level 
– Provided by the San 

Francisco Department of 
Public Health 

• Combined with National 
Elevation Dataset 1/3rd arc-
second ground topography 

7 



PM2.5 Emissions 

• Provided by the Bay 
Area Air Quality 
Management District. 

• ~2m resolution. 
• Weighted depending 

on the time of day and 
weekday. 
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Options For Modeling of Urban Dispersion 

1) Add atmospheric physics to a computational 
fluid dynamics (CFD) model. 

2) Couple a CFD model to a numerical weather 
prediction (NWP) model. 

3) Downscale to CFD-scales within a NWP 
model. 
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Multi-Scale Atmospheric Modeling 

• Resolves features between synoptic-scale and 
turbulent-scale. 
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Meso-Scale to Micro-Scale 

Scale Feature Size Features Resolved 

Meso-alpha 2000km – 200km tropical cyclones, weather 
fronts 

Meso-beta 200km – 20km land-sea breeze, lake 
effect snow storms 

Meso-gamma 20km – 2km thunderstorm convection, 
large-scale terrain effects 

Micro 1km – 1m turbulent mixing, 
convection 

Current Generation Models 

1980-1990 

1950-1980 
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Wyngaard’s “Terra-Incognita” 

Wyngaard, J., 2004: 
Toward numerical modeling in the “terra incognita”. 
Journal of the Atmospheric Sciences, 61, 1816-1826. 

l/Δ ≈ 1 l/Δ >> 1 l/Δ << 1 
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Potential Applications for 
Multi-Scale Modeling 

• Wind energy forecasting and turbine siting 
• Mountain meteorology 
• Urban meteorology 
• Dispersion modeling 
• Operational forecasting (someday) 

Aitken ML, Kosovic B, Mirocha JD, Lundquist JK, 2014: Large-eddy simulation of 
wind turbine wake dynamics in the stable boundary layer using the Weather Research 

and Forecasting model, J. Renewable and Sustainable Energy, 6 Photo credit: Ralph Turncotte. From Sea Breeze and 
Local Winds by John E. Simpson. 
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What’s Needed for Multi-Scale Modeling? 
• Meso-scale model 

– Weather Research and Forecasting (WRF) model 

• Turbulence modeling at high resolutions 
– Large Eddy Simulation (LES) 

• Ability to handle complex terrain 
– Immersed boundary method (WRF-IBM) 

• Ability to downscale information 
– Vertical grid nesting in WRF 

• Adaptive or scale-dependent parameterizations 

Image courtesy of Jeff Mirocha 
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Numerical Weather Prediction Model 
Horizontal Resolution 

Operational 
At Launch Currently 

NGM Nested Grid Model 90km 1987-2000 

ECMWF 

European Center 
for Medium-Range 
Weather 
Forecasting 

125km 16km 1987+ 

RUC Rapid Update 
Cycle 60km 13km 1994-2012 

Eta 29km 1995-2006 

NAM North American 
Meso-scale  12km 2006+ 

GFS Global Forecast 
System 28km 13km 2002+ 

RAP Rapid Update 
Cycle 13km 2012+ 

HRRR High-Resolution 
Rapid Refresh 3km 2013+ 

FIM9.5 
Flow-Following 
Finite-Volume 

  
15km 2014+ 
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The Weather Research and Forecasting 
Model 

• Meso-scale, regional, numerical 
weather prediction (NWP) model 

• Open-source, community developed 
• Maintained by the National Center for 

Atmospheric Research 
• Fully compressible and nonhydrostatic  
• Large eddy simulation capable 
• Parameterizations for land surface 

model physics, long and shortwave 
radiation, subgridscale cumulus 
development, microphysics, etc… 

• Downscaling using grid-nesting 

Images from http://www.mmm.ucar.edu/wrf/OnLineTutorial/CASES/SingleDomain 16 



Downscaling With Grid Nesting 

• Coarse-resolution 
“parent” grid provides 
data for initialization 
and boundary 
conditions of fine-
resolution “child” grid. 

• Enables large-scale 
features to influence 
the child domain. 
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WRF’s Vertical Coordinate 

• Terrain-following and pressure-based. 
• Grid skewness over steep slopes results in 

numerical errors and can cause model failure. 
 • Skewness only 
becomes an issue 
when terrain slopes 
are >25%, which 
only happens while 
approaching the 
micro-scale. 18 
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Resolved Slope & Grid Resolution 
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Resolved Slope & Grid Resolution 



22 



23 

Resolved Slope & Grid Resolution 



The Immersed Boundary Method 
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WRF-IBM’s Vertical Coordinate 

• Pressure-based but not terrain-following. 
• No grid skewness due to terrain slopes. 

 

Image courtesy of Katherine Lundquist 
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WRF-IBM Setup 

• Inverse Distance Weighting interpolation scheme 
• Smagorinsky turbulence closure 
• No-slip bottom boundary 
• Two nested domains with the parent being flat 

and the nested domain containing buildings 
• Periodic lateral boundary conditions on the 

parent domain 
• Rigid, no-flux, top boundary 
• Initialized with an idealized sounding 
• Line source of emissions with zero initial 

concentration everywhere 
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Picking the Grid Resolution 
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Wind Speed at 2m AGL 
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Vertical Velocity at 2m AGL 
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Passive Tracer at 2m AGL 
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East-West Slice of Passive Tracer 
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Vertical Grid Nesting in WRF 

• WRF requires all concurrently nested domains to 
use the same number and placement of vertical 
grid levels. 

• Vertical grid nesting… 
– allows for additional vertical levels in a nested 

domain. 
– prevents an excessive number of vertical levels on the 

parent domain. 
– provides control over the grid aspect ratio of each 

domain 
• Vital if nesting in a LES model. 
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Existing Vertical Grid Nesting in WRF 
• Sequentially run simulations with 

“ndown” (1) 
– Nest boundary conditions 

update at the frequency of 
parent grid history 

• Uses integer refinement of parent 
vertical levels 

(1) Moustaoui, M., A. Mahalov, J. Dudhia, and D. Gill, 2009: Nesting in wrf with vertical grid refinement and implicit relaxation. 
WRF Users’ Workshop 2009, Boulder, CO, National Center for Atmospheric Research. 

• Concurrent simulation 
– All domains must have 

identical vertical levels 
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Concurrent Vertical Grid Nesting 

• Utilizes the interpolation scheme from ndown 
– Cubic Hermite interpolation 

• Matches value at known points and first derivative 

– Can use an arbitrary number of vertical levels for 
nested domain compared to parent domain 

• Included in the public release of WRFv3.6.1 
– Still in development and currently undocumented 

• Enabled by one new variable in namelist.input 
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Validation of Vertical Grid Nesting 

• Flat plate 
• Periodic lateral boundary conditions 
• No atmospheric physics 
• Initialized with idealized sounding 

– 10 m s-1 wind speed at all heights 
– Dry and neutral temperature profile 

• Forced by maintaining initial conditions in top 
3000 meters of domain 
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With & Without Vertical Grid Nesting 
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Flow Over A Flat Plate 
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Vertical Nesting with Atmospheric Physics 

• Flat plate with uniform land surface and soil properties 
• Initialized with a stable, dry, quiescent idealized sounding 
• Periodic lateral boundary conditions 
• Parameterizations and sub-models: 

– Longwave radiation (RRTM) 
– Shortwave radiation (Dudhia) 
– Land surface model (Noah) 
– Surface layer (Monin-Obukhov) 

• Difficulties with radiation schemes 
– We are currently evaluating which schemes are working 

properly with our modifications and enabling the use of several 
popular schemes with vertical nesting 
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Heating of a Flat Plate 
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WRF Meso-Scale Test Case 

• Parameterizations and sub-models: 
– Microphysics (WSM 3-class) 
– Longwave radiation (RRTM) 
– Shortwave radiation (Dudhia) 
– Land surface model (Thermal diffusion) 
– Surface layer (Monin-Obukhov) 
– Planetary Boundary Layer (YSU) 
– Cumulus Parameterization (Kain-Fritsch) 
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Without Vertical Grid Nesting 
Vertical Levels 
Parent: 60 
Nest: 60 
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With Vertical Grid Nesting 
Vertical Levels 
Parent: 30 
Nest: 60 
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With and Without Vertical Grid Nesting 

Vertical Levels 
Parent: 60 
Nest: 60 

Vertical Levels 
Parent: 30 
Nest: 60 
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East-West Slice of Potential Temperature 
(from the nested domain) 

Vertical Levels 
Parent: 60 
Nest: 60 

Vertical Levels 
Parent: 30 
Nest: 60 
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East-West Slice of Wind Speed [m s-1] 
(from the nested domain) 

Vertical Levels 
Parent: 60 
Nest: 60 

Vertical Levels 
Parent: 30 
Nest: 60 
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East-West Slice of Vertical Velocity [m s-1] 
(from the nested domain) 

Vertical Levels 
Parent: 60 
Nest: 60 

Vertical Levels 
Parent: 30 
Nest: 60 
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Modeling the Bay Area With 
Vertical Grid Nesting 
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Western US, June 18th 2012 
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Oakland Radiosonde 
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Terrain Height & Wind Vectors from 
Lowest Model Level 
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Wind Speed at Lowest Model Level 

Location of Slice 
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East-West Slice of Wind Speed 
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Current Work: WRF to WRF-IBM Nesting 
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Current Work: WRF to WRF-IBM Nesting 
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• Vertical grid nesting is necessary to force a WRF-
IBM child domain that is nested within a WRF 
parent domain. 

• WRF’s solver is passed variables that are 
“coupled” with the dry air mass in the column. 

• The parent and nest have different values for the 
dry air mass in the column because the domains 
have different bottoms. 



Current Work: WRF to WRF-IBM Nesting 
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• Couple parent domain with μparent 

• Couple nested domain with μnest 

• Vertically interpolate coupled 
parent on to the nest 

• Horizontally interpolate results 
on to the nest 

• Save results to nested domain 
• Uncouple parent domain with μparent 

• Uncouple nested domain with μnest 

 
 

• Vertically interpolate parent on 
to the nest 

• Horizontally interpolate results 
on to the nest 

• Couple results with μnest 

• Save results to nested domain 
 

WRF to WRF nesting WRF to WRF-IBM nesting 



Current Work: WRF to WRF-IBM Nesting 
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Current Work: WRF to WRF-IBM Nesting 



Thank you for your attention 
• Neighborhood-scale air quality modeling 
• Introduction to multi-scale modeling 
• Weather Research and Forecasting (WRF) model 
• The immersed boundary method and WRF 
• Vertical grid nesting in WRF 
• WRF to WRF-IBM grid nesting (in development) 
• Thank you to Lawrence Livermore National 

Laboratory, Jeff Mirocha, Megan Daniels, and 
EFMH at UC Berkeley 

Dave Wiersema, wiersema@berkeley.edu 70 

 



Johnny von Neumann’s Simulations 

• J. G. Charney, R. Fjörtoft, J. von Neumann, 1950: Numerical Integration of 
the Barotropic Vorticity Equation. Tellus, Volume-2 Issue-4, 237-254, doi: 
10.1111/j.2153-3490.1950.tb00336.x 
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Approaches to Downscaling 

• Adaptive Mesh Refinement (AMR), used in the 
Model for Prediction Across Scales (MPAS). 

MPAS-Atmosphere Tutorial, The 15th WRF Users' Workshop, Boulder, Colorado, 27 June 2014. 

• Increase resolution near 
regions of interest. 

• Saves computational 
resources by minimizing 
overall number of cells. 
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