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Abstract 105 

This Recommendation specifies the design principles and requirements for the entropy sources 106 

used by Random Bit Generators, and the tests for the validation of entropy sources. These entropy 107 

sources are intended to be combined with Deterministic Random Bit Generator mechanisms that 108 

are specified in SP 800-90A to construct Random Bit Generators, as specified in SP 800-90C. 109 
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Note to Reviewers 127 

To facilitate public review, we have compiled a number of open issues for which we would like 128 

reviewer input. Please keep in mind that it is not necessary to respond to all questions listed below, 129 

nor is review limited to these issues. Reviewers should also feel free to suggest other areas of 130 

revision or enhancement to the document as they see fit. 131 

 132 

- Post-processing functions (Section 3.2.2): We provided a list of approved post-processing 133 

functions. Is the selection of the functions appropriate? 134 

- Entropy assessment (Section 3.1.5): While estimating the entropy for entropy sources using 135 

a conditioning component, the values of n and q are multiplied by the constant 0.85. Is the 136 

selection of this constant reasonable? 137 

- Multiple noise sources: The Recommendation only allows using multiple noise sources if 138 

the noise sources are independent. Should the use of dependent noise sources also be 139 

allowed, and how can we calculate an entropy assessment in this case? 140 

- Health Tests: What actions should be taken when health tests raise an alarm? The minimum 141 

allowed value of a type I error for health testing is selected as 2-50. Is this selection 142 

reasonable?143 
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1 Introduction 248 

1.1 Scope 249 

Cryptography and security applications make extensive use of random numbers and random bits. 250 

However, the generation of random bits is problematic in many practical applications of 251 

cryptography. The NIST Special Publication (SP) 800-90 series of Recommendations provides 252 

guidance on the construction and validation of Random Bit Generators (RBGs) in the form of 253 

Deterministic Random Bit Generators (DRBGs) or Non-deterministic Random Bit Generators 254 

(NRBGs) that can be used for cryptographic applications. This Recommendation specifies how to 255 

design and test entropy sources that can be used by these RBGs. SP 800-90A addresses the 256 

construction of approved Deterministic Random Bit Generator (DRBG) mechanisms, while SP 257 

800-90C addresses the construction of RBGs from the mechanisms in SP 800-90A and the entropy 258 

sources in SP 800-90B. These Recommendations provide a basis for validation by NIST's 259 

Cryptographic Algorithm Validation Program (CAVP) and Cryptographic Module Validation 260 

Program (CMVP). 261 

 262 

An entropy source that conforms to this Recommendation can be used by RBGs to produce a 263 

sequence of random bits. While there has been extensive research on the subject of generating 264 

pseudorandom bits using a DRBG and an unknown seed value, creating such an unknown seed 265 

has not been as well documented. The only way for this seed value to provide real security is for 266 

it to contain a sufficient amount of randomness, e.g., from a non-deterministic process referred to 267 

as an entropy source. This Recommendation describes the properties that an entropy source must 268 

have to make it suitable for use by cryptographic random bit generators, as well as the tests used 269 

to validate the quality of the entropy source.  270 

 271 

The development of entropy sources that construct unpredictable outputs is difficult, and providing 272 

guidance for their design and validation testing is even more so. The testing approach defined in 273 

this Recommendation assumes that the developer understands the behavior of the noise source 274 

within the entropy source and has made a good-faith effort to produce a consistent source of 275 

entropy. It is expected that, over time, improvements to the guidance and testing will be made, 276 

based on experience in using and validating against this Recommendation. 277 

 278 

This Recommendation was developed in concert with American National Standard (ANS) X9.82, 279 

a multi-part standard on random number generation.  280 

1.2 Symbols 281 

The following symbols and functions are used in this Recommendation.  282 

A={x1,x2,…,xk} 
The set of all possible distinct sample outputs from a noise source, i.e. the 

alphabet. 

H 

The min-entropy of the samples from a (digitized) noise source or of the 

output from an entropy source; the min-entropy assessment for a noise 

source or entropy source. 
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HI Initial entropy estimate. 

logb(x) The logarithm of x with respect to base b. 

max(a, b) A function that returns the maximum of the two values a and b. 

k The number of possible sample values, i.e., the size of the alphabet.  

 The probability of falsely rejecting the null hypothesis (type I error). 

|a| A function that returns the absolute value of a. 

pi   
The probability for an observation (or occurrence) of the sample value xi 

in A. 

pmax 
The probability of observing the most common sample from a noise 

source. 

S=(s1,…,sL) A dataset that consists of an ordered collection of samples, where si ϵ A. 

xi A possible output from the (digitized) noise source. 

[a,b] The interval of numbers between a and b, including a and b. 

 x  
A function that returns the smallest integer greater than or equal to x; also 

known as the ceiling function. 

 x  
A function that returns the largest integer less than or equal to x; also 

known as the floor function. 

|| Concatenation. 

 Bit-wise exclusive-or operation. 

1.3 Organization 283 

Section 2 gives a general discussion on min-entropy, the entropy source model and the conceptual 284 

interfaces. Section 3 explains the validation process and lists the requirements on the entropy 285 

source, data collection, documentation, etc. Section 4 describes the health tests. Section 5 includes 286 

various statistical tests to check whether the entropy source outputs are IID (independent and 287 

identically distributed) or not. Section 6 provides several methods to estimate the entropy of the 288 

noise source. The appendices include a list of acronyms, a glossary, references, a discussion on 289 

min-entropy and the optimum guessing attack cost, descriptions of the post-processing functions, 290 

information about the narrowest internal width and the underlying information on different entropy 291 

estimation strategies used in this Recommendation.  292 
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2 General Discussion 293 

The three main components of a cryptographic RBG are a source of random bits (an entropy 294 

source), an algorithm for accumulating and providing random bits to the consuming applications, 295 

and a way to combine the first two components appropriately for the cryptographic applications. 296 

This Recommendation describes how to design and test entropy sources. SP 800-90A describes 297 

deterministic algorithms that take an entropy input and use it to produce pseudorandom values. SP 298 

800-90C provides the “glue” for putting the entropy source together with the algorithm to 299 

implement an RBG. 300 

Specifying an entropy source is a complicated matter. This is partly due to confusion in the 301 

meaning of entropy, and partly due to the fact that, while other parts of an RBG design are strictly 302 

algorithmic, entropy sources depend on physical processes that may vary from one instance of a 303 

source to another. This section discusses, in detail, both the entropy source model and the meaning 304 

of entropy. 305 

2.1 Min-Entropy 306 

The central mathematical concept underlying this Recommendation is entropy. Entropy is defined 307 

relative to one’s knowledge of an experiment’s output prior to observation, and reflects the 308 

uncertainty associated with predicting its value – the larger the amount of the entropy, the greater 309 

the uncertainty in predicting the value of an observation. There are many possible types of entropy; 310 

this Recommendation uses a very conservative measure known as min-entropy, which measures 311 

the difficulty of guessing the most likely output of the entropy source. 312 

In cryptography, the unpredictability of secret values (such as cryptographic keys) is essential. The 313 

probability that a secret is guessed correctly in the first trial is related to the min-entropy of the 314 

distribution that the secret was generated from. The min-entropy is closely related to the negative 315 

logarithm of the maximum probability using the optimal guessing strategy [Cac97] (see Appendix 316 

D for more information). 317 

The min-entropy of an independent discrete random variable X that takes values from the set 318 

A={x1,x2,…,xk} with probability Pr(X=xi) = pi for i =1,…,k is defined as 319 

𝐻  = − min
1≤𝑖≤𝑘

(−log2 𝑝𝑖), 320 

= − log2 max
1≤𝑖≤𝑘

𝑝𝑖 . 321 

If X has min-entropy H, then the probability of observing any particular value for X is no greater 322 

than 2-H. The maximum possible value for the min-entropy of a random variable with k distinct 323 

values is log2 k, which is attained when the random variable has a uniform probability distribution, 324 

i.e., p1 = p2 =…= pk =1/k.  325 

2.2 The Entropy Source Model 326 

This section describes the entropy source model in detail. Figure 1 illustrates the model that this 327 

Recommendation uses to describe an entropy source and its components: a noise source, an 328 
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optional conditioning component and a health testing component.  329 

 330 

Figure 1 Entropy Source Model 331 

2.2.1 Noise Source 332 

The noise source is the root of security for the entropy source and for the RBG as a whole. This is 333 

the component that contains the non-deterministic, entropy-providing activity that is ultimately 334 

responsible for the uncertainty associated with the bitstrings output by the entropy source. 335 

If the non-deterministic activity being sampled produces something other than binary data, the 336 

sampling process includes a digitization process that converts the output samples to bits. The noise 337 

sourse may also include some simple post-processing operations that can reduce the statistical 338 

biases of the samples and increase the entropy rate of the resulting output. The output of the 339 

digitized and optionally post-processed noise source is called the raw data.  340 

This Recommendation assumes that the sample values obtained from a noise source consist of 341 

fixed-length bitstrings. 342 

If the noise source fails to generate random outputs, no other component in the RBG can 343 

compensate for the lack of entropy; hence, no security guarantees can be made for the application 344 

relying on the RBG.  345 

In situations where a single noise source does not provide sufficient entropy in a reasonable amount 346 

of time, outputs from multiple noise sources may be combined to obtain the necessary amount of 347 
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entropy. When multiple noise sources are used, the relationship between sources affects the 348 

entropy of the outputs. If the noise sources are independent, their entropy assessments can be 349 

added. Thermal noise and mouse movements can be given as examples of independent noise 350 

sources (i.e., the output of the noise sources are independent). However, for some combinations of 351 

noise sources, such as the ones based on dependent processes (e.g., packet arrival times in a 352 

communication network and hard drive access times), the total entropy produced is harder to 353 

estimate. This Recommendation only considers the use of independent noise sources. 354 

2.2.2 Conditioning Component  355 

The optional conditioning component is a deterministic function responsible for reducing bias 356 

and/or increasing the entropy rate of the resulting output bits (if necessary to obtain a target value). 357 

There are various methods for achieving this. The developer should consider the conditioning 358 

component to be used and how variations in the behavior of the noise source may affect the entropy 359 

rate of the output. In choosing an approach to implement, the developer may either choose to 360 

implement a cryptographic algorithm listed in Section 3.1.5.1.1 or use an alternative algorithm as 361 

a conditioning component. The use of either of these approaches is permitted by this 362 

Recommendation.  363 

2.2.3 Health Tests 364 

Health tests are an integral part of the entropy source design that are intended to ensure that the 365 

noise source and the entire entropy source continue to operate as expected. When testing the 366 

entropy source, the end goal is to obtain assurance that failures of the entropy source are caught 367 

quickly and with a high probability. Another aspect of health testing strategy is determining likely 368 

failure modes for the entropy source and, in particular, for the noise source. Health tests are 369 

expected to include tests that can detect these failure conditions.  370 

The health tests can be separated into three categories: start-up tests (on all components), 371 

continuous tests (primarily on the noise source), and on-demand tests. 372 

2.3 Conceptual Interfaces 373 

This section describes three conceptual interfaces that can be used to interact with the entropy 374 

source: GetEntropy, GetNoise and HealthTest. However, it is anticipated that the actual 375 

interfaces used may depend on the entropy source employed.  376 

These interfaces can be used by a developer when constructing an RBG as specified in SP 800-377 

90C. 378 

2.3.1 GetEntropy: An Interface to the Entropy Source 379 

The GetEntropy interface can be considered to be a command interface into the outer entropy 380 

source box in Figure 1. This interface is meant to indicate the types of requests for services that an 381 

entropy source may support.  382 

A GetEntropy call could return a bitstring containing the requested amount of entropy, along 383 

with an indication of the status of the request. Optionally, an assessment of the entropy can be 384 
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provided. 385 

 386 

GetEntropy 

Input: 

bits_of_entropy: the requested amount of entropy 

Output: 

entropy_bitstring: The string that provides the requested entropy. 

status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise. 

 387 

2.3.2 GetNoise: An Interface to the Noise Source 388 

The GetNoise interface can be considered to be a command interface into the noise source 389 

component of an entropy source. This could be used to obtain raw, digitized and optionally post-390 

processed outputs from the noise source for use in validation testing or for external health tests. 391 

While it is not required to be in this form, it is expected that an interface be available that allows 392 

noise source data to be obtained without harm to the entropy source. This interface is meant to 393 

provide test data to credit a noise source with an entropy estimate during validation or for health 394 

testing. It is permitted that such an interface is available only in “test mode” and that it is disabled 395 

when the source is operational.  396 

This interface is not intended to constrain real-world implementations, but to provide a consistent 397 

notation to describe data collection from noise sources.  398 

A GetNoise call returns raw, digitized, samples from the noise source, along with an indication of 399 

the status of the request. 400 

GetNoise 

Input: 

number_of_samples_requested: An integer value that indicates the requested number of samples 

to be returned from the noise source. 

Output: 

noise_source_data: The sequence of samples from the noise source with length 

number_of_samples_requested. 

status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise. 

 401 

2.3.3 HealthTest: An Interface to the Entropy Source 402 

A HealthTest call is a request to the entropy source to conduct a test of its health. Note that it may 403 

not be necessary to include a separate HealthTest interface if the execution of the tests can be 404 

initiated in another manner that is acceptable to FIPS 140 [FIPS140] validation.  405 

  406 
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HealthTest 

Input: 

type_of_test_requested: A bitstring that indicates the type or suite of tests to be performed (this 

may vary from one entropy source to another). 

Output: 

status: A Boolean value that is TRUE if the entropy source passed the requested test, and is 

FALSE otherwise. 

 407 

3 Entropy Source Validation 408 

Entropy source validation is necessary in order to obtain assurance that all relevant requirements 409 

of this Recommendation are met. This Recommendation provides requirements and guidance that 410 

will allow an entropy source to be validated for an entropy assessment that will provide evidence 411 

that the entropy source produces bitstrings providing entropy at a specified rate. Validation 412 

consists of testing by an NVLAP-accredited laboratory against the requirements of SP 800-90B, 413 

followed by a review of the results by NIST’s CAVP and CMVP. Validation provides additional 414 

assurance that adequate entropy is provided by the source and may be necessary to satisfy some 415 

legal restrictions, policies, and/or directives of various organizations. 416 

The validation of an entropy source presents many challenges. No other part of an RBG is so 417 

dependent on the technological and environmental details of an implementation. At the same time, 418 

the proper operation of the entropy source is essential to the security of an RBG. The developer 419 

should make every effort to design an entropy source that can be shown to serve as a consistent 420 

source of entropy, producing bitstrings that can provide entropy at a rate that meets (or exceeds) a 421 

specified value. In order to design an entropy source that provides an adequate amount of entropy 422 

per output bitstring, the developer must be able to accurately estimate the amount of entropy that 423 

can be provided by sampling its (digitized) noise source. The developer must also understand the 424 

behavior of the other components included in the entropy source, since the interactions between 425 

the various components may affect any assessment of the entropy that can be provided by an 426 

implementation of the design. For example, if it is known that the raw noise-source output is 427 

biased, appropriate conditioning components can be included in the design to reduce that bias to a 428 

tolerable level before any bits are output from the entropy source.  429 

3.1 Validation Process 430 

An entropy source may be submitted to an accredited lab for validation testing by the developer or 431 

any entity with an interest in having an entropy source validated. After the entropy source is 432 

submitted for validation, the labs will examine all documentation and theoretical justifications 433 

submitted. The labs will evaluate these claims, and may ask for more evidence or clarification.  434 

The general flow of entropy source validation testing is summarized in Figure 2. The following 435 

sections describe the details of the validation testing process. 436 

 437 

438 
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Figure 2 Entropy Estimation Strategy 
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3.1.1 Data Collection 441 

The submitter provides the following inputs for entropy estimation, according to the requirements 442 

presented in Section 3.2.4. 443 

1. A sequential dataset of at least 1,000,000 consecutive sample values obtained directly from the 444 

noise source (i.e., raw samples) shall be collected for validation1. If the generation of 1,000,000 445 

consecutive samples is not possible, the concatenation of several smaller sets of consecutive 446 

samples (generated using the same device) is allowed. Smaller sets shall contain at least 1,000 447 

samples. The concatenated dataset shall contain at least 1,000,000 samples. If multiple noise 448 

sources are used, a dataset of at least 1,000,000 samples from each noise source shall be 449 

collected. 450 

2. If the entropy source includes a conditioning component that is not listed in Section 3.1.5.1.1, 451 

a conditioned sequential dataset of at least 1,000,000 consecutive samples values obtained as 452 

the output of the conditioning component shall be collected for validation. The output of the 453 

conditioning component shall be treated as a binary string for testing purposes. Note that the 454 

data collected from the noise source for validation may be used as input to the conditioning 455 

component for the collection of conditioned output values. 456 

3. For the restart tests (see Section 3.1.4), the entropy source must be restarted 1000 times; for 457 

each restart, 1000 consecutive samples shall be collected directly from the noise source. This 458 

data is stored in a 1000x1000 restart matrix M, where M[i][j] represents the jth sample from 459 

the ith restart. 460 

4. If multiple noise sources are used, sequential and restart datasets from each noise source shall 461 

be collected, as specified in item 1. If a conditioning component that is not listed in Section 462 

3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy 463 

source. 464 

3.1.2 Determining the track: IID track vs. non-IID track 465 

According to this Recommendation, entropy estimation is done using two different tracks: an IID-466 

track and a non-IID track. The IID-track (see Section 6.1) is used for entropy sources that generate 467 

IID (independent and identically distributed) samples, whereas the non-IID track (see Section 6.2) 468 

is used for noise sources that do not generate IID samples.  469 

The track selection is done based on the following rules. The IID track shall be chosen only when 470 

all of the following conditions are satisfied: 471 

1. The submitter makes an IID claim on the noise source, based on his analysis of the design. 472 

The submitter shall provide rationale for the IID claim.  473 

                                                 

1 Providing additional data beyond what is required will result in more accurate entropy estimates. Lack of sufficient data 

may result in lower entropy estimates due to the necessity of mapping down the output values (see Section 6.4).  It is 

recommended that, if possible, more data than is required be collected for validation. However, it is assumed in 

subsequent text that only the required data has been collected. 
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2. The sequential dataset described in item 1 of Section 3.1.1 is tested using the statistical 474 

tests described in Section 5 to verify the IID assumption, and the IID assumption is verified 475 

(i.e., there is no evidence that data is not IID).  476 

3. The row and the column datasets described in item 3 of Section 3.1.1 are tested using the 477 

statistical tests described in Section 5 to verify the IID assumption, and the IID assumption 478 

is verified. 479 

4. If a conditioning component that not listed in Section 3.1.5.1.1 is used, the conditioned 480 

sequential dataset is tested using the statistical tests described in Section 5 to verify the IID 481 

assumption, and the IID assumption is verified. 482 

If any of these conditions are not met, the estimation process shall follow the non-IID track. 483 

3.1.3 Initial Entropy Estimate 484 

After determining the entropy estimation track, a min-entropy estimate per sample, denoted as 485 

Horiginal, for the sequential dataset is calculated using the methods described in Section 6.1 (for the 486 

IID track) or Section 6.2 (for the non-IID track). If the size of the sample space is greater than 256, 487 

it shall be reduced to at most 256, using the method described in Section 6.4.  488 

If the sequential dataset is not binary (i.e., the size of the sample space k is more than 2), an 489 

additional entropy estimation (per bit), denoted Hbitstring, is determined (based on the entropy 490 

estimation track, as specified in the previous paragraph), considering the sequential dataset as a 491 

bitstring. The bits after the first 1,000,000 bits may be ignored. The entropy per sample is estimated 492 

to be n×Hbitstring where n is the size of the fixed-length samples. 493 

The submitter shall provide an entropy estimate for the noise source, which is based on the 494 

submitter’s analysis of the noise source (see Requirement 8 in Section 3.2.2). This estimate is 495 

denoted as Hsubmitter. 496 

The initial entropy estimate of the noise source is calculated as HI = min (Horiginal, n×Hbitstring, 497 

Hsubmitter) for non-binary sources and as HI = min (Horiginal, Hsubmitter) for binary sources. 498 

3.1.4 Restart Tests 499 

The entropy estimate of a noise source, calculated from a single, long-output sequence, might 500 

provide an overestimate if the noise source generates correlated sequences after restarts. Hence, 501 

an attacker with access to multiple noise source output sequences after restarts may be able to 502 

predict the next output sequence with much better success than the entropy estimate suggests. The 503 

restart tests described in this section re-evaluate the entropy estimate for the noise source using 504 

different outputs from many restarts of the source. 505 

3.1.4.1 Constructing Restart Data 506 

To construct restart data, the entropy source shall be restarted r = 1000 times; for each restart, c = 507 

1000 consecutive samples shall be collected directly from the noise source. The output samples 508 

are stored in an r by c matrix M, where M[i][j] represents the jth sample from the ith restart.  509 
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Two datasets are constructed using the matrix M:  510 

- The row dataset is constructed by concatenating the rows of the matrix M, i.e., the row 511 

dataset is M[1][1] ||…|| M[1][c] || M[2][1] ||…|| M[2][c] || … || M[r][1] ||…|| M[r][c].  512 

- The column dataset is constructed by concatenating the columns of the matrix M, i.e., the 513 

column dataset is M[1][1] ||…|| M[r][1] || M[1][2] ||…|| M[r][2] || …|| M[1][c] ||…|| M[r][c]. 514 

3.1.4.2 Validation Testing 515 

The restart tests check the relations between noise source samples generated after restarting the 516 

device, and compare the results to the initial entropy estimate, HI (see Section 3.1.3).  517 

First, the sanity check described in Section 3.1.4.3 is performed on the matrix M. If the test fails, 518 

the validation fails and no entropy estimate is awarded.  519 

If the noise source does not fail the sanity check, then the entropy estimation methods described 520 

in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track) are performed on the row 521 

and the column datasets, based on the track of the entropy source. Let Hr and Hc be the resulting 522 

entropy estimates of the row and the column datasets, respectively. The entropy estimates from 523 

the row and the column datasets are expected to be close to the initial entropy estimate HI. If the 524 

minimum of Hr and Hc is less than half of HI, the validation fails, and no entropy estimate is 525 

awarded. Otherwise, the entropy assessment of the noise source is taken as the minimum of the 526 

row, the column and the initial estimates, i.e., min(Hr, Hc, HI). 527 

If the noise source does not fail the restart tests, and the entropy source does not include a 528 

conditioning component, the entropy source will be validated at min(Hr, Hc, HI). If the entropy 529 

source includes a conditioning component, the entropy assessment of the entropy source is updated 530 

as described in Section 3.1.5. 531 

3.1.4.3 Sanity Check - Most Common Value in the Rows and Columns 532 

This test checks the frequency of the most common value in the rows and the columns of the matrix 533 

M. If this frequency is significantly greater than the expected value, given the initial entropy 534 

estimate HI calculated in Section 3.1.3, the restart test fails and no entropy estimate is awarded. 535 

Given the 1000 by 1000 restart matrix M and the initial entropy estimate HI, the test is performed 536 

as follows: 537 

1. Let  be 0.01/(k  2000), where k is the sample size. 538 

2. For each row of the matrix, find the frequency of the most common sample value Fri, for 1≤ i 539 

≤ 1000. Let FR be the maximum of Fr1,…, Fr1000.  540 

3. Repeat the same process for the columns of the matrix, i.e., find the frequency of the most 541 

common sample value Fci for 1≤ i ≤ 1000. Let FC be the maximum of Fc1,…, Fc1000. 542 

4. Let F = max(FR, FC).  543 

5. Let p = 2−𝐻𝐼. Find the upper bound U of the (1− )% confidence interval for the frequency of 544 

the most common value as U = 1000p + 𝑍(1−)√1000𝑝(1 − 𝑝).  545 
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If F is greater than U, the test fails. 546 

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component 547 

The optional conditioning component can be designed in various ways. Section 3.1.5.1.1 provides 548 

a list of vetted cryptographic algorithms/functions for conditioning the noise source outputs. 549 

Submitters are allowed to use other conditioning components; however, the entropy assessment 550 

process differs from the case where a vetted conditioning component is used. If a conditioning 551 

component from Section 3.1.5.1.1 is used, the entropy estimation is done as described in Section 552 

3.1.5.1.2; if a non-listed algorithm is used, the entropy estimation is done as described in Section 553 

3.1.5.2. 554 

Let the amount of entropy in the input to the conditioning component be hin bits. This input may 555 

include multiple samples from one or more noise sources. For example, if the input includes w 556 

samples from a noise source with h bits of entropy per sample, hin is calculated as w×h. If multiple 557 

noise sources are used, hin is calculated as the sum of amount of entropy from each noise source. 558 

The submitter shall state the value of hin, and the conditioning component shall produce output 559 

only when at least hin bits of entropy are available in its input. 560 

Let the output size of the conditioning component be nout (see Figure 3), and the narrowest internal 561 

width within the conditioning component be q. Information on determining the narrowest internal 562 

width is given in Appendix F. Denote the entropy of the output from the conditioning component 563 

as hout, i.e., hout bits of entropy are contained within the nout-bit output.  564 

Since the conditioning component is deterministic, the entropy of the output is at most hin. 565 

However, the conditioning component may reduce the entropy of the output.  566 

 567 

Figure 3 Entropy of the Conditioning Component 568 

3.1.5.1 Using Vetted Conditioning Components   569 

Both keyed and unkeyed algorithms have been vetted for conditioning. Section 3.1.5.1.1  provides 570 

a list of vetted conditioning components. Section 3.1.5.1.2 discusses the method for determining 571 

the entropy provided by a vetted conditioning component. 572 

3.1.5.1.1 List of Vetted Conditioning Components 573 

Three keyed algorithms have been vetted for a keyed conditioning component: 574 

1. HMAC, as specified in FIPS 198, with any approved hash function specified in FIPS 180 575 

or FIPS 202, 576 

2. CMAC, as specified in SP 800-38B, with the AES block cipher (see FIPS 197), and 577 

hin bits of entropy Noise 

Source 

nout bits with  

hout bits of entropy Conditioning 

Component 
Output 
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3. CBC-MAC, as specified in Appendix G, with the AES block cipher. This Recommendation 578 

does not approve the use of CBC-MAC for purposes other than as a conditioning 579 

component in an RBG. 580 

The keys used by the keyed conditioning components shall be selected by the submitter in advance 581 

(per implementation or per device). The submitter shall document how the selection is done, and 582 

specify the key to test the correctness of the implementation. 583 

Three unkeyed functions have been vetted for unkeyed conditioning component: 584 

1. Any approved hash function specified in FIPS 180 or FIPS 202, 585 

2. Hash_df, as specified in SP 800-90A, using any approved hash function specified in FIPS 586 

180 or FIPS 202, and 587 

3. Block_Cipher_df, as specified in SP800-90A using the AES block cipher (see FIPS 197). 588 

 589 

The narrowest internal width and the output length for the vetted conditioning functions are 590 

provided in the following table. 591 

Table 1 The narrowest internal width and output lengths of the vetted conditioning functions.  592 

Conditioning Function Narrowest Internal Width (q) Output Length 

(nout) 

HMAC hash-function output size hash-function output size 

CMAC AES block size = 128 AES block size = 128 

CBC-MAC AES block size = 128 AES block size = 128 

Hash Function hash-function output size hash-function output size 

Hash_df hash-function output size hash-function output size 

Block_Cipher_df AES key size  AES key size 

 593 

For HMAC, CMAC, CBC-MAC and the hash functions, the output length (nout) specified in the 594 

table is the “natural” output length of the function. For Hash_df and Block_cipher_df, the output 595 

length indicated in the table shall be the value of no_of_bit_to_return used in the invocation of 596 

Hash_df and Block_Cipher_df (see SP 800-90A). 597 

 598 

3.1.5.1.2 Entropy Assessment using Vetted Conditioning Components 599 

When using a conditioning component listed in Section 3.1.5.1.1 (given the assurance of correct 600 

implementation by CAVP testing), the entropy of the output is estimated as  601 

ℎ𝑜𝑢𝑡 =  {
min(ℎ𝑖𝑛, 0.85𝑛𝑜𝑢𝑡, 0.85𝑞) , if ℎ𝑖𝑛 < 2 min(𝑛𝑜𝑢𝑡, 𝑞)

min(𝑛𝑜𝑢𝑡, 𝑞) , if ℎ𝑖𝑛 ≥ 2 min(𝑛𝑜𝑢𝑡, 𝑞)
 602 
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When the input entropy is at least 2×min(nout, q), nout full-entropy output bits are produced. 603 

Otherwise, the size of the output and the narrowest internal width are multiplied by the constant2 604 

0.85 for a conservative estimate. 605 

If validation testing of the vetted algorithm indicates that it has not been implemented correctly, 606 

the conditioning component shall be treated as not vetted, and the procedure described in Section 607 

3.1.5.2 shall be followed. 608 

The entropy source will be validated at the min-entropy per conditioned output, hout, computed 609 

above.  610 

Note that it is acceptable to truncate the outputs from a vetted conditioning component. If this is 611 

done, the entropy estimate is reduced to a proportion of the output (e.g., if there are six bits of 612 

entropy in an eight-bit output and the output is truncated to six bits, then the entropy is reduced to 613 

3/4 x 6 = 4.5 bits). 614 

3.1.5.2 Using Non-vetted Conditioning Components 615 

For non-vetted conditioning components, the entropy in the output depends, in part, on the entropy 616 

of the input (hin), the size of the output (nout), and the size of the narrowest internal width (q). The 617 

size of the output and the narrowest internal width is multiplied by the constant 0.85 for a 618 

conservative estimate, as was done for the vetted conditioning functions listed in Section 3.1.5.1.1. 619 

However, an additional parameter is needed: the entropy of the conditioned sequential dataset (as 620 

described in item 2 of Section 3.1.1), which shall be computed using the methods described in 621 

Section 6.1 and Section 6.2 for IID and non-IID data, respectively. Let the obtained entropy 622 

estimate per bit be h'.  623 

The output of the conditioning component (nout) shall be treated as a binary string, for purposes of 624 

the entropy estimation. 625 

The entropy of the conditioned output is estimated as  626 

ℎ𝑜𝑢𝑡 = min(ℎ𝑖𝑛, 0.85𝑛𝑜𝑢𝑡, 0.85𝑞, ℎ′ × 𝑛𝑜𝑢𝑡). 627 

The entropy source will be validated at the min-entropy per conditioned output, hout, computed 628 

above.  629 

Note that truncating subsequent to the use of a non-vetted conditioning component shall not be 630 

performed before providing output from the entropy source.  631 

3.1.6 Using Multiple Noise Sources 632 

If multiple independent noise sources are used, the sum of the entropies provided by each noise 633 

source is used as the entropy input to the conditioning component. For example, if the conditioning 634 

component inputs w1 samples from Noise Source 1 with an entropy of h1 bits per sample, and w2 635 

                                                 

2 The constant 0.85 used in the equation was selected after some empirical studies.  
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samples from Noise Source 2 with an entropy of h2 bits per sample, then the hin is calculated as 636 

w1h1+w2h2.  637 

3.2 Requirements for Validation Testing  638 

In this section, high-level requirements (on both submitters and testers) are presented for validation 639 

testing.  640 

3.2.1 Requirements on the Entropy Source  641 

The intent of these requirements is to assist the developer in designing/implementing an entropy 642 

source that can provide outputs with a consistent amount of entropy and to produce the required 643 

documentation for entropy source validation.  644 

1. The entire design of the entropy source shall be documented, including the interaction of the 645 

components specified in Section 2.2. The documentation shall justify why the entropy source 646 

can be relied upon to produce bits with entropy. 647 

2. Documentation shall describe the operation of the entropy source, including how the entropy 648 

source works, and how to obtain data from within the entropy source for validation testing.  649 

3. Documentation shall describe the range of operating conditions under which the entropy 650 

source is claimed to operate correctly (e.g., temperature range, voltages, system activity, etc.). 651 

Analysis of the entropy source’s behavior at the edges of these conditions shall be documented, 652 

along with likely failure modes. 653 

4. The entropy source shall have a well-defined (conceptual) security boundary, which should 654 

be the same as or be contained within a FIPS 140 cryptographic module boundary. This 655 

security boundary shall be documented; the documentation shall include a description of the 656 

content of the security boundary. Note that the security boundary may extend beyond the 657 

entropy source itself (e.g., the entropy source may be contained within a larger boundary that 658 

also contains a DRBG); also note that the security boundary may be logical, rather than 659 

physical. 660 

5. When a conditioning component is not used, the output from the entropy source is the output 661 

of the noise source, and no additional interface is required. In this case, the noise-source output 662 

is available during both validation testing and normal operation. 663 

6. When a conditioning component is included in the entropy source, the output from the entropy 664 

source is the output of the conditioning component, and an additional interface is required to 665 

access the noise-source output. In this case, the noise-source output shall be accessible via the 666 

interface during validation testing, but the interface may be disabled, otherwise. The designer 667 

shall fully document the method used to get access to the raw noise source samples. If the 668 

noise-source interface is not disabled during normal operation, any noise-source output using 669 

this interface shall not be provided to the conditioning component for processing and eventual 670 

output as normal entropy-source output. 671 

7. The entropy source may restrict access to raw noise source samples to special circumstances 672 

that are not available to users in the field, and the documentation shall explain why this 673 
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restriction is not expected to substantially alter the behavior of the entropy source as tested 674 

during validation. 675 

An optional, recommended feature of the entropy source is as follows: 676 

8. The entropy source may contain multiple noise sources to improve resiliency with respect to 677 

degradation or misbehavior. Only independent noise sources are allowed by this 678 

Recommendation. When multiple noise sources are used, the requirements specified in Section 679 

3.2.2 shall apply to each noise source.  680 

9. If multiple noise sources are used, documentation shall specify whether all noise sources will 681 

be available operationally; datasets obtained from noise sources that will not be available in 682 

the field shall not be used for entropy assessment. 683 

3.2.2 Requirements on the Noise Source 684 

The entropy source will have no more entropy than that provided by the noise source, and as such, 685 

the noise source requires special attention during validation testing. This is partly due to the 686 

fundamental importance of the noise source (if it does not do its job, the entropy source will not 687 

provide the expected amount of security), and partly because the probabilistic nature of its behavior 688 

requires more complicated testing. 689 

The requirements for the noise source are as follows: 690 

1. The operation of the noise source shall be documented; this documentation shall include a 691 

description of how the noise source works and rationale about why the noise source provides 692 

acceptable entropy output, and should reference relevant, existing research and literature. 693 

Documentation shall also include why it is believed that the entropy rate does not change 694 

significantly during normal operation. 695 

2. Documentation shall provide an explicit statement of the expected entropy rate and provide a 696 

technical argument for why the noise source can support that entropy rate. This can be in broad 697 

terms of where the unpredictability comes from and a rough description of the behavior of the 698 

noise source (to show that it is reasonable to assume that the behavior is stable). 699 

3. The noise source state shall be protected from adversarial knowledge or influence to the 700 

greatest extent possible. The methods used for this shall be documented, including a 701 

description of the (conceptual) security boundary’s role in protecting the noise source from 702 

adversarial observation or influence. 703 

4. Although the noise source is not required to produce unbiased and independent outputs, it shall 704 

exhibit random behavior; i.e., the output shall not be definable by any known algorithmic rule. 705 

Documentation shall indicate whether the noise source produces IID data or non-IID data. This 706 

claim will be used in determining the test path followed during validation. If the submitter 707 

makes an IID claim, documentation shall include rationale for the claim. 708 

5. The noise source shall generate fixed-length bitstrings. A description of the output space of 709 

the noise source shall be provided. Documentation shall specify the fixed sample size (in bits) 710 

and the list (or range) of all possible outputs from each noise source. 711 
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6. An ordered ranking of the bits in the n-bit samples shall be provided. A rank of ‘1’ shall 712 

correspond to the bit assumed to be contributing the most entropy to the sample, and a rank of 713 

n shall correspond to the bit contributing the least amount. If multiple bits contribute the same 714 

amount of entropy, the ranks can be assigned arbitrarily among those bits. The algorithm 715 

specified in Section 6.4 shall be used to assign ranks. 716 

7. The noise source may include simple post-processing functions to improve the quality of its 717 

outputs. When a post-processing function is used, the noise source shall use only one of the 718 

approved post-processing functions: Von Neumann’s method, the linear filtering method, or 719 

the length-of-runs method. The descriptions of these methods are given in Appendix E. If other 720 

post-processing functions are approved in the future, they will be included in the 721 

implementation guidance [IG140-2].  722 

3.2.3 Requirements on the Conditioning Component 723 

The requirements for the conditioning component are as follows: 724 

1. If the entropy source uses a vetted conditioning component as listed in Section 3.1.5.1.1, the 725 

implementation of that conditioning component shall be tested to obtain assurance of 726 

correctness.  727 

2. For entropy sources containing a conditioning component that is not listed in Section 3.1.5.1.1, 728 

a description of the conditioning component shall be provided. Documentation shall state the 729 

narrowest internal width and the size of the output blocks from the conditioning component. 730 

3. Documentation shall include the minimum amount of entropy hin in the input of the 731 

conditioning component.  732 

3.2.4 Requirements on Data Collection 733 

The requirements on data collection are listed below:  734 

1. The data collection for entropy estimation shall be performed in one of the three ways 735 

described below:  736 

 By the submitter with a witness from the testing lab, or  737 

 By the testing lab itself, or  738 

 Prepared by the submitter in advance of testing, along with the following documentation: 739 

a specification of the data generation process, and a signed document that attests that the 740 

specification was followed. 741 

2. Data collected from the noise source for validation testing shall be raw output values 742 

(including digitization and optional post-processing). 743 

3. The data collection process shall not require a detailed knowledge of the noise source or 744 

intrusive actions that may alter the behavior of the noise source (e.g., drilling into the device).  745 



NIST SP 800-90B (2nd Draft)   Recommendation for the Entropy Sources  
  Used for Random Bit Generation 

 18 

4. Data shall be collected from the noise source and any conditioning component that is not listed 746 

in Section 3.1.5.1.1 (if used) under normal operating conditions (i.e., when it is reasonable to 747 

expect entropy in the outputs).  748 

5. Data shall be collected from the entropy source under validation. Any relevant version of the 749 

hardware or software updates shall be associated with the data.  750 

6. Documentation on data collection shall be provided so that a lab or submitter can perform (or 751 

replicate) the collection process at a later time, if necessary. 752 

4 Health Tests 753 

Health tests are an important component of the entropy source, as they aim to detect deviations 754 

from the intended behavior of the noise source as quickly as possible and with a high probability. 755 

Noise sources can be fragile, and hence, can be affected by the changes in operating conditions of 756 

the device, such as temperature, humidity, or electric field, which might result in unexpected 757 

behavior. Health tests take the entropy assessment as input, and characterize the expected behavior 758 

of the noise source based on this value. Requirements on the health tests are listed in Section 4.3. 759 

4.1 Health Test Overview 760 

The health testing of a noise source is likely to be very technology-specific. Since, in the vast 761 

majority of cases, the noise source will not produce unbiased, independent binary data, traditional 762 

statistical procedures (e.g., randomness tests described in NIST SP 800-22) that test the hypothesis 763 

of unbiased, independent bits will almost always fail, and thus are not useful for monitoring the 764 

noise source. In general, tests on the noise source have to be tailored carefully, taking into account 765 

the expected statistical behavior of the correctly operating noise source. 766 

The health testing of noise sources will typically be designed to detect failures of the noise source, 767 

based on the expected output during a failure, or to detect a deviation from the expected output 768 

during the correct operation of the noise source. Health tests are expected to raise an alarm in three 769 

cases:  770 

1. When there is a significant decrease in the entropy of the outputs,  771 

2. When noise source failures occur, or  772 

3. When hardware fails, and implementations do not work correctly.  773 

4.2 Types of Health Tests 774 

Health tests are applied to the outputs of a noise source before any conditioning is done. (It is 775 

permissible to also apply some health tests to conditioned outputs, but this is not required.)   776 

Start-up health tests are performed after powering up or rebooting. They ensure that the entropy 777 

source components are working as expected before they are used during normal operating 778 

conditions, and nothing failed since the last time that the start-up tests were run. The samples 779 

drawn from the noise source during the startup tests shall not be available for normal operations 780 

until the tests are completed; after testing, these samples may simply be discarded. 781 
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Continuous health tests are run indefinitely while the entropy source is operating. Continuous tests 782 

focus on the noise source behavior and aim to detect failures as the noise source runs. The purpose 783 

of continuous tests is to allow the entropy source to detect many kinds of failures in its underlying 784 

noise source. These tests are run continuously on all digitized samples obtained from the noise 785 

source, and so tests must have a very low probability of raising a false alarm during the normal 786 

operation of the noise source. In many systems, a reasonable false positive probability will make 787 

it extremely unlikely that a properly functioning device will indicate a malfunction, even in a very 788 

long service life. Note that continuous tests are resource-constrained − this limits their ability to 789 

detect noise source problems, so that only gross failures are likely to be detected.   790 

Note that the continuous health tests operate over a stream of values. These sample values may be 791 

output as they are generated; there is no need to inhibit output from the noise source or entropy 792 

source while running the test. It is important to understand that this may result in poor entropy 793 

source outputs for a time, since the error is only signaled once significant evidence has been 794 

accumulated, and these values may have already been output by the entropy source. As a result, it 795 

is important that the false positive probability be set to an acceptable level. In the following 796 

discussion, all calculations assume that a false positive probability of approximately once in 240 797 

samples generated by the noise source is acceptable; however, the formulas given can be adapted 798 

for different false positive probabilities selected by the submitter. 799 

On-demand health tests can be called at any time. This Recommendation does not require 800 

performing any particular on-demand testing during operation. However, it does require that the 801 

entropy source be capable of performing on-demand health tests. Note that resetting, rebooting, or 802 

powering up are acceptable methods for initiating an on-demand test if the procedure results in the 803 

immediate execution of the start-up tests.  Samples collected from the noise source during on-804 

demand health tests shall not be available for use until the tests are completed, and may simply be 805 

discarded. 806 

4.3 Requirements for Health Tests  807 

Health tests on the noise source are a required component of an entropy source.  The health tests 808 

shall include both continuous and startup tests. 809 

1. The submitter shall provide documentation that specifies all entropy source health tests and 810 

their rationale. The documentation shall include a description of the health tests, the rate and 811 

conditions under which each health test is performed (e.g., at start-up, continuously, or on-812 

demand), and rationale indicating why each test is believed to be appropriate for detecting one 813 

or more failures in the entropy source.  814 

2. The developer shall document any known or suspected noise source failure modes, and shall 815 

include vendor-defined continuous tests to detect those failures. 816 

3. Appropriate health tests tailored to the noise source should place special emphasis on the 817 

detection of misbehavior near the boundary between the nominal operating environment and 818 

abnormal conditions. This requires a thorough understanding of the operation of the noise 819 

source. 820 

4. The submitter shall provide source code for any tests implemented as an alternative or in 821 

addition to those listed in this Recommendation.  822 

5. Health tests shall be performed on the noise source samples before any conditioning is done. 823 
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6. Additional health tests may be performed on the outputs of the conditioning function. Any 824 

such tests shall be fully documented. 825 

7. In the case where a sufficiently persistent failure is detected, the entropy source shall notify 826 

the consuming application (e.g., the RBG) of the error condition. The entropy source may 827 

detect intermittent failures and react to them in other ways, e.g., by inhibiting output for a short 828 

time, before notification of the error. The submitter shall describe the conditions for 829 

intermittent and persistent failures. 830 

8. The expected false positive probability of the health tests signaling a major failure to the 831 

consuming application shall be documented. 832 

9. The continuous tests shall include either: 833 

a. The approved continuous health tests, described in Section 4.4, or 834 

b. Some vendor-defined tests that meet the requirements to substitute for those approved 835 

tests, as described in Section 4.5. If vendor-defined health tests are used in place of any 836 

approved health tests, the tester shall verify that the implemented tests detect the failure 837 

conditions detected by the approved continuous health tests, as described in Section 4.4. 838 

The submitter can avoid the need to use the two approved continuous health tests by 839 

providing convincing evidence that the failure being considered will be reliably detected 840 

by the vendor-defined continuous tests. This evidence may be a proof or the results of 841 

statistical simulations. 842 

10. If any of the approved continuous health tests are used by the entropy source, the false positive 843 

probability for these tests shall be set to at least 2-50. The submitter shall specify and document 844 

a false positive probability suitable for their application.  845 

11. The continuous tests may include additional tests defined by the vendor.   846 

12. The entropy source's startup tests shall run the continuous health tests over at least 4096 847 

consecutive samples. 848 

13. The samples subjected to startup testing may be released for operational use after the startup 849 

tests have been passed. 850 

14. The startup tests may include other tests defined by the vendor. 851 

15. The entropy source shall support on-demand testing. 852 

16. The entropy source may support on-demand testing by restarting the entropy source and 853 

rerunning the startup tests, or by rerunning the startup tests without restarting the entropy 854 

source. The documentation shall specify the approach used for on-demand testing. 855 

17. The entropy source's on-demand testing may include other testing. 856 

4.4 Approved Continuous Health Tests  857 

This recommendation provides two approved health tests: the Repetition Count test, and the 858 

Adaptive Proportion test.  If these two health tests are included among the continuous health tests 859 

of the entropy source, no other tests are required. However, the developer is allowed to include 860 

additional health tests.  861 
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Both tests are designed to require minimal resources, and to be computed on-the-fly, while noise 862 

source samples are being produced, possibly conditioned, and output.  Neither test delays the 863 

availability of the noise source samples.   864 

Like all statistical tests, both of these tests have a false positive probability – the probability that a 865 

correctly functioning noise source will fail the test on a given output.  A reasonable choice for the 866 

false positive probability in many applications is  = 2-40; this value will be used in all the 867 

calculations in the rest of this section.  The submitter of the entropy source must determine a 868 

reasonable false positive probability, given the details of the entropy source and its consuming 869 

application.  In order to ensure that these tests have enough power to detect major failures, the 870 

lowest allowed false positive probability for these approved tests is  = 2-50. 871 

4.4.1 Repetition Count Test 872 

The goal of the repetition count test is to quickly detect catastrophic failures that cause the noise 873 

source to become "stuck" on a single output value for a long period of time. It can be seen as an 874 

update of the "stuck test" which was previously required for random number generators within 875 

FIPS-approved cryptographic modules. 876 

Given the assessed min-entropy H of a noise source, the probability3 of that source generating n 877 

identical samples consecutively is at most 2-H(n-1). The test declares an error if a sample is repeated 878 

more than the cutoff value C, which is determined by the acceptable false-positive probability  879 

and the entropy estimate H. The cutoff value of the repetition count test is calculated as: 880 

C = 






 


H

 log
1 2

.  881 

This value of C is the smallest integer satisfying the inequality  ≥ 2-H (C-1), which ensures that the 882 

probability of obtaining a sequence of identical values from C consecutive noise source samples 883 

is no greater than . For example, for  = 2-40, an entropy source with H = 2.0 bits per sample 884 

would have a repetition count test cutoff value of 1+40/2.0 = 21. 885 

Given a dataset of noise source observations, and the cutoff value C, the repetition count test is 886 

performed as follows: 887 

1. Let A be the current sample value.  888 

2. Initialize the counter B to 1. 889 

3. If the next sample value is A, increment B by one. 890 

 If B is equal to C, return an error. 891 

else: 892 

 Let A be the next sample value.  893 

                                                 

3 This probability can be obtained as follows. Let a random variable take possible values with probabilities pi, for i=1,..,k, where 

p1≥p2≥…≥pk . Then, the probability of producing any C identical consecutive samples is ∑ pi
C. Since, ∑ pi

C is less than or 

equal to p1.p1
C-1+ p1.p2

C-1+…+ p1.pk
C-1= (p1+…+pk) p1

C-1 = p1
C-1 = 2-H(C-1). 
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 Initialize the counter B to 1. 894 

 Repeat Step 3. 895 

Running the repetition count test requires enough memory to store:  896 

A: the most recently observed sample value, 897 

B: the number of consecutive times that the sample A has been observed, and 898 

C: the cutoff value. 899 

This test's cutoff value can be applied to any entropy estimate, H, including very small and very 900 

large estimates. However, it is important to note that this test is not very powerful – it is able to 901 

detect only catastrophic failures of a noise source. For example, a noise source evaluated at eight 902 

bits of min-entropy per sample has a cutoff value of six repetitions to ensure a false-positive rate 903 

of approximately once per one trillion samples generated. If that noise source somehow failed to 904 

the point that each sample had a 1/16 probability of being the same as the previous sample, so that 905 

it was providing only four bits of min-entropy per sample, it would still be expected to take about 906 

sixteen million samples before the repetition count test would notice the problem.   907 

4.4.2 Adaptive Proportion Test 908 

The adaptive proportion test is designed to detect a large loss of entropy that might occur as a 909 

result of some physical failure or environmental change affecting the noise source. The test 910 

continuously measures the local frequency of occurrence of a sample value in a sequence of noise 911 

source samples to determine if the sample occurs too frequently.  Thus, the test is able to detect 912 

when some value begins to occur much more frequently than expected, given the source's assessed 913 

entropy per sample.   914 

The test counts the number of times the current sample value is repeated within a window of size 915 

W. If the sample is repeated more frequently than a cutoff value C, which is determined by the 916 

false positive probability  and the assessed entropy/sample of the source, H, the test declares an 917 

error. The window size W is selected based on the alphabet size, and shall be assigned to 1024 if 918 

the noise source is binary (that is, it produces only two distinct values) and 512 if the noise source 919 

is not binary (that is, it produces more than two distinct values). 920 

Given a sequence of noise source observations, the cutoff value C and the window size W, the test 921 

is performed as follows: 922 

1. Let A be the current sample value. 923 

2. Initialize the counter B to 1. 924 

3. For i = 1 to W–1 925 

If the next sample is equal to A, increment B by 1.  926 

4. If B > C, return error.  927 

5. Go to Step 1.  928 

Running the test requires enough memory to store 929 

A: the sample value currently being counted, 930 

B:  the number of times that A has been seen in the current window,  931 
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W:  the window size, 932 

i: the counter for the number of samples examined in the current window, and 933 

C:  the cutoff value at with the test fails. 934 

The cutoff value C is chosen such that the probability of observing more than C identical samples 935 

in a window size of W is at most . Mathematically, C satisfies the following equation4. 936 

Pr (B > C) =  , 937 

where p = 2-H. The following tables give cutoff values for various min-entropy estimates per 938 

sample and window sizes with  = 2-40. For example, the cutoff value for binary sources with 939 

H=0.4 is 867, and the probability of detecting a loss of 50% of the entropy using 1024 samples is 940 

0.86, and the probability of detecting the same failure is almost 1 during the startup tests that use 941 

at least 4096 samples. Note that the noise source failures whose probability of detection is listed 942 

in the tables are of a very specific form – some value becomes much more common than it should 943 

be, given the source’s entropy estimate, so that the maximum probability pmax is much higher, and 944 

thus h = − log2 (pmax) is much lower than claimed by the noise source’s entropy estimate.  945 

Table 2 Adaptive proportion test on binary data for various entropy/sample levels with W=1024 946 

H 
Cutoff 

value 

Probability of detecting noise source failure 

50% entropy loss 33% entropy loss 

in one 

window 
in startup 

in one 

window 
in startup 

0.2 960 0.25 0.69 0 0 
0.4 867 0.86 ≈1 0.06 0.23 

0.6 779 0.81 ≈1 0.29 0.74 

0.8 697 0.76 ≈1 0.50 0.94 

1 624 0.71 0.99 0.56 0.96 
Table 3 Adaptive proportion test on non-binary data for various entropy/sample levels with W=512 947 

H 
Cutoff 

value 

Probability of detecting noise source failure 

50% entropy loss 33% entropy loss 

in one 

window 
in startup 

in one 

window 
in startup 

0.2 491 0.25 0.69 0 0.0 
0.5 430 0.43 0.99 0 0.02 

1 335 0.70 ≈1 0.7 0.44 

2 200 0.50 ≈1 0.23 0.88 

3 122 0.35 0.97 0.18 0.79 
4 77 0.25 0.90 0.10 0.57 
5 50 0.18 0.79 0.5 0.35 

                                                 

4 This probability can be computed using widely-available spreadsheet applications. In Microsoft Excel, Open Office 

Calc,and iWork Numbers, the calculation is done with the function =CRITBINOM(). For example, in Microsoft Excel, 

C would be computed as =CRITBINOM(W, power(2,(-H)),1-α). 
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6 34 0.12 0.66 0.2 0.16 
7 25 0.9 0.52 0.1 0.04 
8 18 0.6 0.40 0 0.02 

 948 

4.5 Vendor-Defined Alternatives to the Continuous Health Tests 949 

Designer-defined tests are always permitted in addition to the two approved tests listed in Section 950 

4.4. Under some circumstances, the vendor-defined tests may take the place of the two approved 951 

tests. The goal of the two approved continuous health tests in Section 4.4, is to detect two 952 

conditions: 953 

a. Some value is consecutively repeated many more times than expected, given the assessed 954 

entropy per sample of the source. 955 

b. Some value becomes much more common in the sequence of noise source outputs than 956 

expected, given the assessed entropy per sample of the source.  957 

The designer of the entropy source is in an excellent position to design health tests specific to the 958 

source and its known and suspected failure modes.  Therefore, this Recommendation also permits 959 

designer-defined alternative health tests to be used in place of the approved tests in Section 4.4, 960 

so long as the combination of the designer-defined tests and the entropy source itself can guarantee 961 

that these two conditions will not occur without being detected by the source with at least the same 962 

probability.   963 

4.6 Alternative Health Test Criteria 964 

For concreteness, these are the criteria that are required for any alternative continuous health tests: 965 

a. If a single value appears more than 100/H consecutive times in a row in the sequence of 966 

noise source samples, the test shall detect this with probability of at least 99%. 967 

b. Let P = 2-H.  If the noise source's behavior changes so that the probability of observing a 968 

specific sample value increases to at least P* = 2-H/2, then the test shall detect this with a 969 

probability of at least 50% when examining 50,000 consecutive samples from this degraded 970 

source. 971 

The submitter can avoid the need to use the two approved continuous health tests by providing 972 

convincing evidence that the failure being considered will be reliably detected by the vendor-973 

defined continuous tests.  This evidence may be a proof or the results of statistical simulations.  974 

 975 

5 Testing the IID Assumption 976 

The samples from a noise source are considered to be independent and identically distributed (IID) 977 

if each sample has the same probability distribution as every other sample, and all samples are 978 

mutually independent. The IID assumption significantly simplifies the process of entropy 979 

estimation. When the IID assumption does not hold, i.e., the samples are either not identically 980 

distributed or are not independently distributed (or both), estimating entropy is more difficult and 981 

requires different methods.  982 

This section includes statistical tests that are designed to find evidence that the samples are not IID 983 
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and if no evidence is found that the samples are non-IID, then it is assumed that the samples are 984 

IID (see Section 3.1.1). These tests take the sequence S = (s1,…,sL), where si ϵ A = {x1,…,xk}, as 985 

input, and test the hypothesis that the values in S are IID. If the hypothesis is rejected by any of 986 

the tests, the values in S are assumed to be non-IID.  987 

Statistical tests based on permutation testing (also known as shuffling tests) are given in Section 988 

5.1. Five additional chi-square tests are presented in Section 5.2. 989 

5.1 Permutation Testing 990 

Permutation testing is a way to test a statistical hypothesis in which the actual value of the test 991 

statistic is compared to a reference distribution that is inferred from the input data, rather than a 992 

standard statistical distribution. The general approach of permutation testing is summarized in 993 

Figure 4. This is repeated for each of the test statistics described in Sections 5.1.1 – 5.1.11. The 994 

shuffle algorithm of step 2.1 is provided in Figure 5. 995 

Input: S = (s1,…, sL) 

Output: Decision on the IID assumption 

1. For each test i 

1.1. Assign the counters Ci,0 and Ci,1 to zero. 

1.2. Calculate the test statistic Ti on S: denote the result as ti. 

2. For j = 1 to 10,000 

2.1. Permute S using the Fisher-Yates shuffle algorithm.  

2.2. For each test i 

2.2.1. Calculate the test statistic on the permuted data: denote the result as ti.  

2.2.2. If (ti ' > ti), increment Ci,0. If (t'=t), increment Ci,1.  

3. If ((Ci,0+Ci,1≤5) or (Ci,0 ≥ 9995)) for any i, reject the IID assumption; else, assume that 

the noise source outputs are IID. 

Figure 4 Generic Structure of Permutation Testing 996 

If the samples are IID, permuting the dataset is not expected to change the value of the test statistics 997 

significantly. In particular, the original dataset and permuted datasets are expected to be drawn 998 

from the same distribution; therefore, their test statistics should be similar. Unusually high or low 999 

test statistics are expected to occur infrequently. However, if the samples are not IID, then the 1000 

original and permuted test statistics may be significantly different. The counters Ci,0 and C i,1 are 1001 

used to find the ranking of the original test statistics among permuted test statistics (i.e., where a 1002 

statistic for the original dataset fit within an ordered list of the permuted datasets). Extreme values 1003 

for the counters suggest that the data samples are not IID. If the sum of Ci,0 and C i,1 is less than 5, 1004 

it means that the original test statistic has a very high rank; conversely, if Ci,0 is greater than 9995, 1005 

it means that the original test statistics has a very low rank. The cutoff values for C i,0 and C i,1 are 1006 
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calculated using a type I error5 of 0.001.  1007 

The tests described in the following subsections are intended to check the validity of the IID 1008 

assumption. Some of the tests (e.g., the compression test) are effective at detecting repeated 1009 

patterns of particular values (for example, strings of sample values that occur more often than 1010 

would be expected by chance if the samples were IID), whereas some of the other tests (e.g., the 1011 

number of directional runs test and the runs based on the median test) focus on the association 1012 

between the numeric values of the successive samples in order to find an indication of a trend or 1013 

some other relation, such as high sample values that are usually followed by low sample values.  1014 

Input: S = (s1,…, sL) 

Output: Shuffled S = (s1,…, sL) 

1. i = L 

2. While (i  >1) 

a. Generate a random integer j that is uniformly distributed between 0 and i.  

b. Swap sj and si 

c. i = i −1 

Figure 5 Pseudo-code of the Fisher-Yates Shuffle 1015 

For some of the tests, the number of distinct sample values, denoted k (the size of the set A), 1016 

significantly affects the distribution of the test statistics, and thus the type I error. For such tests, 1017 

one of the following conversions is applied to the input data, when the input is binary, i.e., k = 2.  1018 

 Conversion I partitions the sequences into 8-bit non-overlapping blocks, and counts the 1019 

number of ones in each block. For example, let the 20-bit input be 1020 

(1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1). The first and the second 8-bit blocks include four 1021 

and six ones, respectively. The last block, which is not complete, includes two ones. The 1022 

output sequence is (4, 6,  2). 1023 

 Conversion II partitions the sequences into 8-bit non-overlapping blocks, and calculates 1024 

the integer value of each block. For example, let the input message be (1,0,0,0,1,1,1,0, 1025 

1,1,0,1,1,0,1,1,0,0,1,1). The integer values of the first two blocks are 142, and 219. Zeroes 1026 

are appended when the last block has less than 8 bits. Then, the last block becomes 1027 

(0,0,1,1,0,0,0,0) with an integer value of 48. The output sequence is (142, 219, 48).  1028 

Descriptions of the individual tests will provide guidance on when to use each of these conversions. 1029 

5.1.1 Excursion Test Statistic 1030 

The excursion test statistic measures how far the running sum of sample values deviates from its 1031 

average value at each point in the dataset. Given S = (s1,…, sL), the test statistic T is the largest 1032 

                                                 

5 A type I error occurs when the null hypothesis is true, but is rejected by the test.  
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deviation from the average and is calculated as follows: 1033 

1. Calculate the average of the sample values, i.e., �̅� = (s1 + s2 + … + sL) / L 1034 

2. For i = 1 to L 1035 

Calculate di = | ∑ 𝑠𝑗 − 𝑖 ×𝑖
𝑗=1  �̅� |. 1036 

3. T = max (d1,…, dL).  1037 

Example 1: Let the input sequence be S = (2, 15, 4, 10, 9). The average of the sample values is 8, 1038 

and d1 = |2–8| = 6; d2 = |(2+15) – (28)| = 1; d3 = |(2+15+4) – (38)| = 3; d4 = |(2+15+4+10) – 1039 

(48)| = 1; and d5 = |(2+15+4+10+9) – (58)| = 0. Then, T=max(6, 1, 3, 1, 0) = 6. 1040 

Handling Binary data: The test can be applied to binary data, and no additional conversion steps 1041 

are required.  1042 

5.1.2 Number of Directional Runs 1043 

This test statistic determines the number of runs constructed using the relations between 1044 

consecutive samples. Given S = (s1,…, sL), the test statistic T  is calculated as follows: 1045 

1. Construct the sequence 𝑆′ = (𝑠1
′ ,…, 𝑠𝐿−1

′ ), where  1046 

𝑠𝑖
′ =  {

 −1, if 𝑠𝑖 >  𝑠𝑖+1

+1, if 𝑠𝑖 ≤ 𝑠𝑖+1
 1047 

 for i = 1, …, L–1. 1048 

2. The test statistic T is the number of runs in 𝑆′.  1049 

Example 2: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then 𝑆′= (+1, +1, +1, +1, 1050 

+1, +1, 1, 1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (1, 1) and (+1, +1), so T 1051 

= 3.  1052 

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence.  1053 

5.1.3 Length of Directional Runs 1054 

This test statistic determines the length of the longest run constructed using the relations between 1055 

consecutive samples. Given S = (s1,…, sL), the test statistic T is calculated as follows: 1056 

1. Construct the sequence 𝑆′= (𝑠1
′ , … , 𝑠𝐿−1

′ ), where  1057 

𝑠𝑖
′ =  {

 −1, if 𝑠𝑖 >  𝑠𝑖+1

+1, if 𝑠𝑖 ≤ 𝑠𝑖+1
 1058 

for i =1, …, L-1. 1059 

2. The test statistic T is the length of the longest run in 𝑆′.  1060 

Example 3: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S′= (+1, +1, +1, +1, 1061 
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+1, +1, 1, 1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (1, 1) and (+1, +1), so T 1062 

= 6. 1063 

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence.  1064 

5.1.4 Number of Increases and Decreases 1065 

This test statistic determines the maximum number of increases or decreases between consecutive 1066 

sample values. Given S = (s1,…, sL), the test statistic T is calculated as follows: 1067 

1. Construct the sequence 𝑆′ = (𝑠1
′ , … , 𝑠𝐿−1

′ ), where  1068 

𝑠𝑖
′ =  {

 −1, if 𝑠𝑖 >  𝑠𝑖+1

+1, if 𝑠𝑖 ≤ 𝑠𝑖+1
 1069 

for i = 1, …, L-1. 1070 

2. Calculate the number of –1’s and +1’s in 𝑆′; the test statistic T is the maximum of these 1071 

numbers, i.e., T = max (number of -1’s, number of +1’s).  1072 

Example 4: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S′= (+1, +1, +1, +1, 1073 

+1, +1, 1, 1, +1, +1). There are eight +1’s and two 1’s in S′, so T = max (number of +1s, 1074 

number of 1s) = max (8, 2) = 8. 1075 

Handling Binary data: To test binary input data, first apply the Conversion I to the input sequence.  1076 

5.1.5 Number of Runs Based on the Median 1077 

This test statistic determines the number of runs that are constructed with respect to the median of 1078 

the input data. Given S = (s1, …, sL), the test statistic T is calculated as follows:  1079 

1. Find the median �̃� of S = (s1, …, sL).   1080 

2. Construct the sequence 𝑆′ = (𝑠1
′ , … , 𝑠𝐿

′ ) where  1081 

𝑠𝑖
′ =  {

 −1, if 𝑠𝑖 <  �̃� 

+1, if  𝑠𝑖 ≥  �̃�
 1082 

for i =1, …, L. 1083 

3. The test statistic T is the number of runs in 𝑆′.  1084 

Example 5: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median of the input sequence 1085 

is 9. Then, 𝑆′ = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1). 1086 

There are five runs, hence T = 5. 1087 

Handling Binary data: When the input data is binary, the median of the input data is assumed to 1088 

be 0.5. No additional conversion steps are required. 1089 
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5.1.6 Length of Runs Based on Median 1090 

This test statistic determines the length of the longest run that is constructed with respect to the 1091 

median of the input data and is calculated as follows: 1092 

1. Find the median �̃� of S = (s1, …, sL).   1093 

2. Construct a temporary sequence 𝑆′ = (𝑠1
′ , … , 𝑠𝐿

′ ) from the input sequence S = (s1,…, sL), as  1094 

𝑠𝑖
′ =  {

 −1, if 𝑠𝑖 <  �̃� 

+1, if  𝑠𝑖 ≥  �̃�
 1095 

for i = 1, …, L. 1096 

3. The test statistic T is the length of the longest run 𝑆′.  1097 

Example 6: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median for this data subset 1098 

is 9. Then, S ' = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1). 1099 

The longest run has a length of 2; hence, T =2. 1100 

Handling Binary data: When the input data is binary, the median of the input data is assumed to 1101 

be 0.5. No additional conversion steps are required. 1102 

5.1.7 Average Collision Test Statistic  1103 

The average collision test statistic counts the number of successive sample values until a duplicate 1104 

is found. The average collision test statistic is calculated as follows: 1105 

1. Let C be a list of the number of the samples observed to find two occurrences of the same 1106 

value in the input sequence S = (s1,…, sL). C is initially empty.  1107 

2. Let i = 1. 1108 

3. While i < L 1109 

a. Find the smallest j such that (si,…, si+j-1) contains two identical values. If no such j 1110 

exists, break out of the while loop. 1111 

b. Add j to the list C. 1112 

c. i = i + j + 1 1113 

4. The test statistic T is the average of all values in the list C.  1114 

Example 7: Let the input sequence be S = (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). The first collision occurs for 1115 

j = 3, since the second and third values are the same. 3 is added to the list C. Then, the first three 1116 

samples are discarded, and the next sequence to be examined is (2, 0, 1, 0, 1, 1, 2). The collision 1117 

occurs for j = 4. The third sequence to be examined is (1,1,2), and the collision occurs for j = 2. 1118 

There are no collisions in the final sequence (2). Hence, C = [3,4,2]. The average of the values in 1119 

C is T = 3.  1120 

Handling Binary data: To test binary input data, first apply Conversion II to the input sequence.  1121 
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5.1.8 Maximum Collision Test Statistic  1122 

The maximum collision test statistic counts the number of successive sample values until a 1123 

duplicate is found. The maximum collision test statistic is calculated as follows: 1124 

1. Let C be a list of the number of samples observed to find two occurrences of the same value 1125 

in the input sequence S = (s1,…, sL). C is initially empty.  1126 

2. Let i = 1. 1127 

3. While i < L 1128 

a. Find the smallest j such that (si,…, si+j-1) contains two identical values. If no such j 1129 
exists, break out of the while loop. 1130 

b. Add j to the list C. 1131 

c. i=i+j+1 1132 

4. The test statistic T is the maximum value in the list C.  1133 

Example 8: Let the input data be (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). C = [3,4,2] is computed as in Example 1134 

7.  T = max(3,4,2) = 4.  1135 

Handling Binary data: To test binary input data, first apply Conversion II to the input sequence.  1136 

5.1.9 Periodicity Test Statistic  1137 

The periodicity test aims to determine the number of periodic structures in the data. The test takes 1138 

a lag parameter p as input, where p < L, and the test statistic T is calculated as follows: 1139 

1. Initialize T to zero.  1140 

2. For i = 1 to L − p 1141 

If (si = si+p), increment T by one. 1142 

Example 9: Let the input data be (2, 1, 2, 1, 0, 1, 0, 1, 1, 2), and let p = 2. Since si = si+p for five 1143 

values of i (1, 2, 4, 5 and 6), T = 5. 1144 

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence.  1145 

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.  1146 

5.1.10  Covariance Test Statistic 1147 

The covariance test measures the strength of the lagged correlation. The test takes a lag value p < 1148 

L as input. The test statistic is calculated as follows: 1149 

1. Initialize T to zero.  1150 

2. For i = 1 to L – p 1151 

T=T+(s i×s i+p) 1152 
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Example 10: Let the input data be (5, 2, 6, 10, 12, 3, 1), and let p be 2. T is calculated as (5×6) + 1153 

(2×10) + (6×12) + (10×3) + (12×1) = 164. 1154 

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence.  1155 

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.  1156 

5.1.11  Compression Test Statistics  1157 

General-purpose compression algorithms are well adapted for removing redundancy in a character 1158 

string, particularly involving commonly recurring subsequences of characters. The compression 1159 

test statistic for the input data is the length of that data subset after the samples are encoded into a 1160 

character string and processed by a general-purpose compression algorithm. The compression test 1161 

statistic is computed as follows: 1162 

1. Encode the input data as a character string containing a list of values separated by a single 1163 

space, e.g., “S = (144, 21, 139, 0, 0, 15)” becomes “144 21 139 0 0 15”. 1164 

2. Compress the character string with the bzip2 compression algorithm provided in [BZ2].  1165 

3. T is the length of the compressed string, in bytes. 1166 

Handling Binary data: The test can be applied directly to binary data, with no conversion required. 1167 

5.2 Additional Chi-square Statistical Tests 1168 

This section includes additional chi-square statistical procedures to test independence and 1169 

goodness-of-fit. The independence tests attempt to discover dependencies in the probabilities 1170 

between successive samples in the (entire) sequence submitted for testing (see Section 5.2.1 for 1171 

non-binary data and Section 5.2.3 for binary data); the goodness-of-fit tests attempt to discover a 1172 

failure to follow the same distribution in ten data subsets produced from the (entire) input sequence 1173 

submitted for testing (see Section 5.2.2 for non-binary data and Section 5.2.4 for binary data). The 1174 

length of the longest repeated substring test is provided in Section 5.2.5. 1175 

5.2.1 Testing Independence for Non-Binary Data 1176 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, the following steps are initially performed 1177 

to determine the number of bins q needed for the chi-square tests.  1178 

1. Find the proportion 𝑝𝑖 of each xi in S, i.e., 𝑝𝑖 =  
number of 𝑥𝑖 in 𝑆  

𝐿
. Calculate the expected number 1179 

of occurrences of each possible pair (𝑧𝑖, 𝑧𝑗) in S, as 𝑒𝑖,𝑗= 𝑝𝑖𝑝𝑗(𝐿 − 1).  1180 

2. Allocate the possible (𝑧𝑖, 𝑧𝑗) pairs, starting from the smallest 𝑒𝑖,𝑗, into bins such that the 1181 

expected value of each bin is at least 5. The expected value of a bin is equal to the sum of the 1182 

𝑒𝑖,𝑗 values of the pairs that are included in the bin. After allocating all pairs, if the expected 1183 

value of the last bin is less than 5, merge the last two bins. Let q be the number of bins 1184 

constructed after this procedure.  1185 

After constructing the bins, the Chi-square test is executed as follows: 1186 
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1. For each pair (sj,  sj+1), 1 ≤ j ≤ L-1, count the number of observed values for each bin, denoted 1187 

as oi, (1 ≤ i ≤ q).   1188 

2. The test statistic is calculated as T = ∑
 (𝑜𝑖 − 𝐸(𝐵𝑖𝑛𝑖 ) )2

𝐸(𝐵𝑖𝑛𝑖 )

𝑞
𝑖=1 . The test fails if T is greater than the 1189 

critical value of the Chi-square test statistic with q-1 degrees of freedom when the type I error 1190 

is chosen as 0.001.  1191 

Example 11: Let S be (2, 2, 3, 1, 3, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 1192 

2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 2, 2, 2, 1, 3, 3, 3, 2, 3, 1193 

2, 1, 2, 2, 3, 3, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1). The sample space 1194 

consists of k=3 values {1, 2, 3}; and p1, p2, and p3 are 0.21, 0.41 and 0.38, respectively. With 1195 

L=100, the sorted expected values are calculated as:  1196 

(zi, zj) (1,1) (1,3) (3,1) (1,2) (2,1) (3,3) (2,3) (3,2) (2,2) 

𝑒𝑖,𝑗 4.41 7.98 7.98 8.61 8.61 14.44 15.58 15.58 16.81 

The pairs can be allocated into q = 8 bins.  1197 

Bin Pairs 𝐸(𝐵𝑖𝑛𝑖 )  

1 (1,1), (1,3) 12.39 

2 (3,1) 7.98 

3 (1,2) 8.61 

4 (2,1) 8.61 

5 (3,3) 14.44 

6 (2,3) 15.58 

7 (3,2) 15.58 

8 (2,2) 16.81 

 1198 

The frequencies for the bins are calculated as 13, 9, 8, 8, 10, 19, 18 and 14 respectively, and the 1199 

test statistics is calculated as 3.2084. The hypothesis is not rejected, since the test statistics is less 1200 

than the critical value 24.322. 1201 

 1202 

5.2.2 Testing Goodness-of-fit for non-binary data 1203 

The test checks whether the distribution of samples are identical for different parts of the input. 1204 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, perform the following steps to calculate 1205 

the number of bins q for the test.  1206 
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1. Let 𝑐𝑖 be the number of occurrences of xi in S, and let 𝑒𝑖 = 𝑐𝑖/10, for 1 ≤  i ≤ k. Note that ci is 1207 

divided by ten because S will be partitioned into ten data subsets. 1208 

2. Let List[i] be the sample value with the ith smallest 𝑒𝑖 (e.g., List[1] has the smallest value for 1209 

𝑒𝑖;  𝐿𝑖𝑠𝑡[2] has the next smallest value, etc.) 1210 

3. Starting from List[1], allocate the sample values into bins. Assign consecutive List[i] values to 1211 

a bin until the sum of the 𝑒𝑖 for those binned items is at least five, then begin assigning the 1212 

following List[i] values to the next bin. If the expected value of the last bin is less than five, 1213 

merge the last two bins. Let q be the number of bins constructed after this procedure. 1214 

4. Let Ei be the expected number of sample values in Bin i; Ei is the sum of the ei for the listed 1215 

items in that bin. For example, if Bin 1 contains (x1, x10 and x50), then E1 = e1 + e10 + e50. 1216 

Example 12: Let the number of distinct sample values k be 4; and let c1=43, c2=55, c3=52 and 1217 

c4=10. After partitioning the input sequence into 10 parts, the expected value of each sample 1218 

becomes e1=4.3, e2=5.5, e3=5.2 and e4=1. The sample list starting with the smallest expected value 1219 

is formed as List = [4, 1, 3, 2]. The first bin contains sample 4 and 1, and the expected value of 1220 

Bin 1 becomes 5.3 (= e4+e1). The second bin contains sample 2, and the last bin contains sample 1221 

3. Since the expected value of the last bin is greater than five, no additional merging is necessary. 1222 

The chi-square goodness-of-fit test is executed as follows: 1223 

1. Partition S into ten non-overlapping sequences of length ⌊
𝐿

10
⌋, where 𝑆𝑑 =1224 

 (𝑠𝑑⌊𝐿/10⌋+1, … , 𝑠(𝑑+1)⌊𝐿/10⌋)  for d = 0,…, 9. If L is not a multiple of 10, the remaining bits are 1225 

not used.  1226 

2. T = 0. 1227 

3. For d = 0 to 9 1228 

3.1. For i = 1 to q  1229 

3.1.1. Let oi  be the number of sample values from Bin i in the data subset 𝑆𝑑.  1230 

3.1.2. T = T  + 
 (𝑜𝑖− 𝐸𝑖  )2

𝐸𝑖  
 1231 

The test fails if the test statistic T is greater than the critical value of chi-square with 9(q-1) degrees 1232 

of freedom when the type I error is chosen as 0.001.  1233 

5.2.3 Testing Independence for Binary Data 1234 

This test checks the independence assumption for binary data. A chi-square test for independence 1235 

between adjacent bits could be used, but its power is limited, due to the small output space (i.e., 1236 

the use of binary inputs). A more powerful check can be achieved by comparing the frequencies 1237 

of m-bit tuples to their expected values that are calculated by multiplying the probabilities of each 1238 

successive bit, i.e., assuming that the samples are independent. If nearby bits are not independent, 1239 

then the expected probabilities of m-bit tuples derived from their bit probabilities will be biased 1240 

for the whole dataset, and a chi-square test statistic will be much larger than expected. 1241 

Given the input binary data S = (s1, …, sL), the length of the tuples, m, is determined as follows: 1242 
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1. Let p0 and p1 be the proportion of zeroes and ones in S, respectively, i.e., 𝑝0 =1243 

 
number of zeroes in 𝑆  

𝐿
, and 𝑝1 =  

number of ones in 𝑆  

𝐿
. 1244 

2. Find the maximum integer m such that (p0)
m > 5/L and (p1)

m > 5/L. If m is greater than 11, 1245 

assign m to 11. If m is 1, the test fails. For example, for p0 = 0.14, p1 = 0.86, and L = 1000, 1246 

the value of m is selected as 3.  1247 

The test is applied if m ≥ 2. 1248 

1. Initialize T to 0. 1249 

2. For each possible m-bit tuple (a1,a2,…, am) 1250 

a. Let o be the number of times that the pattern (a1, a2,…, am) occurs in the input 1251 

sequence S. Note that the tuples are allowed to overlap. For example, the number 1252 

of times that (1,1,1) occurs in (1,1,1,1) is 2.   1253 

b. Let w be the number of ones in (a1, a2,…, am). 1254 

c. Let e =  𝑝1
𝑤(𝑝0)𝑚−𝑤(𝐿 − 𝑚 + 1). 1255 

d. T = T + 
(𝑜−𝑒)2

𝑒
 .  1256 

The test fails if the test statistic T is greater than the critical value of chi-square with 2m-1 degrees 1257 

of freedom, when the type I error is chosen as 0.001.  1258 

5.2.4 Testing Goodness-of-fit for Binary Data 1259 

This test checks the distribution of the number of ones in non-overlapping intervals of the input 1260 

data to determine whether the distribution of the ones remains the same throughout the sequence. 1261 

Given the input binary data S = (s1, …, sL), the test description is as follows: 1262 

1. Let p be the proportion of ones in S, i.e., p = (the number of ones in S)/ L. 1263 

2. Partition S into ten non-overlapping sub-sequences of length ⌊
𝐿

10
⌋, where 𝑆𝑑= 1264 

(𝑠𝑑⌊𝐿/10⌋+1, … , 𝑠(𝑑+1)⌊𝐿/10⌋) for d = 0,…, 9. If L is not a multiple of 10, the remaining bits 1265 

are discarded. 1266 

3. Initialize T to 0.  1267 

4. Let the expected number of ones in each sub-sequence Sd be  𝑒 = 𝑝 ⌊
𝐿

10
⌋. 1268 

5. For d = 0 to 9  1269 

a. Let 𝑜 be the number of ones in 𝑆𝑑. 1270 

b. T = T + 
(𝑜−𝑒 )2

𝑒
. 1271 

T is a chi-square random variable with 9 degrees of freedom. The test fails if S is larger than the 1272 

critical value at 0.001, which is 27.88.  1273 
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5.2.5 Length of the Longest Repeated Substring Test 1274 

This test checks the IID assumption using the length of the longest repeated substring. If this length 1275 

is significantly longer than the expected value, then the test invalidates the IID assumption. The 1276 

test can be applied to binary and non-binary inputs. 1277 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},  1278 

1. Find the proportion 𝑝𝑖 of each possible input value xi in S, i.e., 𝑝𝑖 =  
number of 𝑥𝑖 in 𝑆  

𝐿
.  1279 

2. Calculate the collision probability as pcol =  ∑ 𝑝𝑖
2𝑘

𝑖=1 .  1280 

3. Find the length of the longest repeated substring W, i.e., find the largest W such that, for at 1281 

least one i ≠ j, si = sj, si+1 = sj+1,... ,si+W-1 = sj+W-1. 1282 

4. The number of overlapping subsequences of length W in S is L–W+1, and the number of pairs 1283 

of overlapping subsequences is (
𝐿 − 𝑊 + 1

2
).  1284 

5. Let E be a binomially distributed random variable with parameters N=(
𝐿 − 𝑊 + 1

2
) and a 1285 

probability of success pcol. Calculate the probability that E is greater than or equal to 1, i.e., 1286 

Pr (E ≥ 1) = 1− Pr (E = 0) = 1− (1− pcol)
N. 1287 

The test fails if Pr (E ≥ 1) is less than 0.001. 1288 

6 Estimating Min-Entropy 1289 

One of the essential requirements of an entropy source is the ability to reliably create random 1290 

outputs. To ensure that sufficient entropy is input to an RBG construction in SP 800-90C, the 1291 

amount of entropy produced per noise source sample must be determined. This section describes 1292 

generic estimation methods that will be used to test the noise source and also the conditioning 1293 

component, when non-vetted conditioning components are used. 1294 

Each estimator takes a sequence S = (s1, …, sL) as its input, where each si comes from an output 1295 

space A = {x1,…, xk} that is specified by the submitter. The estimators presented in this 1296 

Recommendation follow a variety of strategies, which cover a range of assumptions about the data. 1297 

For further information about the theory and origins of these estimators, see Appendix H. The 1298 

estimators that are to be applied to a sequence depend on whether the data has been determined to 1299 

be IID or non-IID. For IID data, the min-entropy estimation is determined as specified in Section 1300 

6.1, whereas for non-IID data, the procedures in Section 6.2 are used. 1301 

The estimators presented in this section work well when the entropy-per-sample is greater than 1302 

0.1. For alphabet sizes greater than 256, some of the estimators are not very efficient. Therefore, 1303 

for efficiency purposes, the method described in Section 6.4 can used to reduce the sample space 1304 

of the outputs. 1305 

6.1 IID Track: Entropy Estimation for IID Data 1306 

For sources with IID outputs, the min-entropy estimation is determined using the most common 1307 
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value estimate described in Section 6.3.1. It is important to note that the estimate provides an 1308 

overestimation when the samples from the source are not IID.  1309 

6.2 Non-IID Track: Entropy Estimation for Non-IID Data 1310 

Many viable noise sources fail to produce IID outputs. Moreover, some sources may have 1311 

dependencies that are beyond the ability of the tester to address. To derive any utility out of such 1312 

sources, a diverse and conservative set of entropy tests are required. Testing sequences with 1313 

dependent values may result in overestimates of entropy. However, a large, diverse battery of 1314 

estimates minimizes the probability that such a source’s entropy is greatly overestimated.  1315 

For non-IID data, the following estimators are calculated on the outputs of the noise source, outputs 1316 

of any conditioning component that is not listed in Section 3.1.5.1.1 and outputs of any vetted 1317 

conditioning function that hasn’t been validated as correctly implemented, and the minimum of all 1318 

the estimates is taken as the entropy assessment of the entropy source for this Recommendation: 1319 

 The Most Common Value Estimate (Section 6.3.1), 1320 

 The Collision Estimate (Section 6.3.2), 1321 

 The Markov Estimate (Section 6.3.3), 1322 

 The Compression Estimate (Section 6.3.4), 1323 

 The t-Tuple Estimate (Section 6.3.5), 1324 

 The Longest Repeated Substring (LRS) Estimate (Section 6.3.6), 1325 

 The Multi Most Common in Window Prediction Estimate (Section 6.3.7), 1326 

 The Lag Prediction Estimate (Section 6.3.8), 1327 

 The MultiMMC Prediction Estimate (Section 6.3.9), and 1328 

 The LZ78Y Prediction Estimate (Section 6.3.10). 1329 

6.3 Estimators 1330 

6.3.1 The Most Common Value Estimate  1331 

This method first finds the proportion �̂� of the most common value in the input dataset, and then 1332 

constructs a confidence interval for this proportion. The upper bound of the confidence interval is 1333 

used to estimate the min-entropy per sample of the source.  1334 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1335 

1. Find the proportion of the most common value �̂� in the dataset, i.e.,  1336 

�̂�=max
𝑖

#{𝑥𝑖 in 𝑆}

𝐿
. 1337 

2. Calculate an upper bound on the probability of the most common value 𝑝𝑢 as  1338 
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𝑝𝑢 =  min (1, �̂� + 2.576√
�̂� (1 − �̂�)

𝐿
). 1339 

3. The estimated min-entropy is –log2(𝑝𝑢).  1340 

Example: If the dataset is S = (0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 1), with L = 20, the 1341 

most common value is 1, with �̂� = 0.4. 𝑝𝑢 = 0.4 + 2.576√0.012 = 0.6822. The min-entropy 1342 

estimate is −log2 (0.6822) = 0.5518. 1343 

6.3.2 The Collision Estimate 1344 

The collision estimate, proposed by Hagerty and Draper [HD12], measures the mean number of 1345 

samples to the first collision in a dataset, where a collision is any repeated value. The goal of the 1346 

method is to estimate the probability of the most-likely output value, based on the collision times. 1347 

The method will produce a low entropy estimate for noise sources that have considerable bias 1348 

toward a particular output or value (i.e., the mean time until a collision is relatively short), while 1349 

producing a higher entropy estimate for a longer mean time to collision.  1350 

Given the input S = (s1,…, sL), where si ϵ A = {x1, …, xk}, 1351 

1. Set v = 1, index =1. 1352 

2. Beginning with sindex, step through the input until any observed value is repeated; i.e., find 1353 

the smallest j such that si = sj, for some i with index ≤ 𝑖 < 𝑗. 1354 

3. Set tv = j – index + 1, v = v + 1, and index = j + 1.  1355 

4. Repeat steps 2-3 until the end of the dataset is reached. 1356 

5. Set v = v – 1. 1357 

6. If v < 1000, map down the noise source outputs (see Section 6.4), based on the ranking 1358 

provided, and retest the data.  1359 

7. Calculate the sample mean �̅�, and the sample standard deviation �̂�, of ti as  1360 

�̅� =
1

𝑣
∑ 𝑡𝑖

𝑣
𝑖=1 ,    �̂� = √1

𝑣
∑ (𝑡𝑖− �̅�)2𝑣

𝑖=1 . 1361 

8. Compute the lower-bound of the confidence interval for the mean, based on a normal 1362 

distribution with a confidence level of 99%, 1363 

𝑋′̅ = �̅� − 2.576
�̂�

√𝑣
. 1364 

9. Let k be the number of possible values in the output space. Using a binary search, solve 1365 

for the parameter p, such that  1366 

𝑋′̅ = 𝑝𝑞−2 (1 +
1

𝑘
(𝑝−1 − 𝑞−1)) 𝐹(𝑞) − 𝑝𝑞−1

1

𝑘
(𝑝−1 − 𝑞−1).  1367 
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 where  1368 

𝑞 =
1 − 𝑝

𝑘 − 1
, 1369 

 𝑝 ≥ 𝑞, 1370 

𝐹(1 𝑧⁄ ) = Γ(𝑘 + 1, 𝑧)𝑧−𝑘−1𝑒𝑧, 1371 

and Γ(a,b) is the incomplete Gamma function6.   1372 

10. If the binary search yields a solution, then the min-entropy estimation is the negative 1373 

logarithm of the parameter, p: 1374 

min-entropy = –log2( p). 1375 

If the search does not yield a solution, then the min-entropy estimation is: 1376 

min-entropy = log2(k). 1377 

Example: Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0). After step 5, v=6, 1378 

and the sequence (t1, … tv) is (2, 3, 4, 4, 4, 3). For purposes of illustration, step 6 is skipped in this 1379 

example. Then �̅� = 3.3333, �̂� = 0.7454, and �̅�′ =  2.5495. The solution to the equation is p = 1380 

0.7063, giving an estimated min-entropy of 0.5016. 1381 

6.3.3 The Markov Estimate 1382 

In a first-order Markov process, the next sample value depends only on the latest observed sample 1383 

value; in an nth-order Markov process, the next sample value depends only on the previous n 1384 

observed values. Therefore, a Markov model can be used as a template for testing sources with 1385 

dependencies. The Markov estimate provides a min-entropy estimate by measuring the 1386 

dependencies between consecutive values from the input dataset. The min-entropy estimate is 1387 

based on the entropy present in any subsequence (i.e., chain) of outputs, instead of an estimate of 1388 

the min-entropy per output.  1389 

The key component in estimating the entropy of a Markov process is the ability to accurately 1390 

estimate the transition matrix probabilities of the Markov process. The main difficulty in making 1391 

these estimates is the large data requirement necessary to resolve the dependencies. In particular, 1392 

low-probability transitions may not occur often in a “small” dataset; the more data provided, the 1393 

easier it becomes to make accurate estimates of transition probabilities. This method, however, 1394 

avoids large data requirements by overestimating the low-probability transitions; as a 1395 

consequence, an underestimate of min-entropy is obtained with less data. 1396 

                                                 

6 The equation presented here uses the incomplete gamma function, which has known efficient computation methods and can be 

found in many software libraries. An efficient approximation for the incomplete Gamma function is provided in Appendix H. For 

additional representations of the 𝑋′̅ calculation in step 9, see [HD12]. 
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The data requirement for this estimation method depends on the number of output samples k (i.e., 1397 

the alphabet size); the largest k accommodated by this test is 26. An alphabet size greater than 26 1398 

cannot be accommodated, since an unreasonable amount of data would be required to accurately 1399 

estimate the matrix of transition probabilities − far more than is specified in Section 3.1.17. For 1400 

16-bit samples, for instance, a transition matrix of size 216  216, containing 232 sample entries, 1401 

would have to be approximated, and the data requirement for this would be impractical.  1402 

As an alternative for datasets with a number of samples greater than 64, the method in Section 6.4 1403 

for mapping noise source outputs (based on a ranking of the bits in the output) shall be 1404 

implemented. This will reduce the data requirement to a more feasible quantity.  1405 

Samples are collected from the noise source, and specified as d-long chains of samples. From this 1406 

data, probabilities are determined for both the initial state and transitions between any two states. 1407 

Any values for which these probabilities cannot be determined empirically are overestimated to 1408 

guarantee that the eventual min-entropy estimate is a lower bound. These probabilities are used to 1409 

determine the highest probability of any particular d-long chain of samples. The corresponding 1410 

maximum probability is used to determine the min-entropy present in all such chains generated by 1411 

the noise source. This min-entropy value is particular to d-long chains and cannot be extrapolated 1412 

linearly; i.e., chains of length wd will not necessarily have w times as much min-entropy present 1413 

as a d-long chain. It may not be possible to know what a typical output length will be at the time 1414 

of testing. Therefore, although not mathematically correct, in practice, calculating an entropy 1415 

estimate per sample (extrapolated from that of the d-long chain) provides estimates that are close.  1416 

The following algorithm uses output values as list indices. If the output set does not consist of 1417 

consecutive values, then the values are adjusted before this algorithm is applied. This can be done 1418 

without altering entropy estimates, as the data is categorical. For example, if the output set is {0, 1419 

1, 4}, and the observed sequence is (0, 0, 4, 1, 0, 4, 0, 1), 0 can stay the same, 1, can stay the same, 1420 

but 4 must be changed to 2. The new set is {0, 1, 2}, and the new sequence is (0, 0, 2, 1, 0, 2, 0, 1421 

1). 1422 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1423 

1. Define the confidence level to be 𝛼 = 𝑚𝑖𝑛(0.99𝑘2
, 0.99𝑑), where d = 128 is the assumed 1424 

length of the chain.  1425 

2. Estimate the initial probabilities for each output value. Let P be a list of length k. For i from 1426 

1 to k: 1427 

𝑃𝑖 = min {1,
𝑜𝑖

𝐿
+ 𝜀}, 1428 

where oi denotes the number of times that value xi has occurred in S, and  is defined by: 1429 

                                                 

7 This statement assumes that the output space is defined such that it contains all 26 (or more) possible outputs; if, however, 

the output space is defined to have 26 or less elements, regardless of the sample size, the test can accurately estimate the 

transition probabilities with the amount of data specified in Section 3.1.1. 
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𝜀 = √
log2 (

1

1−𝛼
)

2𝐿
. 1430 

3. Let 𝑜𝑠𝐿
=  𝑜𝑠𝐿

− 1. This step removes one from the count of the last symbol of the 1431 

sequence, which is necessary to compute sample proportions in the next step.  1432 

 1433 

4. Let T be a 𝑘 × 𝑘 matrix. Estimate the probabilities in the bounding matrix T, 1434 

overestimating where  1435 

𝑇𝑖,𝑗 = {

1 if 𝑜𝑖 = 0

min {1,
𝑜𝑖,𝑗

𝑜𝑖
+ 𝜀𝑖} otherwise,

 1436 

and oi,j is the number of transitions from state xi to state xj observed in the sample, and i is 1437 

defined to be 1438 

𝜀𝑖 = √
log2 (

1

1−𝛼
)

2𝑜𝑖
. 1439 

5. Using the bounding matrix T, find the probability of the most likely sequence of outputs, 1440 

�̂�max, using a dynamic programming algorithm as follows:  1441 

a. For j from 1 to d – 1: 1442 

i. Let h be a list of length k. 1443 

ii. Find the highest probability for a sequence of length j+1 ending in each 1444 

sample value. For c from 1 to k: 1445 

1. Let 𝑃′ be a list of length k. 1446 

2. For i from 1 to k: 1447 

a. 𝑃𝑖
′ = 𝑃𝑖  ×  𝑇𝑖,𝑐 1448 

3. ℎ𝑐 =  max
𝑖=1..𝑘

(𝑃𝑖
′) 1449 

iii. Store the highest probability for a sequence of length j+1 ending in each 1450 

value in P. For all i ϵ{1,..., k}, set 𝑃𝑖 =  ℎ𝑖. 1451 

b. �̂�𝑚𝑎𝑥 = max
𝑖=1..𝑘

(𝑃𝑖) 1452 

6. The min-entropy estimate is the negative logarithm of the probability of the most likely 1453 

sequence of outputs, �̂�max: 1454 

min-entropy = –1/d log2(�̂�max). 1455 

Example: Suppose that k = 3, L = 21 and S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1456 

0). In step 1, 𝛼 = min(0.999, 0.99𝑑) =  0.2762. After step 2, 𝜀 =  0.0877, P1  = 0.4687 P2  = 1457 

0.4211, and P3  = 0.3734. After step 4, the bounding matrix T has values: 1458 

  1459 
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 0 1 2 

0 0.4376 0.7233 0.2948 

1 0.5805 0.2948 0.5805 

2 0.6641 0.4974 0.3308 

 1460 

After step 5a, the loop iteration for j=1 completes, P1  = 0.2480 P2  = 0.3390, and P3  = 0.2444. 1461 

This represents the most probable sequence of length two ending in x1=0, x2=1, and x3=2, 1462 

respectively. After step 6, the highest probability of any chain of length 128 generated by this 1463 

bounding matrix is 1.7372  10-24, yielding an estimated min-entropy of 0.6166.  1464 

6.3.4 The Compression Estimate 1465 

The compression estimate, proposed by Hagerty and Draper [HD12], computes the entropy rate of 1466 

a dataset, based on how much the dataset can be compressed. This estimator is based on the Maurer 1467 

Universal Statistic [Mau92]. The estimate is computed by generating a dictionary of values, and 1468 

then computing the average number of samples required to produce an output, based on the 1469 

dictionary. One advantage of using the Maurer statistic is that there is no assumption of 1470 

independence. When output with dependencies is tested with this statistic, the compression rate is 1471 

affected (and therefore the entropy), but an entropy estimate is still obtained. A calculation of the 1472 

Maurer statistic is efficient, as it requires only one pass through the dataset to provide an entropy 1473 

estimate.  1474 

Given a dataset from the noise source, the samples are first partitioned into two disjoint groups. 1475 

The first group serves as the dictionary for the compression algorithm; the second group is used 1476 

as the test group. The compression values are calculated over the test group to determine the mean, 1477 

which is the Maurer statistic. Using the same method as the collision estimate, the probability 1478 

distribution that has the minimum possible entropy for the calculated Maurer statistic is 1479 

determined. For this distribution, the entropy per sample is calculated as the lower bound on the 1480 

entropy that is present.  1481 

The following algorithm uses output values as list indices. If the output set does not consist of 1482 

consecutive values, then the values must be adjusted before this algorithm is applied. This can be 1483 

done without altering entropy estimates, as the data is categorical. For example, if the output set is 1484 

{0, 1, 4}, and the observed sequence is (0, 0, 4, 1, 0, 4, 0, 1), 0 can stay the same, 1 can stay the 1485 

same, but 4 must be changed to 2. The new set is {0, 1, 2}, and the new sequence is (0, 0, 2, 1, 0, 1486 

2, 0, 1). 1487 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1488 

1. Partition the dataset into two disjoint groups. These two groups will form the dictionary 1489 

and the test data. 1490 

a. Create the dictionary from the first d = 1000 observations, (s1, s2, …, sd).  1491 

b. Use the remaining 𝑣 = 𝐿 − 𝑑 observations, (sd+1, …, sL), for testing. 1492 
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2. Initialize the dictionary dict to an all zero array of size k. For i from 1 to d, let dict[si] = i. 1493 

dict[si] is the index of last occurrence of each si in the dictionary. 1494 

3. Run the test data against the dictionary created in Step 2. 1495 

a. Let Di be a list of length v.  1496 

b. For i from 𝑑 + 1 to L:  1497 

i. If dict[si] is non-zero, then Di-d = i – dict[si]. Update the dictionary with the 1498 

index of the most recent observation, dict[si] = i. 1499 

ii. If dict[si] is zero, add that value to the dictionary, i.e., dict[si]=i. Let Di-d = 1500 

i.  1501 

4. Let 𝑏 =  ⌊log2(max (𝑥1, … , 𝑥𝑘))⌋ + 1, the number of bits needed to represent the largest 1502 

symbol in the output alphabet. Calculate the sample mean, �̅�, and sample standard 1503 

deviation8, �̂�, of (log2(D1),…, log2(Dv)).  1504 

   1505 

�̅� =
∑ log2𝐷𝑖

𝑣
𝑖=1

𝑣
 , 1506 

𝑐 =  0.7 −  
0.8

𝑏
+

(4 +  
32

𝑏
) 𝑣−3 𝑏⁄

15
 1507 

and 1508 

�̂� = 𝑐√
∑ (log2𝐷𝑖)2𝑣

𝑖=1

𝑣
−  �̅�2 . 1509 

5. Compute the lower-bound of the confidence interval for the mean, based on a normal 1510 

distribution using 1511 

𝑋′̅ = �̅� −
2.576�̂�

√𝑣
. 1512 

6. Using a binary search, solve for the parameter p, such that the following equation is true:  1513 

𝑋′̅ = 𝐺(𝑝) + (𝑛 − 1)𝐺(𝑞), 1514 

 where  1515 

𝐺(𝑧) =
1

𝑣
∑ ∑ log2(𝑢)𝐹(𝑧, 𝑡, 𝑢)𝑡

𝑢=1
𝐿
𝑡=𝑑+1 , 1516 

                                                 

8 Note that a correction factor is applied to the standard deviation, as described in [Maurer]. This correction factor reduces the 

standard deviation to account for dependencies in the Di values. 
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𝐹(𝑧, 𝑡, 𝑢) = {
𝑧2(1 − 𝑧)𝑢−1 𝑖𝑓 𝑢 < 𝑡

𝑧(1 − 𝑧)𝑡−1 𝑖𝑓 𝑢 = 𝑡
    ,  1517 

and 1518 

𝑞 =  
1 − 𝑝

𝑘 − 1
. 1519 

7. If the binary search yields a solution, then the min-entropy is the negative logarithm of the 1520 

parameter, p: 1521 

min-entropy = –log2(p). 1522 

If the search does not yield a solution, then the min-entropy estimation is: 1523 

min-entropy = log2(k). 1524 

Example: For illustrative purposes, suppose that d = 10 (instead of 1000), k = 3, L = 21 and S = (2, 1525 

2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0). The dictionary sequence is (2, 2, 0, 1, 0, 2, 0, 1526 

1, 2, 1), and the testing sequence is (2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0). v = 11. After the dictionary is 1527 

initialized, dict[0] = 7, dict[1] = 10, and dict[2] = 9. In Step 4, b is calculated as 2. After processing 1528 

the test sequence, �̅� = 1.098, �̂� = 0.2620 and 𝑋′̅ = 0.8944. The value of p that solves the 1529 

equation is 0.7003, and the min-entropy estimate is 0.5139.  1530 

6.3.5 t-Tuple Estimate 1531 

This method examines the frequency of t-tuples (pairs, triples, etc.) that appears in the input dataset 1532 

and produces an estimate of the entropy per sample, based on the frequency of those t-tuples. The 1533 

frequency of the t-tuple (x1, x2, …, xt) in S = (s1, …, sL) is the number of i’s such that si = x1, si+1 = 1534 

x2,…, si+t-1 = xt. It should be noted that the tuples can overlap. 1535 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1536 

1. Find the largest t such that the number of occurrences of the most common t-tuple in S is 1537 

at least 35.  1538 

2. Let Q[i] store the number of occurrences of the most common i-tuple in S for i=1, ..., t. For 1539 

example, in S=(2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), Q[1] = 1540 

max(#0’s,#1’s,#2’s) = #0’s = 9, and Q[2] = 4 is obtained by the number of 01’s in S.  1541 

3. For i=1 to t, an estimate for pmax is computed as  1542 

a. Let P[i]=Q[i] / (L-i+1), and compute an estimate on the maximum individual 1543 

sample value probability as  𝑃𝑚𝑎𝑥[𝑖] = 𝑃[𝑖]1/𝑖. 1544 

4. The entropy estimate is calculated as –log2 max (𝑃𝑚𝑎𝑥[1], … , 𝑃𝑚𝑎𝑥[𝑡]).  1545 

6.3.6 Longest Repeated Substring (LRS) Estimate  1546 

This method estimates the collision entropy (sampling without replacement) of the source, based 1547 

on the number of repeated substrings (tuples) within the input dataset. Although this method 1548 
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estimates collision entropy (an upper bound on min-entropy), this estimate handles tuple sizes that 1549 

are too large for the t-tuple estimate, and is therefore a complementary estimate. 1550 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …,xk}, 1551 

1. Find the smallest u such that the number of occurrences of the most common u-tuple in S 1552 

is less than 20.  1553 

2. Find the largest v such that the number of occurrences of the most common v-tuple in S is 1554 

at least 2 and the most common (v+1)-tuple in S occurs once. In other words, v is the largest 1555 

length that a tuple repeat occurs. If v < u, this estimate cannot be computed. 1556 

3. For W=u to v, compute the estimated W-tuple collision probability 1557 

𝑃𝑊 =
∑ (𝐶𝑖

2
)𝑖

(𝐿−𝑊+1
2

)
 , 1558 

 where Ci is the number of occurrences of the ith unique W-tuple.  1559 

4. For each PW, compute the estimated average collision probability per string symbol 1560 

𝑃𝑚𝑎𝑥,𝑊 =  𝑃𝑊
1/𝑊. 1561 

The collision entropy estimate is calculated as –log2 max(Pmax,u, …, Pmax,v). 1562 

6.3.7 Multi Most Common in Window Prediction Estimate 1563 

The Multi Most Common in Window (MultiMCW) predictor contains several subpredictors, each 1564 

of which aims to guess the next output, based on the last w outputs. Each subpredictor predicts the 1565 

value that occurs most often in that window of w previous outputs. The MultiMCW predictor keeps 1566 

a scoreboard that records the number of times that each subpredictor was correct, and uses the 1567 

subpredictor with the most correct predictions to predict the next value. In the event of a tie, the 1568 

most common sample value that has appeared most recently is predicted. This predictor was 1569 

designed for cases where the most common value changes over time, but still remains relatively 1570 

stationary over reasonable lengths of the sequence. 1571 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1572 

1. Let window sizes be w1=63, w2=255, w3=1023, w4=4095, and N = L - w1. Let correct be 1573 

an array of N Boolean values, each initialized to 0. 1574 

2. Let scoreboard be a list of four counters, each initialized to 0. Let frequent be a list of four 1575 

values, each initialized to Null. Let winner = 1. 1576 

3. For i = w1 + 1 to L: 1577 

a. For  j =1 to 4, 1578 

i. If i > wj, let frequentj be the most frequent value in (si-wj, si-wj+1, …, si-1). If 1579 

there is a tie, then frequentj is assigned to the most frequent value that has 1580 

appeared most recently. 1581 

ii. Else, let frequentj = Null. 1582 
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b. Let prediction = frequentwinner. 1583 

c. If (prediction = si), let correcti- w1 = 1. 1584 

d. Update the scoreboard. For  j =1 to 4, 1585 

i. If (frequentj = si) 1586 

1. Let scoreboardj = scoreboardj +1 1587 

2. If scoreboardj ≥ scoreboardwinner, let winner =j 1588 

4. Let C be the number of ones in correct. 1589 

5. Calculate a 99% upper bound on the predictor’s global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙  =
𝐶

𝑁
  as: 1590 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 +  2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1591 

6. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1592 

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1593 

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1594 

0.99 =  
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 × 

1

𝑥𝑁+1
 , 1595 

where  𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 and x = x10, derived by iterating the recurrence relation 1596 

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1597 

for j from 1 to 10, and x0=1. 1598 

7. The min-entropy is the negative logarithm of the greater performance metric 1599 

min-entropy =  −log2(max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1600 

Example: Suppose that S = (1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 0, 0), so that L = 12. For the purpose of the 1601 

example, suppose that w1=3, w2=5, w3=7, w4=9 (instead of w1=63, w2=255, w3=1023, w4=4095). 1602 

Then N=9. In step 3, the values are as follows: 1603 

i frequent scoreboard 

(step 3b)  

Winner 

(step 3b) 

prediction si correcti-w1 scoreboard (step 

3d) 

4 (1, --,  --, --) (0, 0, 0, 0) 1 1 0 0 (0, 0, 0, 0) 

5 (0, --,  --, --) (0, 0, 0, 0) 1 0 2 0 (0, 0, 0, 0) 

6 (2, 2, --,  --) (0, 0, 0, 0) 1 2 1 0 (0, 0, 0, 0) 

7 (1, 1, --, --) (0, 0, 0, 0) 1 1 1 1 (1, 1, 0, 0) 

8 (1, 1, 1, --) (1, 1, 0, 0) 2 1 2 0 (1, 1, 0, 0) 

9 (1, 2, 2, --) (1, 1, 0, 0) 2 2 2 1 (1, 2, 1, 0) 

10 (2, 2, 2, 2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0) 

11 (2, 2, 2,2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0) 

12 (0, 0, 2, 0) (1, 2, 1, 0) 2 0 0 1 (2, 3, 1, 1) 

 1604 
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After all of the predictions are made, correct = (0, 0, 0, 1, 0, 1, 0, 0, 1). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.3333, 1605 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 0.7627, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.5, and the resulting min-entropy estimate is 0.3909.   1606 

6.3.8 The Lag Prediction Estimate 1607 

The lag predictor contains several subpredictors, each of which predicts the next output, based on 1608 

a specified lag. The lag predictor keeps a scoreboard that records the number of times that each 1609 

subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the 1610 

next value.  1611 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1612 

1. Let D = 128, and N = L −1. Let lag be a list of D values, each initialized to Null. Let correct 1613 

be a list of N Boolean values, each initialized to 0. 1614 

1. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1. 1615 

2. For i = 2 to L: 1616 

a. For d = 1 to D:  1617 

i. If (d < i), lagd = si-d , 1618 

ii. Else lagd = Null . 1619 

b. Let prediction = lagwinner. 1620 

c. If (prediction = si,) let correcti-1 = 1. 1621 

d. Update the scoreboard. For d = 1 to D:   1622 

i. If (lagd = si) 1623 

1. Let scoreboardd = scoreboardd +1. 1624 

2. If scoreboardd ≥ scoreboardwinner , let winner = d. 1625 

3. Let C be the number of ones in correct. 1626 

4. Calculate a 99% upper bound on the predictor’s global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙  =
𝐶

𝑁
 as: 1627 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 +  2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1628 

5. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1629 

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1630 

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1631 

0.99 =  
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 × 

1

𝑥𝑁+1
 , 1632 

where 1633 

𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 1634 
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and x = x10, derived by iterating the recurrence relation 1635 

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1636 

for j from 1 to 10, and x0=1. 1637 

6. The min-entropy is the negative logarithm of the greater performance metric 1638 

min-entropy =  −log2(max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1639 

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2), so that L = 10 and N = 9. For the purpose of 1640 

the example, suppose that D = 3 (instead of 128). The following table shows the values in step 3. 1641 

i lag scoreboard 

(step 3b) 

Winner  

(step 3b) 

prediction si correcti-1 scoreboard 

(step 3d) 

2 (2, --, --) (0, 0, 0) 1 2 1 0 (0, 0, 0) 

3 (1, 2, --) (0, 0, 0) 1 1 3 0 (0, 0, 0) 

4 (3, 1, 2) (0, 0, 0) 1 3 2 0 (0, 0, 1) 

5 (2, 3, 1) (0, 0, 1) 3 1 1 1 (0, 0, 2) 

6 (1, 2, 3) (0, 0, 2) 3 3 3 1 (0, 0, 3) 

7 (3, 1, 2) (0, 0, 3) 3 2 1 0 (0, 1, 3) 

8 (1, 3, 1) (0, 1, 3) 3 1 3 0 (0, 2, 3) 

9 (3, 1, 3) (0, 2, 3) 3 3 1 0 (0, 3, 3) 

10 (1, 3, 1) (0, 3, 3) 2 3 2 0 (0, 3, 3) 

 1642 

After all of the predictions are made, correct = (0, 0, 0, 1, 1, 0, 0, 0, 0). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.2222, 1643 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 0.6008, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.6667, and the resulting min-entropy estimate is 0.5850.  1644 

6.3.9 The MultiMMC Prediction Estimate 1645 

The MultiMMC predictor is composed of multiple Markov Model with Counting (MMC) 1646 

subpredictors. Each MMC predictor records the observed frequencies for transitions from one 1647 

output to a subsequent output (rather than the probability of a transition, as in a typical Markov 1648 

model), and makes a prediction, based on the most frequently observed transition from the current 1649 

output. MultiMMC contains D MMC subpredictors running in parallel, one for each depth from 1 1650 

to D. For example, the MMC with depth 1 creates a first-order model, while the MMC with depth 1651 

D creates a Dth-order model. MultiMMC keeps a scoreboard that records the number of times that 1652 

each MMC subpredictor was correct, and uses the subpredictor with the most correct predictions 1653 

to predict the next value.  1654 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1655 

1. Let D = 16, and N = L − 2. Let subpredict be a list of D values, each initialized to Null. Let 1656 

correct be an array of N Boolean values, each initialized to 0.  1657 

2. For d = 1 to D, let Md be a list of counters, where Md[x, y] denotes the number of observed 1658 

transitions from output x to output y for the dth-order MMC.  1659 
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3. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1. 1660 

4. For i=3 to L: 1661 

a. For d = 1 to D:  1662 

i. If d < i-1, increment MMCd[(si-d-1,…,si-2), si-1] by 1. 1663 

b. For d = 1 to D:  1664 

i. Find the y value that corresponds to the highest Md[(si-d,…,si-1), y] value, and 1665 

denote that y as ymax. Let  subpredictd = ymax. If all possible values of Md 1666 

[(si-d,…,si-1), y] are 0, then let subpredictd = Null. 1667 

c. Let prediction = subpredictwinner. 1668 

d. If (prediction = si), let correcti-2 = 1. 1669 

e. Update the scoreboard. For d = 1 to D:   1670 

i. If (subpredictd = si) 1671 

1. Let scoreboardd = scoreboardd +1.  1672 

2. If scoreboardd ≥ scoreboardwinner, let winner =d. 1673 

5. Let C be the number of ones in correct. 1674 

6. Calculate a 99% upper bound on the predictor’s global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙  =
𝐶

𝑁
 as: 1675 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 +  2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1676 

7. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1677 

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1678 

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1679 

0.99 =  
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 × 

1

𝑥𝑁+1
 , 1680 

where 1681 

𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 1682 

and x = x10, derived by iterating the recurrence relation 1683 

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1684 

for j from 1 to 10, and x0=1. 1685 

8. The min-entropy is the negative logarithm of the greater performance metric 1686 

min-entropy =  −log2(max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1687 

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1), so that L = 9 and N = 7. For the purpose of 1688 
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example, further suppose that D=3 (instead of 16). After each iteration of step 4 is completed, the 1689 

values are:  1690 

i subpredict scoreboard 

(step 4c) 

Winner 

(step 4c) 

prediction si correcti-2 scoreboard 

(step 4e) 

3 (Null, Null, Null) (0, 0, 0) 1 Null 3 0 (0, 0, 0) 

4 (Null, Null, Null) (0, 0, 0) 1 Null 2 0 (0, 0, 0) 

5 (1, Null, Null) (0, 0, 0) 1 1 1 1 (1, 0, 0) 

6 (3, 3, Null) (1, 0, 0) 1 3 3 1 (2, 1, 0) 

7 (2, 2, 2) (2, 1, 0) 1 2 1 0 (2, 1, 0) 

8 (3, Null, Null) (2, 1, 0) 1 3 3 1 (3, 1, 0) 

9 (2, 2, Null) (3, 1, 0) 1 2 1 0 (3, 1, 0) 

 1691 

Let {xy:c} denote a nonzero count c for the transition from x to y. Models M1, M2, and M3 are 1692 

shown below after step 4a  (the model update step) for each value of i. 1693 

i M1 M2 M3 

3 {21:1} -- -- 

4 {13:1},  

{21:1} 

{(2, 1)3:1} -- 

5 {13:1},  

{21:1},  

{32:1} 

{(1, 3)2:1},  

{(2, 1)3:1} 

{(2, 1, 3)2:1} 

6 {13:1},  

{21:2},  

{32:1} 

{(1, 3)2:1},  

{(2, 1)3:1}, 

{(3, 2)1:1} 

{(1, 3, 2)1:1},  

{(2, 1, 3)2:1} 

7 {13:2},  

{21:2},  

{32:1} 

{(1, 3)2:1},  

{(2, 1)3:2}, 

{(3, 2)1:1} 

{(1, 3, 2)1:1},  

{(2, 1, 3)2:1},  

{(3, 2, 1)3:1} 

8 {13:2},  

{21:2},  

{31:1}, 

{32:1} 

{(1, 3)1:1},  

{(1, 3)2:1},  

{(2, 1)3:2}, 

{(3, 2)1:1} 

{(1, 3, 2)1:1},  

{(2, 1, 3)1:1},  

{(2, 1, 3)2:1},  

{(3, 2, 1)3:1} 

9 {13:3},  

{21:2},  

{31:1}, 

{32:1} 

{(1, 3)1:1},  

{(1, 3)2:1},  

{(2, 1)3:2}, 

{(3, 1)3:1}, 

{(3, 2)1:1} 

{(1, 3, 1)3:1},  

{(1, 3, 2)1:1},  

{(2, 1, 3)1:1},  

{(2, 1, 3)2:1},  

{(3, 2, 1)3:1} 

 1694 

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 0). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.4286, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ =1695 

0.9490, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.6667, and the resulting min-entropy estimate is 0.0755. 1696 
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6.3.10 The LZ78Y Prediction Estimate 1697 

The LZ78Y predictor is loosely based on LZ78 encoding with the Bernstein's Yabba scheme 1698 

[Sal07] for adding strings to the dictionary.  The predictor keeps a dictionary of strings that have 1699 

been added to the dictionary so far, and continues adding new strings to the dictionary until the 1700 

dictionary has reached its maximum capacity.  Each time that a sample is processed, every 1701 

substring in the most recent B samples updates the dictionary or is added to the dictionary. 1702 

Given the input S = (s1, …, sL), where si ϵ A = {x1,…,xk}, 1703 

1. Let B = 16, and N = L – B – 1. Let correct be an array of N Boolean values, each initialized 1704 

to 0.  Let maxDictionarySize = 65536. 1705 

2. Let D be an empty dictionary. Let dictionarySize = 0. 1706 

3. For i=B+2 to L: 1707 

a. For j=B down to 1: 1708 

i. If (si-j-1, …, si-2) is not in D, and dictionarySize < maxDictionarySize:  1709 

1. Let D[si-j-1, …, si-2] be added to the dictionary. 1710 

2. Let D[si-j-1, …, si-2][si-1] = 0. 1711 

3. dictionarySize = dictionarySize + 1 1712 

ii. If (si-j-1, … , si-2) is in D,  1713 

1. Let D[si-j-1, …, si-2][si-1] = D[si-j-1, … ,si-2][si-1] + 1. 1714 

b. Use the dictionary to predict the next value, si. Let prediction = Null, and let 1715 

maxcount = 0. For j = B down to 1: 1716 

i. Let prev = (si-j, … si-1). 1717 

ii. If prev is in the dictionary, find the y ϵ {x1,…,xk} that has the highest 1718 

D[prev][y] value.  1719 

iii. If D[prev][y] > maxcount: 1720 

1. prediction = y. 1721 

2. maxcount = D[prev][y]. 1722 

c. If (prediction = si), let correcti-B-1 = 1. 1723 

4. Let C be the number of ones in correct. Calculate a 99% upper bound on the predictor’s 1724 

global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙  =
𝐶

𝑁
 as: 1725 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 +  2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1726 

5. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1727 

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1728 

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1729 
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0.99 =  
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 × 

1

𝑥𝑁+1 
 ,  1730 

where 𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 and x = x10, derived by iterating the recurrence relation 1731 

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1732 

for j from 1 to 10, and x0=1. 1733 

6. The min-entropy is the negative logarithm of the greater performance metric 1734 

min-entropy =  −log2 (max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1735 

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2), and L=13. For the purpose of example, 1736 

suppose that B=4 (instead of 16), then N=8. 1737 

i Add to D prev Max D[prev] entry prediction si correcti-B-1 

6 D[2, 1, 3, 2][1]  

D[1, 3, 2][1]  

D[3, 2][1]  

D[2][1] 

(1, 3, 2, 1) Null Null 3 0 

(3, 2, 1) Null 

(2, 1) Null 

(1) Null 

7 D[1, 3, 2, 1][3] 

D[3, 2, 1][3] 

D[2, 1][3] 

D[1][3] 

(3, 2, 1, 3) Null Null 1 0 

(2, 1, 3) Null 

(1, 3) Null 

(3) Null 

8 D[3, 2, 1, 3][1] 

D[2, 1, 3][1] 

D[1, 3][1] 

D[3][1] 

(2, 1, 3, 1) Null 3 3 1 

(1, 3, 1) Null 

(3, 1) Null 

(1) 3 

9 D[2, 1, 3, 1][3] 

D[1, 3, 1][3] 

D[3, 1][3] 

D[1][3] 

(1, 3, 1, 3) Null 1 1 1 

(3, 1, 3) Null 

(1, 3) 1 

(3) 1 

10 D[1, 3, 1, 3][1] 

D[3, 1, 3][1] 

D[1, 3][1] 

D[3][1] 

(3, 1, 3, 1) Null 3 2 0 

(1, 3, 1) 3 

(3, 1) 3 

(1) 3 

11 D[3, 1, 3, 1][2] 

D[1, 3, 1][2] 

D[3, 1][2] 

D[1][2] 

(1, 3, 1, 2) Null 1 1 1 

(3, 1, 2) Null 

(1, 2) Null 

(2) 1 

12 D[1, 3, 1, 2][1] 

D[3, 1, 2][1] 

D[1, 2][1] 

D[2][1] 

(3, 1, 2, 1) Null 3 3 1 

(1, 2, 1) Null 

(2, 1) 3 

(1) 3 
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13 D[3, 1, 2, 1][3] 

D[1, 2, 1][3] 

D[2, 1][3] 

D[1][3] 

(1, 2, 1, 3) Null 1 2 0 

(2, 1, 3) 1 

(1, 3) 1 

(3) 1 

 1738 

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 1, 0). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.5, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ =1739 

0.9868, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.6667, and the resulting min-entropy estimate is 0.0191. 1740 

6.4 Reducing the Sample Space  1741 

It is often the case that the data requirements for a test on noise source samples depends on the 1742 

number of possible different bitstrings from the noise source (i.e., the size of the alphabet A). For 1743 

example, consider two different noise sources. The first source outputs four-bit samples, and thus 1744 

has a possible total of 24 = 16 different outputs, and the second source outputs 32-bit samples, for 1745 

a possible total of 232 different outputs.  1746 

In many cases, the variability in the output that contributes to the entropy in a sample may be 1747 

concentrated among some portion of the bits in the sample. For example, consider a noise source 1748 

that outputs 32-bit high-precision clock samples that represent the time it takes to perform some 1749 

system process. Suppose that the bits in a sample are ordered in the conventional way, so that the 1750 

lower-order bits of the sample correspond to the higher resolution measurements of the clock. It is 1751 

easy to imagine that in this case, the low-order bits would contain most of the variability. In fact, 1752 

it would seem likely that some of the high-order bits may be constantly 0. For this example, it 1753 

would be reasonable to truncate the 32-bit sample to a four-bit string by taking the lower four bits, 1754 

and perform the tests on the four-bit strings. Of course, it must be noted that in this case, only a 1755 

maximum of four bits of min-entropy per sample could be credited to the noise source. 1756 

The description below provides a method for mapping the n-bit samples, collected as specified in 1757 

Section 3.1.1, to m-bit samples, where n ≥ m. The resulting strings can be used as input to tests 1758 

that may have infeasible data requirements if the mapping were not performed. Note that after the 1759 

mapping is performed, the maximum amount of entropy possible per n-bit sample is m bits. 1760 

Given a noise source that produces n-bit samples, where n exceeds the bit-length that can be 1761 

handled by the test, the submitter shall provide the tester with an ordered ranking of the bits in the 1762 

n-bit samples (see Section 3.2.2). The rank of ‘1’ corresponds to the bit assumed to be contributing 1763 

the most entropy to the sample, and the rank of n corresponds to the bit contributing the least 1764 

amount. If multiple bits contribute the same amount of entropy, the ranks can be assigned 1765 

arbitrarily among those bits. The following algorithm, or its equivalent, is used to assign ranks. 1766 

Input: A noise source and corresponding statistical model with samples of the form X = a1a2…an, 1767 

where each ai is a bit. 1768 

Output: An ordered ranking of the bits a1 through an, based on the amount of entropy that each 1769 

bit is assumed to contribute to the noise source outputs. 1770 

1. Set M = {a1, a2, …, an}. 1771 
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2. For i = 1 to n: 1772 

a. Choose an output bit a from M such that no other bit in S is assumed to contribute 1773 

more entropy to the noise source samples than a. 1774 

b. Set the rank of a to i. 1775 

c. Remove a from M. 1776 

Given the ranking, n-bit samples are mapped to m-bit samples by simply taking the m-bits of 1777 

greatest rank in order (i.e., bit 1 of the m-bit string is the bit from an n-bit sample with rank 1, bit 1778 

2 of the m-bit string is the bit from an n-bit sample with rank 2, … and bit m of the m-bit string is 1779 

the bit from an n-bit sample with rank m). 1780 

Note that for the estimators in Section 6, a reference to a sample in the dataset will be interpreted 1781 

as a reference to the m-bit subsets of the sample when the test necessitates processing the dataset 1782 

as specified in this section. 1783 

  1784 
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Acronyms  1785 

Selected acronyms and abbreviations used in this paper are defined below. 1786 

AES Advanced Encryption Standard 

ANS  American National Standard 

CAVP Cryptographic Algorithm Validation Program 

CMVP Cryptographic Module Validation Program 

DRBG Deterministic Random Bit Generator 

FIPS Federal Information Processing Standard 

HMAC Hash-based Message Authentication Code 

IID Independent and Identically Distributed 

LRS Longest Repeated Substring 

NIST National Institute of Standards and Technology 

NRBG Non-deterministic Random Bit Generator 

NVLAP National Voluntary Laboratory Accreditation Program 

RBG Random Bit Generator 

SP NIST Special Publication 

  1787 
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Glossary 1788 

Alphabet A finite set of two or more symbols. 

Alphabet size See sample size. 

Algorithm A clearly specified mathematical process for computation; a set 

of rules that, if followed, will give a prescribed result.  

Approved FIPS-approved or NIST-Recommended.  

Array A fixed-length data structure that stores a collection of elements, 

where each element is identified by its integer index. 

Assessment (of entropy)  
An evaluation of the amount of entropy provided by a (digitized) 

noise source and/or the entropy source that employs it.  

Biased  

A value that is chosen from a sample space is said to be biased if 

one value is more likely to be chosen than another value. 

(Contrast with unbiased.) 

Binary data (from a 

noise source) 

Digitized and possibly post-processed output from a noise source 

that consists of a single bit; that is, each sampled output value is 

represented as either 0 or 1. 

Bitstring 
A bitstring is an ordered sequence of 0’s and 1’s. The leftmost bit 

is the most significant bit. 

Collision An instance of duplicate sample values occurring in a dataset.  

Conditioning (of noise 

source output) 

A method of processing the raw data to reduce bias and/or ensure 

that the entropy rate of the conditioned output is no less than some 

specified amount.  

Confidence interval 

An interval, [low, high], where the true value of a parameter p 

falls within that interval with a stated probability. E.g., a 95% 

confidence interval about an estimate for p yields values for low 

and high such that low ≤ p ≤ high with probability 0.95.  

Continuous test 

A type of health test performed within an entropy source on the 

output of its noise source in order to gain some level of assurance 

that the noise source is working correctly, prior to producing each 

output from the entropy source.  

Consuming application 

(for an RBG) 

An application that uses the output from an approved random bit 

generator. 

Dataset A sequence of sample values. (See Sample.) 
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Deterministic Random 

Bit Generator (DRBG)  

An RBG that includes a DRBG mechanism and (at least initially) 

has access to a source of entropy input. The DRBG produces a 

sequence of bits from a secret initial value called a seed, along 

with other possible inputs. A DRBG is often called a 

Pseudorandom Number (or Bit) Generator. 

Developer 
The party that develops the entire entropy source or the noise 

source. 

Dictionary 

A dynamic-length data structure that stores a collection of 

elements or values, where a unique label identifies each element. 

The label can be any data type. 

Digitization The process of generating bits from the noise source. 

DRBG mechanism 

The portion of an RBG that includes the functions necessary to 

instantiate and uninstantiate the RBG, generate pseudorandom 

bits, (optionally) reseed the RBG and test the health of the DRBG 

mechanism. Approved DRBG mechanisms are specified in SP 

800-90A. 

Entropy 

A measure of the disorder, randomness or variability in a closed 

system. Min-entropy is the measure used in this 

Recommendation. 

Entropy rate 

 

The rate at which a digitized noise source (or entropy source) 

provides entropy; it is computed as the assessed amount of 

entropy provided by a bitstring output from the source, divided by 

the total number of bits in the bitstring (yielding assessed bits of 

entropy per output bit). This will be a value between zero (no 

entropy) and one. 

Entropy source 

The combination of a noise source, health tests, and an optional 

conditioning component that produce random bitstrings to be 

used by an RBG.  

Estimate 
The estimated value of a parameter, as computed using an 

estimator. 

Estimator A technique for estimating the value of a parameter. 

False positive 

An erroneous acceptance of the hypothesis that a statistically 

significant event has been observed. This is also referred to as a 

type 1 error. When “health-testing” the components of a device, 

it often refers to a declaration that a component has malfunctioned 

– based on some statistical test(s) – despite the fact that the 

component was actually working correctly.  



NIST SP 800-90B (2nd Draft)   Recommendation for the Entropy Sources  
  Used for Random Bit Generation 

 57 

Health testing 

Testing within an implementation immediately prior to or during 

normal operation to determine that the implementation continues 

to perform as implemented and as validated. 

Independent 

Two random variables X and Y are independent if they do not 

convey information about each other. Receiving information 

about X does not change the assessment of the probability 

distribution of Y (and vice versa). 

Independent and 

Identically Distributed 

(IID) 

A sequence of random variables for which each element of the 

sequence has the same probability distribution as the other values, 

and all values are mutually independent. 

List 
A dynamic-length data structure that stores a sequence of values, 

where each value is identified by its integer index.  

Markov model 

A model for a probability distribution where the probability that 

the ith element of a sequence has a given value depends only on 

the values of the previous n elements of the sequence. The model 

is called an nth order Markov model. 

Min-entropy 

The min-entropy (in bits) of a random variable X is the largest 

value m having the property that each observation of X provides 

at least m bits of information (i.e., the min-entropy of X is the 

greatest lower bound for the information content of potential 

observations of X). The min-entropy of a random variable is a 

lower bound on its entropy. The precise formulation for min-

entropy is (log2 max pi) for a discrete distribution having 

probabilities p1,...,pk. Min-entropy is often used as a worst-case 

measure of the unpredictability of a random variable. 

Narrowest internal 

width 

The maximum amount of information from the input that can 

affect the output. For example, if f(x) = SHA-1(x) || 01, and x 

consists of a string of 1000 binary bits, then the narrowest internal 

width of f(x) is 160 bits (the SHA-1 output length), and the output 

width of f(x) is 162 bits (the 160 bits from the SHA-1 operation, 

concatenated by 01. 

Noise source 

The component of an entropy source that contains the non-

deterministic, entropy-producing activity. (e.g., thermal noise or 

hard drive seek times) 

Non-deterministic 

Random Bit Generator 

(NRBG) 

An RBG that has access to an entropy source and (when working 

properly) produces outputs that have full entropy (see SP 800-

90C). Also called a true random bit (or number) generator. 

(Contrast with a DRBG) 
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On-demand test 
A type of health test that is available to be run whenever a user or 

a relying component requests it. 

Output space 
The set of all possible distinct bitstrings that may be obtained as 

samples from a digitized noise source. 

P-value 

The probability that the chosen test statistic will assume values 

that are equal to or more extreme than the observed test statistic 

value, assuming that the null hypothesis is true.  

Predictor 
A function that predicts the next value in a sequence, based on 

previously observed values in the sequence. 

Probability distribution 
A function that assigns a probability to each measurable subset of 

the possible outcomes of a random variable.  

Probability model A mathematical representation of a random phenomenon. 

Pseudorandom 

A deterministic process (or data produced by such a process) 

whose output values are effectively indistinguishable from those 

of a random process, as long as the internal states and internal 

actions of the process are unknown. For cryptographic purposes, 

“effectively indistinguishable” means “not within the 

computational limits established by the intended security 

strength.” 

Random 

A non-deterministic process (or data produced by such a process) 

whose output values follow some probability distribution. The 

term is sometimes (mis)used to imply that the probability 

distribution is uniform, but no uniformity assumption is made in 

this Recommendation. 

Random Bit Generator 

(RBG) 

A device or algorithm that outputs a random sequence that is 

effectively indistinguishable from statistically independent and 

unbiased bits. An RBG is classified as either a DRBG or an 

NRBG. 

Raw data Digitized and possibly post-processed output of the noise source. 

Run (of output 

sequences) 

A sequence of identical values.  

Sample  

An observation of the raw data. Common examples of output 

values obtained by sampling are single bits, single bytes, etc. (The 

term “sample” is often extended to denote a sequence of such 

observations; this Recommendation will refrain from that 

practice.) 
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Sample size 
The number of possible distinct values that a sample can have. 

May also be called alphabet size. 

Security boundary 

A conceptual boundary that is used to assess the amount of 

entropy provided by the values output from an entropy source. 

The entropy assessment is performed under the assumption that 

any observer (including any adversary) is outside of that 

boundary. 

Seed 

A bitstring that is used as input to (initialize) an algorithm. In this 

Recommendation, the algorithm using a seed is a DRBG. The 

entropy provided by the seed must be sufficient to support the 

intended security strength of the DRBG. 

Sequence An ordered list of quantities. 

Shall 

The term used to indicate a requirement that needs to be fulfilled 

to claim conformance to this Recommendation. Note that shall 

may be coupled with not to become shall not.  

Should 

The term used to indicate an important recommendation. Ignoring 

the recommendation could result in undesirable results. Note that 

should may be coupled with not to become should not. 

Start-up testing  

A suite of health tests that are performed every time the entropy 

source is initialized or powered up. These tests are carried out on 

the noise source before any output is released from the entropy 

source.  

Submitter 

The party that submits the entire entropy source and output from 

its components for validation. The submitter can be any entity that 

can provide validation information as required by this 

Recommendation (e.g., developer, designer, vendor or any 

organization).  

Testing laboratory An accredited cryptographic security testing laboratory 

Unbiased 

A value  that  is  chosen  from  a  sample  space  is  said  to  be 

unbiased  if  all  potential values  have  the  same  probability  of 

being chosen. (Contrast with biased.) 

 1789 

  1790 
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 Min-Entropy and Optimum Guessing Attack Cost 1792 

Suppose that an adversary wants to determine at least one of several secret values, where each 1793 

secret value is independently chosen from a set of M possibilities, with probability distribution P 1794 

= {p1, p2, …, pM}. Assume that these probabilities are sorted so that p1 ≥ p2 ≥ …≥ pM . Consider a 1795 

guessing strategy aimed at successfully guessing as many secret values as possible. The adversary's 1796 

goal would be to minimize the expected number of guesses per successful recovery. Such a strategy 1797 

would consist of guessing a maximum of k possibilities for a given secret value, moving on to a 1798 

new secret value when either a guess is correct or k incorrect guesses for the current value have 1799 

been made. In general, the optimum value of k can be anywhere in the range 1 ≤ k ≤ M, depending 1800 

on the probability distribution P. Note that when k = M, the Mth guess is considered a valid (though 1801 

trivial) guess. Regardless of the value of k chosen, it is clear that the k guesses selected for a given 1802 

secret value should be the k most likely possible values, in decreasing order of probability. 1803 

The expected work per success can be computed for this attack as follows. For 1 ≤ j ≤ k – 1, the 1804 

attacker will make exactly j guesses if the secret value is the jth most likely value, an event having 1805 

probability pj. The attacker will make exactly k guesses if the secret value is not any of the k – 1 1806 

most likely values, an event having probability 1 − ∑ 𝑝𝑗
𝑘−1
𝑗=1 . Thus, the expected number of guesses 1807 

for the attack is given by the following: 1808 
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𝑝1 + 2𝑝2 + ⋯ + (𝑘 − 1)𝑝𝑘−1 + 𝑘 (1 − ∑ 𝑝𝑗

𝑘−1

𝑗=1

). 1809 

Since this attack will be successful if and only if the secret value is one of the k most likely 1810 

possibilities, which is the case with probability ∑ 𝑝𝑗
𝑘
𝑗=1 , the expected number of times the attack 1811 

must be performed until the first success is the reciprocal of this probability. Multiplying this 1812 

reciprocal by the expected number of guesses per attack gives the following as the expected work 1813 

per success: 1814 

𝑊𝑘(𝑃) =
𝑝1 + 2𝑝2 + ⋯ + (𝑘 − 1)𝑝𝑘−1 + 𝑘 (1 − ∑ 𝑝𝑗

𝑘−1
𝑗=1 )

∑ 𝑝𝑗
𝑘
𝑗=1

. 1815 

It is not critical to determine the value k* that minimizes 𝑊𝑘(𝑃), since the min-entropy of P leads 1816 

to an accurate approximation (and sometimes the exact value) of 𝑊𝑘∗(𝑃). Stated more precisely, 1817 

𝑊1(𝑃) =
1

𝑝1
 is an upper bound of 𝑊𝑘∗(𝑃), and it can be shown that 𝑊𝑘(𝑃)  ≥  

1

2𝑝1
+

1

2
 for all k 1818 

such that 1 ≤ k ≤ M. Since the min-entropy of P is − log2(𝑝1), these two bounds imply that the 1819 

error between the min-entropy of P and log2(𝑊𝑘∗(𝑃)) can be bounded as follows: 1820 

0 ≤  − log2 𝑝1 − log2(𝑊𝑘∗(𝑃)) ≤  1 −  log2(𝑝1 + 1). 1821 

Notice that since 
1

𝑀
 ≤  𝑝1  ≤ 1, the upper bound on the error approaches 0 as 𝑝1 → 1, and 1822 

alternatively, this bound approaches 1 as 𝑀 → ∞ and 𝑝1 →  
1

𝑀
.  In other words, the min-entropy of 1823 

P either corresponds to the exact expected work, measured in bits, needed to perform the optimum 1824 

guessing attack or over-estimates this work by at most one bit. 1825 

In order to prove the claim that 𝑊𝑘(𝑃)  ≥  
1

2𝑝1
+

1

2
, for 1 ≤ k ≤ M, rewrite the expected work per 1826 

success as 1827 

𝑊𝑘(𝑃) =
1 + (1 − 𝑝1) + (1 − 𝑝1 − 𝑝2) + ⋯ + (1 − 𝑝1 − 𝑝2 − ⋯ − 𝑝𝑘−1)

𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘
. 1828 

Consider an alternative probability distribution on a set of M possibilities 𝑃′ =1829 

{𝑝1, 𝑝1, … , 𝑝1, 𝑟, 0, … ,0}, where 𝑝1 occurs 𝑡 = ⌊
1

𝑝1
⌋ times and 𝑟 = 1 − 𝑡𝑝1. It is straightforward to 1830 

see that 𝑊𝑘(𝑃)  ≥ 𝑊𝑘(𝑃′), since each term in the numerator of 𝑊𝑘(𝑃) is at least as large as the 1831 

corresponding term in 𝑊𝑘(𝑃′), and the denominator of 𝑊𝑘(𝑃′) is at least as large as the 1832 

denominator of 𝑊𝑘(𝑃). 1833 

Now to show that 𝑊𝑘(𝑃′)  ≥  
1

2𝑝1
+

1

2
. Based on the above formula for 𝑊𝑘(𝑃), for 1 ≤ k ≤ t + 1, 1834 

the numerator of 𝑊𝑘(𝑃′) can be written as 1835 
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∑ (1 − 𝑖𝑝1) = 𝑘 −
𝑘(𝑘 − 1)

2
𝑝1 = 𝑘𝑝1 (

1

𝑝1
−

𝑘 − 1

2
)

𝑘−1

𝑖=0
. 1836 

Consider the following two cases where 1 ≤ k ≤ t and k = t + 1. These are the only cases to check, 1837 

since if M > t + 1, then 𝑊𝑘(𝑃′) = 𝑊𝑡+1(𝑃′) for k > t + 1, because the remaining probabilities are 1838 

all zero. Furthermore, r = 0 if and only if 
1

𝑝1
 is an integer, and when this happens, only the first 1839 

case needs to be addressed since 𝑊𝑡+1(𝑃′) = 𝑊𝑡(𝑃′). 1840 

For 1 ≤ k ≤ t, the denominator of 𝑊𝑘(𝑃′) = 𝑘𝑝1. Then, 1841 

𝑊𝑘(𝑃′) =  
𝑘𝑝1 (

1

𝑝1
−

𝑘−1

2
)

𝑘𝑝1
=

1

𝑝1
−

𝑘 − 1

2
, 1842 

≥  
1

𝑝1
−

1

2
 (⌊

1

𝑝1
⌋ − 1) , 1843 

≥
1

𝑝1
−

1

2
 (

1

𝑝1
− 1) , 1844 

≥
1

2𝑝1
+

1

2
 . 1845 

For k = t +1, the denominator of 𝑊𝑘(𝑃′) is tp1+r =1. Let x =
1

𝑝1
−  ⌊

1

𝑝1
⌋, so 0 ≤ x < 1. This implies 1846 

 1847 

𝑊𝑘(𝑃′) =  𝑘𝑝1 (
1

𝑝1
−

𝑘 − 1

2
) =  (⌊

1

𝑝1
⌋ + 1) 𝑝1 (

1

𝑝1
−

1

2
⌊

1

𝑝1
⌋) , 1848 

= (
1

𝑝1
− 𝑥 + 1) (

1

2
+

𝑝1𝑥

2
) , 1849 

=  
1

2𝑝1
+

1

2
+

𝑝1𝑥(1 − 𝑥)

2
, 1850 

≥
1

2𝑝1
+

1

2
. 1851 

Therefore, it has been shown that 𝑊𝑘(𝑃)  ≥  𝑊𝑘(𝑃′)  ≥
1

2𝑝1
+

1

2
 for 1 ≤ k ≤ M. Note that this lower 1852 

bound is sharp, since 𝑊𝑘(𝑃) achieves this value when P is a uniform distribution.  1853 

Post-processing Functions 1854 

This section provides the details of the allowed post-processing functions for a noise source. 1855 

 1856 

Von Neumann’s method: This method produces independent unbiased random bits for a source 1857 

that generates independent biased output bits. This method divides the sequence into pairs and 1858 

applies the following mapping: 1859 
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input output 

00 discard 

01 1 

10 0 

11 discard 

For a source that produces independent biased random bits (s1, s2,…), with Pr(si = 0) = p, and  p ≠ 1860 

½, the method extracts approximately np(1 – p) unbiased bits from n biased bits. Independent of 1861 

the value of p, the method throws away a pair of bits at least half of the time. It should be noted 1862 

that the bias in the correlated sources might increase after applying the technique.  1863 

Linear filtering method: This method divides the sequence into non-overlapping blocks of w bits 1864 

and applies a linear function to each block. Mathematically, the output of the jth block is calculated 1865 

as f(sjw+1,…, s(j+1)w) = c1sjw+1+… + cws(j+1)w, where the ci values are predetermined binary constants. 1866 

A typical value of w may be between 16 and 64; this Recommendation does not put a restriction 1867 

on the selection of the block size w.  1868 

Length of runs method: This method outputs the length of the runs in (s1, s2,…), where the si’s are 1869 

bits.  1870 

 1871 

 The Narrowest Internal Width 1872 

The narrowest internal width of a conditioning component is the maximum amount of information 1873 

from the input that can affect the output. It can also be considered as the logarithm of an upper 1874 

bound on the number of distinct outputs, based on the size of the internal state.  1875 

Example: Let F(X) be a function defined as follows:  1876 

1. Let h1 be the output of SHA256(X) truncated to 64 bits. 1877 

2. Return SHA256(h1|| h1) truncated to 128 bits.    1878 

This function takes an arbitrarily-long input X and will yield 128-bit output value, but its internal 1879 

width is only 64 bits, because the value of the output only depends on the value of 64-bit h1.  1880 

CBC-MAC Specification 1881 

A conditioning component may be based on the use of CBC-MAC using a 128-bit approved 1882 

block-cipher algorithm. This CBC-MAC construction shall not be used for any other purpose than 1883 

as the algorithm for a conditioning component, as specified in Section 3.1.5.1.1.  The following 1884 

notation is used for the construction. 1885 

Let E(Key, input_string) represent the approved encryption algorithm, with a Key and an 1886 

input_string as input parameters. The length of the input_string shall be an integer multiple of the 1887 

output length n of the block-cipher algorithm and shall always be the same length (i.e., variable 1888 

length strings shall not be used as input). 1889 

Let n be the length (in bits) of the output block of the approved block cipher algorithm, and let w 1890 
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be the number of n-bit blocks in the input_string. 1891 

Let output_string be the n-bit output of CBC-MAC. 1892 

CBC-MAC: 1893 
Input: bitstring Key, input_string. 1894 

Output: bitstring output_string. 1895 

Process: 1896 

1. Let 𝑠0, 𝑠1, … 𝑠𝑤−1 be the sequence of blocks formed by dividing input string into n-bit 1897 

blocks; i.e., each 𝑠𝑖 consists of n bits. 1898 

2. V = 0. 1899 

3. For i = 0 to w-1 1900 

V = E(Key, V  𝑠𝑖). 1901 

4. Output V as the CBC-MAC output. 1902 

 1903 

Different Strategies for Entropy Estimation 1904 

Each of the estimation methods presented in Section 6 follows one of two approaches to estimating 1905 

min-entropy. The first approach is based on entropic statistics, first described for IID data in 1906 

[HD12], and later applied to non-IID data [HD12]. The most common value test estimates entropy 1907 

by bounding the probability of the most-common output. In the IID case, the collision and 1908 

compression estimators in Section 6.3 provide a lower bound on min-entropy by fitting the 1909 

distribution to a near-uniform distribution, where one probability is highest, and the rest are all 1910 

equal. Empirically, these estimators appear to be conservative for independent, but not necessarily 1911 

identically distributed samples, as well. The final estimator proposed in [HD12] and specified in 1912 

Section 6.3.3 constructs a first-order Markov model and estimates entropy from the most-probable 1913 

sequence. 1914 

H.1 Entropic Statistics 1915 

The entropic statistics presented in [HD12], each designed to compute a different statistic on the 1916 

samples, provide information about the structure of the data: collision, collection, compression, 1917 

and Markov. While the estimators (except for the Markov) were originally designed for application 1918 

to independent outputs, the tests have performed well when applied to data with dependencies. 1919 

Given empirical evidence and the confidence level of the tests, their application to non-IID data 1920 

will produce valid, although conservative, entropy estimates. 1921 

The estimators assume that a probability distribution describes the output of a random noise source, 1922 

but that the probability distribution is unknown. The goal of each estimator is to reveal information 1923 

about the unknown distribution, based on a statistical measurement.  1924 

The collision and compression estimators in Section 6 each solve an equation for an unknown 1925 

parameter, where the equation is different for each estimator. These equations come from the target 1926 

statistic’s expected value using a near-uniform distribution, which provides a lower bound for min-1927 

entropy. A near-uniform distribution is an instance of a one-parameter family of probability 1928 

distributions parameterized by p, Pp: 1929 
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𝑃𝑝(𝑖) =  {
𝑝, if 𝑖 = 0 

1 − 𝑝

𝑘 − 1
, otherwise

 1930 

where k is the number of states in the output space, and 𝑝 ≤  
1−𝑝

𝑘−1
. In other words, one output state 1931 

has the maximum probability, and the remaining output states are equally likely. For more 1932 

information, see [HD12]. 1933 

H.1.1 Approximation of 𝐅(𝟏/𝐳)  1934 

The function F(1/z), used by the collision estimate (Section 6.3.2),  can be approximated by the 1935 

following continued fraction9: 1936 

1

𝑧 +  
−𝑛

1+ 
1

𝑧+ 
1−𝑛

1+
2

𝑧+
2−𝑛

1+
3
…

 1937 

H.2 Predictors 1938 

Shannon first published the relationship between the entropy and predictability of a sequence in 1939 

1951 [Shan51]. Predictors construct models from previous observations, which are used to predict 1940 

the next value in a sequence. The prediction-based estimation methods in this Recommendation 1941 

work in a similar way, but attempt to find bounds on the min-entropy of integer sequences 1942 

generated by an unknown process (rather than N-gram entropy of English text, as in [Shan51]). 1943 

The predictor approach uses two metrics to produce an estimate. The first metric is based on the 1944 

global performance of the predictor, called accuracy in machine-learning literature. Essentially, a 1945 

predictor captures the proportion of guesses that were correct. This approximates how well one 1946 

can expect a predictor to guess the next output from a noise source, based on the results over a 1947 

long sequence of guesses. The second metric is based on the greatest number of correct predictions 1948 

in a row, which is called the local entropy estimate. This metric is useful for detecting cases where 1949 

a noise source falls into a highly predictable state for some time, but the predictor may not perform 1950 

well on long sequences. The calculations for the local entropy estimate come from the probability 1951 

theory of runs and recurrent events [Fel50]. For more information about min-entropy estimation 1952 

using predictors, see [Kel15].  1953 

                                                 

9 Derived from Equation 8.9.2 at http://dlmf.nist.gov/8.9.  

http://dlmf.nist.gov/8.9

