

(Second DRAFT) NIST Special Publication 800-90B 1

Recommendation for the Entropy 2

Sources Used for Random Bit 3

Generation 4

 5

 6

Meltem Sönmez Turan 7

Elaine Barker 8

John Kelsey 9

Kerry A. McKay 10

Mary L. Baish 11

Mike Boyle 12

 13

 14

 15

 16

This publication is available free of charge from: 17

http://dx.doi.org/10.6028/NIST.SP.XXX 18

 19

 20

C O M P U T E R S E C U R I T Y 21

 22

23

(Second DRAFT) NIST Special Publication 800-90B 24

Recommendation for the Entropy 25

Sources Used for Random Bit 26

Generation 27

 28

Meltem Sönmez Turan 29

Elaine Barker 30

John Kelsey 31

Kerry McKay 32

Computer Security Division 33

Information Technology Laboratory 34

 35

Mary L. Baish 36

Mike Boyle 37

National Security Agency 38

Fort Meade, MD 39

 40

This publication is available free of charge from: 41

http://dx.doi.org/10.6028/NIST.SP.XXX 42

 43

 44

January 2016 45

 46

 47
 48
 49

U.S. Department of Commerce 50
Penny Pritzker, Secretary 51

 52
National Institute of Standards and Technology 53

Willie May, Under Secretary of Commerce for Standards and Technology and Director 54

ii

Authority 55

This publication has been developed by NIST in accordance with its statutory responsibilities under the 56
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law 57
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 58
minimum requirements for federal information systems, but such standards and guidelines shall not apply 59
to national security systems without the express approval of appropriate federal officials exercising policy 60
authority over such systems. This guideline is consistent with the requirements of the Office of Management 61
and Budget (OMB) Circular A-130. 62

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 63
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 64
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 65
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 66
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 67
however, be appreciated by NIST. 68

National Institute of Standards and Technology Special Publication 800-90B 69
Natl. Inst. Stand. Technol. Spec. Publ. 800-90B, 66 pages (January 2016) 70

CODEN: NSPUE2 71

This publication is available free of charge from: 72
http://dx.doi.org/10.6028/NIST.SP.XXX 73

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 74
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 75
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 76
available for the purpose. 77

There may be references in this publication to other publications currently under development by NIST in accordance 78
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 79
may be used by Federal agencies even before the completion of such companion publications. Thus, until each 80
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 81
planning and transition purposes, Federal agencies may wish to closely follow the development of these new 82
publications by NIST. 83

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 84
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 85
http://csrc.nist.gov/publications. 86

Public comment period: January 25, 2016 through May 9, 2016 87

All comments are subject to release under the Freedom of Information Act (FOIA). 88

National Institute of Standards and Technology 89
Attn: Computer Security Division, Information Technology Laboratory 90

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 91
Email: rbg_comments@nist.gov 92

 93

http://csrc.nist.gov/publications

iii

Reports on Computer Systems Technology 94

The Information Technology Laboratory (ITL) at the National Institute of Standards and 95

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 96

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 97

methods, reference data, proof of concept implementations, and technical analyses to advance the 98

development and productive use of information technology. ITL’s responsibilities include the 99

development of management, administrative, technical, and physical standards and guidelines for 100

the cost-effective security and privacy of other than national security-related information in 101

Federal information systems. The Special Publication 800-series reports on ITL’s research, 102

guidelines, and outreach efforts in information system security, and its collaborative activities with 103

industry, government, and academic organizations. 104

Abstract 105

This Recommendation specifies the design principles and requirements for the entropy sources 106

used by Random Bit Generators, and the tests for the validation of entropy sources. These entropy 107

sources are intended to be combined with Deterministic Random Bit Generator mechanisms that 108

are specified in SP 800-90A to construct Random Bit Generators, as specified in SP 800-90C. 109

Keywords 110

Conditioning functions; Entropy source; health testing; IID testing; min-entropy; noise source; 111

predictors; random number generators 112

Acknowledgements 113

The authors of this Recommendation gratefully acknowledge and appreciate contributions by their 114

colleagues at NIST, Apostol Vassilev and Timothy A. Hall, and also Aaron H. Kaufer and Darryl 115

M. Buller of the National Security Agency, for assistance in the development of this 116

Recommendation. NIST also thanks the many contributions by the public and private sectors. 117

Conformance Testing 118

Conformance testing for implementations of this Recommendation will be conducted within the 119

framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic 120

Module Validation Program (CMVP). The requirements of this Recommendation are indicated by 121

the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP validation 122

testing, and thus are the responsibility of entities using, implementing, installing or configuring 123

applications that incorporate this Recommendation. 124

 125

 126

iv

Note to Reviewers 127

To facilitate public review, we have compiled a number of open issues for which we would like 128

reviewer input. Please keep in mind that it is not necessary to respond to all questions listed below, 129

nor is review limited to these issues. Reviewers should also feel free to suggest other areas of 130

revision or enhancement to the document as they see fit. 131

 132

- Post-processing functions (Section 3.2.2): We provided a list of approved post-processing 133

functions. Is the selection of the functions appropriate? 134

- Entropy assessment (Section 3.1.5): While estimating the entropy for entropy sources using 135

a conditioning component, the values of n and q are multiplied by the constant 0.85. Is the 136

selection of this constant reasonable? 137

- Multiple noise sources: The Recommendation only allows using multiple noise sources if 138

the noise sources are independent. Should the use of dependent noise sources also be 139

allowed, and how can we calculate an entropy assessment in this case? 140

- Health Tests: What actions should be taken when health tests raise an alarm? The minimum 141

allowed value of a type I error for health testing is selected as 2-50. Is this selection 142

reasonable?143

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

v

 144

Table of Contents 145

1 Introduction .. 1 146

1.1 Scope .. 1 147

1.2 Symbols .. 1 148

1.3 Organization ... 2 149

2 General Discussion .. 3 150

2.1 Min-Entropy .. 3 151

2.2 The Entropy Source Model ... 3 152

2.2.1 Noise Source .. 4 153

2.2.2 Conditioning Component .. 5 154

2.2.3 Health Tests ... 5 155

2.3 Conceptual Interfaces ... 5 156

2.3.1 GetEntropy: An Interface to the Entropy Source 5 157

2.3.2 GetNoise: An Interface to the Noise Source ... 6 158

2.3.3 HealthTest: An Interface to the Entropy Source 6 159

3 Entropy Source Validation .. 7 160

3.1 Validation Process .. 7 161

3.1.1 Data Collection ... 9 162

3.1.2 Determining the track: IID track vs. non-IID track 9 163

3.1.3 Initial Entropy Estimate ... 10 164

3.1.4 Restart Tests .. 10 165

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning 166

Component .. 12 167

3.1.6 Using Multiple Noise Sources ... 14 168

3.2 Requirements for Validation Testing ... 15 169

3.2.1 Requirements on the Entropy Source... 15 170

3.2.2 Requirements on the Noise Source .. 16 171

3.2.3 Requirements on the Conditioning Component 17 172

3.2.4 Requirements on Data Collection ... 17 173

4 Health Tests .. 18 174

4.1 Health Test Overview .. 18 175

4.2 Types of Health Tests ... 18 176

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

vi

4.3 Requirements for Health Tests ... 19 177

4.4 Approved Continuous Health Tests .. 20 178

4.4.1 Repetition Count Test ... 21 179

4.4.2 Adaptive Proportion Test .. 22 180

4.5 Vendor-Defined Alternatives to the Continuous Health Tests 24 181

4.6 Alternative Health Test Criteria ... 24 182

5 Testing the IID Assumption ... 24 183

5.1 Permutation Testing .. 25 184

5.1.1 Excursion Test Statistic .. 26 185

5.1.2 Number of Directional Runs ... 27 186

5.1.3 Length of Directional Runs ... 27 187

5.1.4 Number of Increases and Decreases ... 28 188

5.1.5 Number of Runs Based on the Median ... 28 189

5.1.6 Length of Runs Based on Median .. 29 190

5.1.7 Average Collision Test Statistic .. 29 191

5.1.8 Maximum Collision Test Statistic .. 30 192

5.1.9 Periodicity Test Statistic ... 30 193

5.1.10 Covariance Test Statistic .. 30 194

5.1.11 Compression Test Statistics ... 31 195

5.2 Additional Chi-square Statistical Tests .. 31 196

5.2.1 Testing Independence for Non-Binary Data 31 197

5.2.2 Testing Goodness-of-fit for non-binary data 32 198

5.2.3 Testing Independence for Binary Data ... 33 199

5.2.4 Testing Goodness-of-fit for Binary Data ... 34 200

5.2.5 Length of the Longest Repeated Substring Test 35 201

6 Estimating Min-Entropy ... 35 202

6.1 IID Track: Entropy Estimation for IID Data .. 35 203

6.2 Non-IID Track: Entropy Estimation for Non-IID Data..................................... 36 204

6.3 Estimators ... 36 205

6.3.1 The Most Common Value Estimate .. 36 206

6.3.2 The Collision Estimate .. 37 207

6.3.3 The Markov Estimate .. 38 208

6.3.4 The Compression Estimate .. 41 209

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

vii

6.3.5 t-Tuple Estimate ... 43 210

6.3.6 Longest Repeated Substring (LRS) Estimate 43 211

6.3.7 Multi Most Common in Window Prediction Estimate 44 212

6.3.8 The Lag Prediction Estimate .. 46 213

6.3.9 The MultiMMC Prediction Estimate .. 47 214

6.3.10 The LZ78Y Prediction Estimate .. 50 215

6.4 Reducing the Sample Space .. 52 216

 217

List of Appendices 218

 Acronyms .. 54 219

 Glossary .. 55 220

 References .. 60 221

 Min-Entropy and Optimum Guessing Attack Cost 61 222

 Post-processing Functions .. 63 223

 The Narrowest Internal Width .. 64 224

 CBC-MAC Specification ... 64 225

 Different Strategies for Entropy Estimation 65 226

H.1 Entropic Statistics ... 65 227

H.1.1 Approximation of 𝐅(𝟏/𝐳) ... 66 228

H.2 Predictors .. 66 229

 230

 231

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

viii

List of Figures 232

Figure 1 Entropy Source Model ... 4 233

Figure 2 Entropy Estimation Strategy .. 8 234

Figure 3 Entropy of the Conditioning Component ... 12 235

Figure 4 Generic Structure of Permutation Testing ... 25 236

Figure 5 Pseudo-code of the Fisher-Yates Shuffle .. 26 237

 238

 239

List of Tables 240

Table 1 The narrowest internal width and output lengths of the vetted conditioning 241

functions. .. 13 242

Table 2 Adaptive proportion test on binary data for various entropy/sample levels with 243

W=1024 .. 23 244

Table 3 Adaptive proportion test on non-binary data for various entropy/sample levels 245

with W=512 .. 23 246

247

file:///C:/Users/msturan/Desktop/800%2090B/_Draft%20NIST%20SP%20800_90B%20January%2014.docx%23_Toc440976600

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 1

1 Introduction 248

1.1 Scope 249

Cryptography and security applications make extensive use of random numbers and random bits. 250

However, the generation of random bits is problematic in many practical applications of 251

cryptography. The NIST Special Publication (SP) 800-90 series of Recommendations provides 252

guidance on the construction and validation of Random Bit Generators (RBGs) in the form of 253

Deterministic Random Bit Generators (DRBGs) or Non-deterministic Random Bit Generators 254

(NRBGs) that can be used for cryptographic applications. This Recommendation specifies how to 255

design and test entropy sources that can be used by these RBGs. SP 800-90A addresses the 256

construction of approved Deterministic Random Bit Generator (DRBG) mechanisms, while SP 257

800-90C addresses the construction of RBGs from the mechanisms in SP 800-90A and the entropy 258

sources in SP 800-90B. These Recommendations provide a basis for validation by NIST's 259

Cryptographic Algorithm Validation Program (CAVP) and Cryptographic Module Validation 260

Program (CMVP). 261

 262

An entropy source that conforms to this Recommendation can be used by RBGs to produce a 263

sequence of random bits. While there has been extensive research on the subject of generating 264

pseudorandom bits using a DRBG and an unknown seed value, creating such an unknown seed 265

has not been as well documented. The only way for this seed value to provide real security is for 266

it to contain a sufficient amount of randomness, e.g., from a non-deterministic process referred to 267

as an entropy source. This Recommendation describes the properties that an entropy source must 268

have to make it suitable for use by cryptographic random bit generators, as well as the tests used 269

to validate the quality of the entropy source. 270

 271

The development of entropy sources that construct unpredictable outputs is difficult, and providing 272

guidance for their design and validation testing is even more so. The testing approach defined in 273

this Recommendation assumes that the developer understands the behavior of the noise source 274

within the entropy source and has made a good-faith effort to produce a consistent source of 275

entropy. It is expected that, over time, improvements to the guidance and testing will be made, 276

based on experience in using and validating against this Recommendation. 277

 278

This Recommendation was developed in concert with American National Standard (ANS) X9.82, 279

a multi-part standard on random number generation. 280

1.2 Symbols 281

The following symbols and functions are used in this Recommendation. 282

A={x1,x2,…,xk}
The set of all possible distinct sample outputs from a noise source, i.e. the

alphabet.

H

The min-entropy of the samples from a (digitized) noise source or of the

output from an entropy source; the min-entropy assessment for a noise

source or entropy source.

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 2

HI Initial entropy estimate.

logb(x) The logarithm of x with respect to base b.

max(a, b) A function that returns the maximum of the two values a and b.

k The number of possible sample values, i.e., the size of the alphabet.

 The probability of falsely rejecting the null hypothesis (type I error).

|a| A function that returns the absolute value of a.

pi
The probability for an observation (or occurrence) of the sample value xi

in A.

pmax
The probability of observing the most common sample from a noise

source.

S=(s1,…,sL) A dataset that consists of an ordered collection of samples, where si ϵ A.

xi A possible output from the (digitized) noise source.

[a,b] The interval of numbers between a and b, including a and b.

 x
A function that returns the smallest integer greater than or equal to x; also

known as the ceiling function.

 x
A function that returns the largest integer less than or equal to x; also

known as the floor function.

|| Concatenation.

 Bit-wise exclusive-or operation.

1.3 Organization 283

Section 2 gives a general discussion on min-entropy, the entropy source model and the conceptual 284

interfaces. Section 3 explains the validation process and lists the requirements on the entropy 285

source, data collection, documentation, etc. Section 4 describes the health tests. Section 5 includes 286

various statistical tests to check whether the entropy source outputs are IID (independent and 287

identically distributed) or not. Section 6 provides several methods to estimate the entropy of the 288

noise source. The appendices include a list of acronyms, a glossary, references, a discussion on 289

min-entropy and the optimum guessing attack cost, descriptions of the post-processing functions, 290

information about the narrowest internal width and the underlying information on different entropy 291

estimation strategies used in this Recommendation. 292

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 3

2 General Discussion 293

The three main components of a cryptographic RBG are a source of random bits (an entropy 294

source), an algorithm for accumulating and providing random bits to the consuming applications, 295

and a way to combine the first two components appropriately for the cryptographic applications. 296

This Recommendation describes how to design and test entropy sources. SP 800-90A describes 297

deterministic algorithms that take an entropy input and use it to produce pseudorandom values. SP 298

800-90C provides the “glue” for putting the entropy source together with the algorithm to 299

implement an RBG. 300

Specifying an entropy source is a complicated matter. This is partly due to confusion in the 301

meaning of entropy, and partly due to the fact that, while other parts of an RBG design are strictly 302

algorithmic, entropy sources depend on physical processes that may vary from one instance of a 303

source to another. This section discusses, in detail, both the entropy source model and the meaning 304

of entropy. 305

2.1 Min-Entropy 306

The central mathematical concept underlying this Recommendation is entropy. Entropy is defined 307

relative to one’s knowledge of an experiment’s output prior to observation, and reflects the 308

uncertainty associated with predicting its value – the larger the amount of the entropy, the greater 309

the uncertainty in predicting the value of an observation. There are many possible types of entropy; 310

this Recommendation uses a very conservative measure known as min-entropy, which measures 311

the difficulty of guessing the most likely output of the entropy source. 312

In cryptography, the unpredictability of secret values (such as cryptographic keys) is essential. The 313

probability that a secret is guessed correctly in the first trial is related to the min-entropy of the 314

distribution that the secret was generated from. The min-entropy is closely related to the negative 315

logarithm of the maximum probability using the optimal guessing strategy [Cac97] (see Appendix 316

D for more information). 317

The min-entropy of an independent discrete random variable X that takes values from the set 318

A={x1,x2,…,xk} with probability Pr(X=xi) = pi for i =1,…,k is defined as 319

𝐻 = − min
1≤𝑖≤𝑘

(−log2 𝑝𝑖), 320

= − log2 max
1≤𝑖≤𝑘

𝑝𝑖 . 321

If X has min-entropy H, then the probability of observing any particular value for X is no greater 322

than 2-H. The maximum possible value for the min-entropy of a random variable with k distinct 323

values is log2 k, which is attained when the random variable has a uniform probability distribution, 324

i.e., p1 = p2 =…= pk =1/k. 325

2.2 The Entropy Source Model 326

This section describes the entropy source model in detail. Figure 1 illustrates the model that this 327

Recommendation uses to describe an entropy source and its components: a noise source, an 328

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 4

optional conditioning component and a health testing component. 329

 330

Figure 1 Entropy Source Model 331

2.2.1 Noise Source 332

The noise source is the root of security for the entropy source and for the RBG as a whole. This is 333

the component that contains the non-deterministic, entropy-providing activity that is ultimately 334

responsible for the uncertainty associated with the bitstrings output by the entropy source. 335

If the non-deterministic activity being sampled produces something other than binary data, the 336

sampling process includes a digitization process that converts the output samples to bits. The noise 337

sourse may also include some simple post-processing operations that can reduce the statistical 338

biases of the samples and increase the entropy rate of the resulting output. The output of the 339

digitized and optionally post-processed noise source is called the raw data. 340

This Recommendation assumes that the sample values obtained from a noise source consist of 341

fixed-length bitstrings. 342

If the noise source fails to generate random outputs, no other component in the RBG can 343

compensate for the lack of entropy; hence, no security guarantees can be made for the application 344

relying on the RBG. 345

In situations where a single noise source does not provide sufficient entropy in a reasonable amount 346

of time, outputs from multiple noise sources may be combined to obtain the necessary amount of 347

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 5

entropy. When multiple noise sources are used, the relationship between sources affects the 348

entropy of the outputs. If the noise sources are independent, their entropy assessments can be 349

added. Thermal noise and mouse movements can be given as examples of independent noise 350

sources (i.e., the output of the noise sources are independent). However, for some combinations of 351

noise sources, such as the ones based on dependent processes (e.g., packet arrival times in a 352

communication network and hard drive access times), the total entropy produced is harder to 353

estimate. This Recommendation only considers the use of independent noise sources. 354

2.2.2 Conditioning Component 355

The optional conditioning component is a deterministic function responsible for reducing bias 356

and/or increasing the entropy rate of the resulting output bits (if necessary to obtain a target value). 357

There are various methods for achieving this. The developer should consider the conditioning 358

component to be used and how variations in the behavior of the noise source may affect the entropy 359

rate of the output. In choosing an approach to implement, the developer may either choose to 360

implement a cryptographic algorithm listed in Section 3.1.5.1.1 or use an alternative algorithm as 361

a conditioning component. The use of either of these approaches is permitted by this 362

Recommendation. 363

2.2.3 Health Tests 364

Health tests are an integral part of the entropy source design that are intended to ensure that the 365

noise source and the entire entropy source continue to operate as expected. When testing the 366

entropy source, the end goal is to obtain assurance that failures of the entropy source are caught 367

quickly and with a high probability. Another aspect of health testing strategy is determining likely 368

failure modes for the entropy source and, in particular, for the noise source. Health tests are 369

expected to include tests that can detect these failure conditions. 370

The health tests can be separated into three categories: start-up tests (on all components), 371

continuous tests (primarily on the noise source), and on-demand tests. 372

2.3 Conceptual Interfaces 373

This section describes three conceptual interfaces that can be used to interact with the entropy 374

source: GetEntropy, GetNoise and HealthTest. However, it is anticipated that the actual 375

interfaces used may depend on the entropy source employed. 376

These interfaces can be used by a developer when constructing an RBG as specified in SP 800-377

90C. 378

2.3.1 GetEntropy: An Interface to the Entropy Source 379

The GetEntropy interface can be considered to be a command interface into the outer entropy 380

source box in Figure 1. This interface is meant to indicate the types of requests for services that an 381

entropy source may support. 382

A GetEntropy call could return a bitstring containing the requested amount of entropy, along 383

with an indication of the status of the request. Optionally, an assessment of the entropy can be 384

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 6

provided. 385

 386

GetEntropy

Input:

bits_of_entropy: the requested amount of entropy

Output:

entropy_bitstring: The string that provides the requested entropy.

status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise.

 387

2.3.2 GetNoise: An Interface to the Noise Source 388

The GetNoise interface can be considered to be a command interface into the noise source 389

component of an entropy source. This could be used to obtain raw, digitized and optionally post-390

processed outputs from the noise source for use in validation testing or for external health tests. 391

While it is not required to be in this form, it is expected that an interface be available that allows 392

noise source data to be obtained without harm to the entropy source. This interface is meant to 393

provide test data to credit a noise source with an entropy estimate during validation or for health 394

testing. It is permitted that such an interface is available only in “test mode” and that it is disabled 395

when the source is operational. 396

This interface is not intended to constrain real-world implementations, but to provide a consistent 397

notation to describe data collection from noise sources. 398

A GetNoise call returns raw, digitized, samples from the noise source, along with an indication of 399

the status of the request. 400

GetNoise

Input:

number_of_samples_requested: An integer value that indicates the requested number of samples

to be returned from the noise source.

Output:

noise_source_data: The sequence of samples from the noise source with length

number_of_samples_requested.

status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise.

 401

2.3.3 HealthTest: An Interface to the Entropy Source 402

A HealthTest call is a request to the entropy source to conduct a test of its health. Note that it may 403

not be necessary to include a separate HealthTest interface if the execution of the tests can be 404

initiated in another manner that is acceptable to FIPS 140 [FIPS140] validation. 405

 406

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 7

HealthTest

Input:

type_of_test_requested: A bitstring that indicates the type or suite of tests to be performed (this

may vary from one entropy source to another).

Output:

status: A Boolean value that is TRUE if the entropy source passed the requested test, and is

FALSE otherwise.

 407

3 Entropy Source Validation 408

Entropy source validation is necessary in order to obtain assurance that all relevant requirements 409

of this Recommendation are met. This Recommendation provides requirements and guidance that 410

will allow an entropy source to be validated for an entropy assessment that will provide evidence 411

that the entropy source produces bitstrings providing entropy at a specified rate. Validation 412

consists of testing by an NVLAP-accredited laboratory against the requirements of SP 800-90B, 413

followed by a review of the results by NIST’s CAVP and CMVP. Validation provides additional 414

assurance that adequate entropy is provided by the source and may be necessary to satisfy some 415

legal restrictions, policies, and/or directives of various organizations. 416

The validation of an entropy source presents many challenges. No other part of an RBG is so 417

dependent on the technological and environmental details of an implementation. At the same time, 418

the proper operation of the entropy source is essential to the security of an RBG. The developer 419

should make every effort to design an entropy source that can be shown to serve as a consistent 420

source of entropy, producing bitstrings that can provide entropy at a rate that meets (or exceeds) a 421

specified value. In order to design an entropy source that provides an adequate amount of entropy 422

per output bitstring, the developer must be able to accurately estimate the amount of entropy that 423

can be provided by sampling its (digitized) noise source. The developer must also understand the 424

behavior of the other components included in the entropy source, since the interactions between 425

the various components may affect any assessment of the entropy that can be provided by an 426

implementation of the design. For example, if it is known that the raw noise-source output is 427

biased, appropriate conditioning components can be included in the design to reduce that bias to a 428

tolerable level before any bits are output from the entropy source. 429

3.1 Validation Process 430

An entropy source may be submitted to an accredited lab for validation testing by the developer or 431

any entity with an interest in having an entropy source validated. After the entropy source is 432

submitted for validation, the labs will examine all documentation and theoretical justifications 433

submitted. The labs will evaluate these claims, and may ask for more evidence or clarification. 434

The general flow of entropy source validation testing is summarized in Figure 2. The following 435

sections describe the details of the validation testing process. 436

 437

438

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 8

 439

 440

Estimate entropy - Non-IID

track (Section 6.2)

Validation fails. No

entropy estimate awarded.

Update entropy estimate

(Section 3.1.4)

Is conditioning used?

Update entropy estimate

(Section 3.1.5)

Estimate entropy - IID track

(Section 6.1)

Apply Restart Tests

(Section 3.1.4)

Pass restart tests?

Data collection

(Section 3.1.1)

 Determine the track

(Section 3.1.1)

Start validation

Validation at entropy

estimate.

Non-IID track

Yes

IID track

No

Yes

No

Figure 2 Entropy Estimation Strategy

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 9

3.1.1 Data Collection 441

The submitter provides the following inputs for entropy estimation, according to the requirements 442

presented in Section 3.2.4. 443

1. A sequential dataset of at least 1,000,000 consecutive sample values obtained directly from the 444

noise source (i.e., raw samples) shall be collected for validation1. If the generation of 1,000,000 445

consecutive samples is not possible, the concatenation of several smaller sets of consecutive 446

samples (generated using the same device) is allowed. Smaller sets shall contain at least 1,000 447

samples. The concatenated dataset shall contain at least 1,000,000 samples. If multiple noise 448

sources are used, a dataset of at least 1,000,000 samples from each noise source shall be 449

collected. 450

2. If the entropy source includes a conditioning component that is not listed in Section 3.1.5.1.1, 451

a conditioned sequential dataset of at least 1,000,000 consecutive samples values obtained as 452

the output of the conditioning component shall be collected for validation. The output of the 453

conditioning component shall be treated as a binary string for testing purposes. Note that the 454

data collected from the noise source for validation may be used as input to the conditioning 455

component for the collection of conditioned output values. 456

3. For the restart tests (see Section 3.1.4), the entropy source must be restarted 1000 times; for 457

each restart, 1000 consecutive samples shall be collected directly from the noise source. This 458

data is stored in a 1000x1000 restart matrix M, where M[i][j] represents the jth sample from 459

the ith restart. 460

4. If multiple noise sources are used, sequential and restart datasets from each noise source shall 461

be collected, as specified in item 1. If a conditioning component that is not listed in Section 462

3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy 463

source. 464

3.1.2 Determining the track: IID track vs. non-IID track 465

According to this Recommendation, entropy estimation is done using two different tracks: an IID-466

track and a non-IID track. The IID-track (see Section 6.1) is used for entropy sources that generate 467

IID (independent and identically distributed) samples, whereas the non-IID track (see Section 6.2) 468

is used for noise sources that do not generate IID samples. 469

The track selection is done based on the following rules. The IID track shall be chosen only when 470

all of the following conditions are satisfied: 471

1. The submitter makes an IID claim on the noise source, based on his analysis of the design. 472

The submitter shall provide rationale for the IID claim. 473

1 Providing additional data beyond what is required will result in more accurate entropy estimates. Lack of sufficient data

may result in lower entropy estimates due to the necessity of mapping down the output values (see Section 6.4). It is

recommended that, if possible, more data than is required be collected for validation. However, it is assumed in

subsequent text that only the required data has been collected.

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 10

2. The sequential dataset described in item 1 of Section 3.1.1 is tested using the statistical 474

tests described in Section 5 to verify the IID assumption, and the IID assumption is verified 475

(i.e., there is no evidence that data is not IID). 476

3. The row and the column datasets described in item 3 of Section 3.1.1 are tested using the 477

statistical tests described in Section 5 to verify the IID assumption, and the IID assumption 478

is verified. 479

4. If a conditioning component that not listed in Section 3.1.5.1.1 is used, the conditioned 480

sequential dataset is tested using the statistical tests described in Section 5 to verify the IID 481

assumption, and the IID assumption is verified. 482

If any of these conditions are not met, the estimation process shall follow the non-IID track. 483

3.1.3 Initial Entropy Estimate 484

After determining the entropy estimation track, a min-entropy estimate per sample, denoted as 485

Horiginal, for the sequential dataset is calculated using the methods described in Section 6.1 (for the 486

IID track) or Section 6.2 (for the non-IID track). If the size of the sample space is greater than 256, 487

it shall be reduced to at most 256, using the method described in Section 6.4. 488

If the sequential dataset is not binary (i.e., the size of the sample space k is more than 2), an 489

additional entropy estimation (per bit), denoted Hbitstring, is determined (based on the entropy 490

estimation track, as specified in the previous paragraph), considering the sequential dataset as a 491

bitstring. The bits after the first 1,000,000 bits may be ignored. The entropy per sample is estimated 492

to be n×Hbitstring where n is the size of the fixed-length samples. 493

The submitter shall provide an entropy estimate for the noise source, which is based on the 494

submitter’s analysis of the noise source (see Requirement 8 in Section 3.2.2). This estimate is 495

denoted as Hsubmitter. 496

The initial entropy estimate of the noise source is calculated as HI = min (Horiginal, n×Hbitstring, 497

Hsubmitter) for non-binary sources and as HI = min (Horiginal, Hsubmitter) for binary sources. 498

3.1.4 Restart Tests 499

The entropy estimate of a noise source, calculated from a single, long-output sequence, might 500

provide an overestimate if the noise source generates correlated sequences after restarts. Hence, 501

an attacker with access to multiple noise source output sequences after restarts may be able to 502

predict the next output sequence with much better success than the entropy estimate suggests. The 503

restart tests described in this section re-evaluate the entropy estimate for the noise source using 504

different outputs from many restarts of the source. 505

3.1.4.1 Constructing Restart Data 506

To construct restart data, the entropy source shall be restarted r = 1000 times; for each restart, c = 507

1000 consecutive samples shall be collected directly from the noise source. The output samples 508

are stored in an r by c matrix M, where M[i][j] represents the jth sample from the ith restart. 509

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 11

Two datasets are constructed using the matrix M: 510

- The row dataset is constructed by concatenating the rows of the matrix M, i.e., the row 511

dataset is M[1][1] ||…|| M[1][c] || M[2][1] ||…|| M[2][c] || … || M[r][1] ||…|| M[r][c]. 512

- The column dataset is constructed by concatenating the columns of the matrix M, i.e., the 513

column dataset is M[1][1] ||…|| M[r][1] || M[1][2] ||…|| M[r][2] || …|| M[1][c] ||…|| M[r][c]. 514

3.1.4.2 Validation Testing 515

The restart tests check the relations between noise source samples generated after restarting the 516

device, and compare the results to the initial entropy estimate, HI (see Section 3.1.3). 517

First, the sanity check described in Section 3.1.4.3 is performed on the matrix M. If the test fails, 518

the validation fails and no entropy estimate is awarded. 519

If the noise source does not fail the sanity check, then the entropy estimation methods described 520

in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track) are performed on the row 521

and the column datasets, based on the track of the entropy source. Let Hr and Hc be the resulting 522

entropy estimates of the row and the column datasets, respectively. The entropy estimates from 523

the row and the column datasets are expected to be close to the initial entropy estimate HI. If the 524

minimum of Hr and Hc is less than half of HI, the validation fails, and no entropy estimate is 525

awarded. Otherwise, the entropy assessment of the noise source is taken as the minimum of the 526

row, the column and the initial estimates, i.e., min(Hr, Hc, HI). 527

If the noise source does not fail the restart tests, and the entropy source does not include a 528

conditioning component, the entropy source will be validated at min(Hr, Hc, HI). If the entropy 529

source includes a conditioning component, the entropy assessment of the entropy source is updated 530

as described in Section 3.1.5. 531

3.1.4.3 Sanity Check - Most Common Value in the Rows and Columns 532

This test checks the frequency of the most common value in the rows and the columns of the matrix 533

M. If this frequency is significantly greater than the expected value, given the initial entropy 534

estimate HI calculated in Section 3.1.3, the restart test fails and no entropy estimate is awarded. 535

Given the 1000 by 1000 restart matrix M and the initial entropy estimate HI, the test is performed 536

as follows: 537

1. Let be 0.01/(k 2000), where k is the sample size. 538

2. For each row of the matrix, find the frequency of the most common sample value Fri, for 1≤ i 539

≤ 1000. Let FR be the maximum of Fr1,…, Fr1000. 540

3. Repeat the same process for the columns of the matrix, i.e., find the frequency of the most 541

common sample value Fci for 1≤ i ≤ 1000. Let FC be the maximum of Fc1,…, Fc1000. 542

4. Let F = max(FR, FC). 543

5. Let p = 2−𝐻𝐼. Find the upper bound U of the (1−)% confidence interval for the frequency of 544

the most common value as U = 1000p + 𝑍(1−)√1000𝑝(1 − 𝑝). 545

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 12

If F is greater than U, the test fails. 546

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component 547

The optional conditioning component can be designed in various ways. Section 3.1.5.1.1 provides 548

a list of vetted cryptographic algorithms/functions for conditioning the noise source outputs. 549

Submitters are allowed to use other conditioning components; however, the entropy assessment 550

process differs from the case where a vetted conditioning component is used. If a conditioning 551

component from Section 3.1.5.1.1 is used, the entropy estimation is done as described in Section 552

3.1.5.1.2; if a non-listed algorithm is used, the entropy estimation is done as described in Section 553

3.1.5.2. 554

Let the amount of entropy in the input to the conditioning component be hin bits. This input may 555

include multiple samples from one or more noise sources. For example, if the input includes w 556

samples from a noise source with h bits of entropy per sample, hin is calculated as w×h. If multiple 557

noise sources are used, hin is calculated as the sum of amount of entropy from each noise source. 558

The submitter shall state the value of hin, and the conditioning component shall produce output 559

only when at least hin bits of entropy are available in its input. 560

Let the output size of the conditioning component be nout (see Figure 3), and the narrowest internal 561

width within the conditioning component be q. Information on determining the narrowest internal 562

width is given in Appendix F. Denote the entropy of the output from the conditioning component 563

as hout, i.e., hout bits of entropy are contained within the nout-bit output. 564

Since the conditioning component is deterministic, the entropy of the output is at most hin. 565

However, the conditioning component may reduce the entropy of the output. 566

 567

Figure 3 Entropy of the Conditioning Component 568

3.1.5.1 Using Vetted Conditioning Components 569

Both keyed and unkeyed algorithms have been vetted for conditioning. Section 3.1.5.1.1 provides 570

a list of vetted conditioning components. Section 3.1.5.1.2 discusses the method for determining 571

the entropy provided by a vetted conditioning component. 572

3.1.5.1.1 List of Vetted Conditioning Components 573

Three keyed algorithms have been vetted for a keyed conditioning component: 574

1. HMAC, as specified in FIPS 198, with any approved hash function specified in FIPS 180 575

or FIPS 202, 576

2. CMAC, as specified in SP 800-38B, with the AES block cipher (see FIPS 197), and 577

hin bits of entropy Noise

Source

nout bits with

hout bits of entropy Conditioning

Component
Output

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 13

3. CBC-MAC, as specified in Appendix G, with the AES block cipher. This Recommendation 578

does not approve the use of CBC-MAC for purposes other than as a conditioning 579

component in an RBG. 580

The keys used by the keyed conditioning components shall be selected by the submitter in advance 581

(per implementation or per device). The submitter shall document how the selection is done, and 582

specify the key to test the correctness of the implementation. 583

Three unkeyed functions have been vetted for unkeyed conditioning component: 584

1. Any approved hash function specified in FIPS 180 or FIPS 202, 585

2. Hash_df, as specified in SP 800-90A, using any approved hash function specified in FIPS 586

180 or FIPS 202, and 587

3. Block_Cipher_df, as specified in SP800-90A using the AES block cipher (see FIPS 197). 588

 589

The narrowest internal width and the output length for the vetted conditioning functions are 590

provided in the following table. 591

Table 1 The narrowest internal width and output lengths of the vetted conditioning functions. 592

Conditioning Function Narrowest Internal Width (q) Output Length

(nout)

HMAC hash-function output size hash-function output size

CMAC AES block size = 128 AES block size = 128

CBC-MAC AES block size = 128 AES block size = 128

Hash Function hash-function output size hash-function output size

Hash_df hash-function output size hash-function output size

Block_Cipher_df AES key size AES key size

 593

For HMAC, CMAC, CBC-MAC and the hash functions, the output length (nout) specified in the 594

table is the “natural” output length of the function. For Hash_df and Block_cipher_df, the output 595

length indicated in the table shall be the value of no_of_bit_to_return used in the invocation of 596

Hash_df and Block_Cipher_df (see SP 800-90A). 597

 598

3.1.5.1.2 Entropy Assessment using Vetted Conditioning Components 599

When using a conditioning component listed in Section 3.1.5.1.1 (given the assurance of correct 600

implementation by CAVP testing), the entropy of the output is estimated as 601

ℎ𝑜𝑢𝑡 = {
min(ℎ𝑖𝑛, 0.85𝑛𝑜𝑢𝑡, 0.85𝑞) , if ℎ𝑖𝑛 < 2 min(𝑛𝑜𝑢𝑡, 𝑞)

min(𝑛𝑜𝑢𝑡, 𝑞) , if ℎ𝑖𝑛 ≥ 2 min(𝑛𝑜𝑢𝑡, 𝑞)
 602

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 14

When the input entropy is at least 2×min(nout, q), nout full-entropy output bits are produced. 603

Otherwise, the size of the output and the narrowest internal width are multiplied by the constant2 604

0.85 for a conservative estimate. 605

If validation testing of the vetted algorithm indicates that it has not been implemented correctly, 606

the conditioning component shall be treated as not vetted, and the procedure described in Section 607

3.1.5.2 shall be followed. 608

The entropy source will be validated at the min-entropy per conditioned output, hout, computed 609

above. 610

Note that it is acceptable to truncate the outputs from a vetted conditioning component. If this is 611

done, the entropy estimate is reduced to a proportion of the output (e.g., if there are six bits of 612

entropy in an eight-bit output and the output is truncated to six bits, then the entropy is reduced to 613

3/4 x 6 = 4.5 bits). 614

3.1.5.2 Using Non-vetted Conditioning Components 615

For non-vetted conditioning components, the entropy in the output depends, in part, on the entropy 616

of the input (hin), the size of the output (nout), and the size of the narrowest internal width (q). The 617

size of the output and the narrowest internal width is multiplied by the constant 0.85 for a 618

conservative estimate, as was done for the vetted conditioning functions listed in Section 3.1.5.1.1. 619

However, an additional parameter is needed: the entropy of the conditioned sequential dataset (as 620

described in item 2 of Section 3.1.1), which shall be computed using the methods described in 621

Section 6.1 and Section 6.2 for IID and non-IID data, respectively. Let the obtained entropy 622

estimate per bit be h'. 623

The output of the conditioning component (nout) shall be treated as a binary string, for purposes of 624

the entropy estimation. 625

The entropy of the conditioned output is estimated as 626

ℎ𝑜𝑢𝑡 = min(ℎ𝑖𝑛, 0.85𝑛𝑜𝑢𝑡, 0.85𝑞, ℎ′ × 𝑛𝑜𝑢𝑡). 627

The entropy source will be validated at the min-entropy per conditioned output, hout, computed 628

above. 629

Note that truncating subsequent to the use of a non-vetted conditioning component shall not be 630

performed before providing output from the entropy source. 631

3.1.6 Using Multiple Noise Sources 632

If multiple independent noise sources are used, the sum of the entropies provided by each noise 633

source is used as the entropy input to the conditioning component. For example, if the conditioning 634

component inputs w1 samples from Noise Source 1 with an entropy of h1 bits per sample, and w2 635

2 The constant 0.85 used in the equation was selected after some empirical studies.

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 15

samples from Noise Source 2 with an entropy of h2 bits per sample, then the hin is calculated as 636

w1h1+w2h2. 637

3.2 Requirements for Validation Testing 638

In this section, high-level requirements (on both submitters and testers) are presented for validation 639

testing. 640

3.2.1 Requirements on the Entropy Source 641

The intent of these requirements is to assist the developer in designing/implementing an entropy 642

source that can provide outputs with a consistent amount of entropy and to produce the required 643

documentation for entropy source validation. 644

1. The entire design of the entropy source shall be documented, including the interaction of the 645

components specified in Section 2.2. The documentation shall justify why the entropy source 646

can be relied upon to produce bits with entropy. 647

2. Documentation shall describe the operation of the entropy source, including how the entropy 648

source works, and how to obtain data from within the entropy source for validation testing. 649

3. Documentation shall describe the range of operating conditions under which the entropy 650

source is claimed to operate correctly (e.g., temperature range, voltages, system activity, etc.). 651

Analysis of the entropy source’s behavior at the edges of these conditions shall be documented, 652

along with likely failure modes. 653

4. The entropy source shall have a well-defined (conceptual) security boundary, which should 654

be the same as or be contained within a FIPS 140 cryptographic module boundary. This 655

security boundary shall be documented; the documentation shall include a description of the 656

content of the security boundary. Note that the security boundary may extend beyond the 657

entropy source itself (e.g., the entropy source may be contained within a larger boundary that 658

also contains a DRBG); also note that the security boundary may be logical, rather than 659

physical. 660

5. When a conditioning component is not used, the output from the entropy source is the output 661

of the noise source, and no additional interface is required. In this case, the noise-source output 662

is available during both validation testing and normal operation. 663

6. When a conditioning component is included in the entropy source, the output from the entropy 664

source is the output of the conditioning component, and an additional interface is required to 665

access the noise-source output. In this case, the noise-source output shall be accessible via the 666

interface during validation testing, but the interface may be disabled, otherwise. The designer 667

shall fully document the method used to get access to the raw noise source samples. If the 668

noise-source interface is not disabled during normal operation, any noise-source output using 669

this interface shall not be provided to the conditioning component for processing and eventual 670

output as normal entropy-source output. 671

7. The entropy source may restrict access to raw noise source samples to special circumstances 672

that are not available to users in the field, and the documentation shall explain why this 673

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 16

restriction is not expected to substantially alter the behavior of the entropy source as tested 674

during validation. 675

An optional, recommended feature of the entropy source is as follows: 676

8. The entropy source may contain multiple noise sources to improve resiliency with respect to 677

degradation or misbehavior. Only independent noise sources are allowed by this 678

Recommendation. When multiple noise sources are used, the requirements specified in Section 679

3.2.2 shall apply to each noise source. 680

9. If multiple noise sources are used, documentation shall specify whether all noise sources will 681

be available operationally; datasets obtained from noise sources that will not be available in 682

the field shall not be used for entropy assessment. 683

3.2.2 Requirements on the Noise Source 684

The entropy source will have no more entropy than that provided by the noise source, and as such, 685

the noise source requires special attention during validation testing. This is partly due to the 686

fundamental importance of the noise source (if it does not do its job, the entropy source will not 687

provide the expected amount of security), and partly because the probabilistic nature of its behavior 688

requires more complicated testing. 689

The requirements for the noise source are as follows: 690

1. The operation of the noise source shall be documented; this documentation shall include a 691

description of how the noise source works and rationale about why the noise source provides 692

acceptable entropy output, and should reference relevant, existing research and literature. 693

Documentation shall also include why it is believed that the entropy rate does not change 694

significantly during normal operation. 695

2. Documentation shall provide an explicit statement of the expected entropy rate and provide a 696

technical argument for why the noise source can support that entropy rate. This can be in broad 697

terms of where the unpredictability comes from and a rough description of the behavior of the 698

noise source (to show that it is reasonable to assume that the behavior is stable). 699

3. The noise source state shall be protected from adversarial knowledge or influence to the 700

greatest extent possible. The methods used for this shall be documented, including a 701

description of the (conceptual) security boundary’s role in protecting the noise source from 702

adversarial observation or influence. 703

4. Although the noise source is not required to produce unbiased and independent outputs, it shall 704

exhibit random behavior; i.e., the output shall not be definable by any known algorithmic rule. 705

Documentation shall indicate whether the noise source produces IID data or non-IID data. This 706

claim will be used in determining the test path followed during validation. If the submitter 707

makes an IID claim, documentation shall include rationale for the claim. 708

5. The noise source shall generate fixed-length bitstrings. A description of the output space of 709

the noise source shall be provided. Documentation shall specify the fixed sample size (in bits) 710

and the list (or range) of all possible outputs from each noise source. 711

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 17

6. An ordered ranking of the bits in the n-bit samples shall be provided. A rank of ‘1’ shall 712

correspond to the bit assumed to be contributing the most entropy to the sample, and a rank of 713

n shall correspond to the bit contributing the least amount. If multiple bits contribute the same 714

amount of entropy, the ranks can be assigned arbitrarily among those bits. The algorithm 715

specified in Section 6.4 shall be used to assign ranks. 716

7. The noise source may include simple post-processing functions to improve the quality of its 717

outputs. When a post-processing function is used, the noise source shall use only one of the 718

approved post-processing functions: Von Neumann’s method, the linear filtering method, or 719

the length-of-runs method. The descriptions of these methods are given in Appendix E. If other 720

post-processing functions are approved in the future, they will be included in the 721

implementation guidance [IG140-2]. 722

3.2.3 Requirements on the Conditioning Component 723

The requirements for the conditioning component are as follows: 724

1. If the entropy source uses a vetted conditioning component as listed in Section 3.1.5.1.1, the 725

implementation of that conditioning component shall be tested to obtain assurance of 726

correctness. 727

2. For entropy sources containing a conditioning component that is not listed in Section 3.1.5.1.1, 728

a description of the conditioning component shall be provided. Documentation shall state the 729

narrowest internal width and the size of the output blocks from the conditioning component. 730

3. Documentation shall include the minimum amount of entropy hin in the input of the 731

conditioning component. 732

3.2.4 Requirements on Data Collection 733

The requirements on data collection are listed below: 734

1. The data collection for entropy estimation shall be performed in one of the three ways 735

described below: 736

 By the submitter with a witness from the testing lab, or 737

 By the testing lab itself, or 738

 Prepared by the submitter in advance of testing, along with the following documentation: 739

a specification of the data generation process, and a signed document that attests that the 740

specification was followed. 741

2. Data collected from the noise source for validation testing shall be raw output values 742

(including digitization and optional post-processing). 743

3. The data collection process shall not require a detailed knowledge of the noise source or 744

intrusive actions that may alter the behavior of the noise source (e.g., drilling into the device). 745

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 18

4. Data shall be collected from the noise source and any conditioning component that is not listed 746

in Section 3.1.5.1.1 (if used) under normal operating conditions (i.e., when it is reasonable to 747

expect entropy in the outputs). 748

5. Data shall be collected from the entropy source under validation. Any relevant version of the 749

hardware or software updates shall be associated with the data. 750

6. Documentation on data collection shall be provided so that a lab or submitter can perform (or 751

replicate) the collection process at a later time, if necessary. 752

4 Health Tests 753

Health tests are an important component of the entropy source, as they aim to detect deviations 754

from the intended behavior of the noise source as quickly as possible and with a high probability. 755

Noise sources can be fragile, and hence, can be affected by the changes in operating conditions of 756

the device, such as temperature, humidity, or electric field, which might result in unexpected 757

behavior. Health tests take the entropy assessment as input, and characterize the expected behavior 758

of the noise source based on this value. Requirements on the health tests are listed in Section 4.3. 759

4.1 Health Test Overview 760

The health testing of a noise source is likely to be very technology-specific. Since, in the vast 761

majority of cases, the noise source will not produce unbiased, independent binary data, traditional 762

statistical procedures (e.g., randomness tests described in NIST SP 800-22) that test the hypothesis 763

of unbiased, independent bits will almost always fail, and thus are not useful for monitoring the 764

noise source. In general, tests on the noise source have to be tailored carefully, taking into account 765

the expected statistical behavior of the correctly operating noise source. 766

The health testing of noise sources will typically be designed to detect failures of the noise source, 767

based on the expected output during a failure, or to detect a deviation from the expected output 768

during the correct operation of the noise source. Health tests are expected to raise an alarm in three 769

cases: 770

1. When there is a significant decrease in the entropy of the outputs, 771

2. When noise source failures occur, or 772

3. When hardware fails, and implementations do not work correctly. 773

4.2 Types of Health Tests 774

Health tests are applied to the outputs of a noise source before any conditioning is done. (It is 775

permissible to also apply some health tests to conditioned outputs, but this is not required.) 776

Start-up health tests are performed after powering up or rebooting. They ensure that the entropy 777

source components are working as expected before they are used during normal operating 778

conditions, and nothing failed since the last time that the start-up tests were run. The samples 779

drawn from the noise source during the startup tests shall not be available for normal operations 780

until the tests are completed; after testing, these samples may simply be discarded. 781

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 19

Continuous health tests are run indefinitely while the entropy source is operating. Continuous tests 782

focus on the noise source behavior and aim to detect failures as the noise source runs. The purpose 783

of continuous tests is to allow the entropy source to detect many kinds of failures in its underlying 784

noise source. These tests are run continuously on all digitized samples obtained from the noise 785

source, and so tests must have a very low probability of raising a false alarm during the normal 786

operation of the noise source. In many systems, a reasonable false positive probability will make 787

it extremely unlikely that a properly functioning device will indicate a malfunction, even in a very 788

long service life. Note that continuous tests are resource-constrained − this limits their ability to 789

detect noise source problems, so that only gross failures are likely to be detected. 790

Note that the continuous health tests operate over a stream of values. These sample values may be 791

output as they are generated; there is no need to inhibit output from the noise source or entropy 792

source while running the test. It is important to understand that this may result in poor entropy 793

source outputs for a time, since the error is only signaled once significant evidence has been 794

accumulated, and these values may have already been output by the entropy source. As a result, it 795

is important that the false positive probability be set to an acceptable level. In the following 796

discussion, all calculations assume that a false positive probability of approximately once in 240 797

samples generated by the noise source is acceptable; however, the formulas given can be adapted 798

for different false positive probabilities selected by the submitter. 799

On-demand health tests can be called at any time. This Recommendation does not require 800

performing any particular on-demand testing during operation. However, it does require that the 801

entropy source be capable of performing on-demand health tests. Note that resetting, rebooting, or 802

powering up are acceptable methods for initiating an on-demand test if the procedure results in the 803

immediate execution of the start-up tests. Samples collected from the noise source during on-804

demand health tests shall not be available for use until the tests are completed, and may simply be 805

discarded. 806

4.3 Requirements for Health Tests 807

Health tests on the noise source are a required component of an entropy source. The health tests 808

shall include both continuous and startup tests. 809

1. The submitter shall provide documentation that specifies all entropy source health tests and 810

their rationale. The documentation shall include a description of the health tests, the rate and 811

conditions under which each health test is performed (e.g., at start-up, continuously, or on-812

demand), and rationale indicating why each test is believed to be appropriate for detecting one 813

or more failures in the entropy source. 814

2. The developer shall document any known or suspected noise source failure modes, and shall 815

include vendor-defined continuous tests to detect those failures. 816

3. Appropriate health tests tailored to the noise source should place special emphasis on the 817

detection of misbehavior near the boundary between the nominal operating environment and 818

abnormal conditions. This requires a thorough understanding of the operation of the noise 819

source. 820

4. The submitter shall provide source code for any tests implemented as an alternative or in 821

addition to those listed in this Recommendation. 822

5. Health tests shall be performed on the noise source samples before any conditioning is done. 823

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 20

6. Additional health tests may be performed on the outputs of the conditioning function. Any 824

such tests shall be fully documented. 825

7. In the case where a sufficiently persistent failure is detected, the entropy source shall notify 826

the consuming application (e.g., the RBG) of the error condition. The entropy source may 827

detect intermittent failures and react to them in other ways, e.g., by inhibiting output for a short 828

time, before notification of the error. The submitter shall describe the conditions for 829

intermittent and persistent failures. 830

8. The expected false positive probability of the health tests signaling a major failure to the 831

consuming application shall be documented. 832

9. The continuous tests shall include either: 833

a. The approved continuous health tests, described in Section 4.4, or 834

b. Some vendor-defined tests that meet the requirements to substitute for those approved 835

tests, as described in Section 4.5. If vendor-defined health tests are used in place of any 836

approved health tests, the tester shall verify that the implemented tests detect the failure 837

conditions detected by the approved continuous health tests, as described in Section 4.4. 838

The submitter can avoid the need to use the two approved continuous health tests by 839

providing convincing evidence that the failure being considered will be reliably detected 840

by the vendor-defined continuous tests. This evidence may be a proof or the results of 841

statistical simulations. 842

10. If any of the approved continuous health tests are used by the entropy source, the false positive 843

probability for these tests shall be set to at least 2-50. The submitter shall specify and document 844

a false positive probability suitable for their application. 845

11. The continuous tests may include additional tests defined by the vendor. 846

12. The entropy source's startup tests shall run the continuous health tests over at least 4096 847

consecutive samples. 848

13. The samples subjected to startup testing may be released for operational use after the startup 849

tests have been passed. 850

14. The startup tests may include other tests defined by the vendor. 851

15. The entropy source shall support on-demand testing. 852

16. The entropy source may support on-demand testing by restarting the entropy source and 853

rerunning the startup tests, or by rerunning the startup tests without restarting the entropy 854

source. The documentation shall specify the approach used for on-demand testing. 855

17. The entropy source's on-demand testing may include other testing. 856

4.4 Approved Continuous Health Tests 857

This recommendation provides two approved health tests: the Repetition Count test, and the 858

Adaptive Proportion test. If these two health tests are included among the continuous health tests 859

of the entropy source, no other tests are required. However, the developer is allowed to include 860

additional health tests. 861

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 21

Both tests are designed to require minimal resources, and to be computed on-the-fly, while noise 862

source samples are being produced, possibly conditioned, and output. Neither test delays the 863

availability of the noise source samples. 864

Like all statistical tests, both of these tests have a false positive probability – the probability that a 865

correctly functioning noise source will fail the test on a given output. A reasonable choice for the 866

false positive probability in many applications is = 2-40; this value will be used in all the 867

calculations in the rest of this section. The submitter of the entropy source must determine a 868

reasonable false positive probability, given the details of the entropy source and its consuming 869

application. In order to ensure that these tests have enough power to detect major failures, the 870

lowest allowed false positive probability for these approved tests is = 2-50. 871

4.4.1 Repetition Count Test 872

The goal of the repetition count test is to quickly detect catastrophic failures that cause the noise 873

source to become "stuck" on a single output value for a long period of time. It can be seen as an 874

update of the "stuck test" which was previously required for random number generators within 875

FIPS-approved cryptographic modules. 876

Given the assessed min-entropy H of a noise source, the probability3 of that source generating n 877

identical samples consecutively is at most 2-H(n-1). The test declares an error if a sample is repeated 878

more than the cutoff value C, which is determined by the acceptable false-positive probability 879

and the entropy estimate H. The cutoff value of the repetition count test is calculated as: 880

C =

H

 log
1 2

. 881

This value of C is the smallest integer satisfying the inequality ≥ 2-H (C-1), which ensures that the 882

probability of obtaining a sequence of identical values from C consecutive noise source samples 883

is no greater than . For example, for = 2-40, an entropy source with H = 2.0 bits per sample 884

would have a repetition count test cutoff value of 1+40/2.0 = 21. 885

Given a dataset of noise source observations, and the cutoff value C, the repetition count test is 886

performed as follows: 887

1. Let A be the current sample value. 888

2. Initialize the counter B to 1. 889

3. If the next sample value is A, increment B by one. 890

 If B is equal to C, return an error. 891

else: 892

 Let A be the next sample value. 893

3 This probability can be obtained as follows. Let a random variable take possible values with probabilities pi, for i=1,..,k, where

p1≥p2≥…≥pk . Then, the probability of producing any C identical consecutive samples is ∑ pi
C. Since, ∑ pi

C is less than or

equal to p1.p1
C-1+ p1.p2

C-1+…+ p1.pk
C-1= (p1+…+pk) p1

C-1 = p1
C-1 = 2-H(C-1).

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 22

 Initialize the counter B to 1. 894

 Repeat Step 3. 895

Running the repetition count test requires enough memory to store: 896

A: the most recently observed sample value, 897

B: the number of consecutive times that the sample A has been observed, and 898

C: the cutoff value. 899

This test's cutoff value can be applied to any entropy estimate, H, including very small and very 900

large estimates. However, it is important to note that this test is not very powerful – it is able to 901

detect only catastrophic failures of a noise source. For example, a noise source evaluated at eight 902

bits of min-entropy per sample has a cutoff value of six repetitions to ensure a false-positive rate 903

of approximately once per one trillion samples generated. If that noise source somehow failed to 904

the point that each sample had a 1/16 probability of being the same as the previous sample, so that 905

it was providing only four bits of min-entropy per sample, it would still be expected to take about 906

sixteen million samples before the repetition count test would notice the problem. 907

4.4.2 Adaptive Proportion Test 908

The adaptive proportion test is designed to detect a large loss of entropy that might occur as a 909

result of some physical failure or environmental change affecting the noise source. The test 910

continuously measures the local frequency of occurrence of a sample value in a sequence of noise 911

source samples to determine if the sample occurs too frequently. Thus, the test is able to detect 912

when some value begins to occur much more frequently than expected, given the source's assessed 913

entropy per sample. 914

The test counts the number of times the current sample value is repeated within a window of size 915

W. If the sample is repeated more frequently than a cutoff value C, which is determined by the 916

false positive probability and the assessed entropy/sample of the source, H, the test declares an 917

error. The window size W is selected based on the alphabet size, and shall be assigned to 1024 if 918

the noise source is binary (that is, it produces only two distinct values) and 512 if the noise source 919

is not binary (that is, it produces more than two distinct values). 920

Given a sequence of noise source observations, the cutoff value C and the window size W, the test 921

is performed as follows: 922

1. Let A be the current sample value. 923

2. Initialize the counter B to 1. 924

3. For i = 1 to W–1 925

If the next sample is equal to A, increment B by 1. 926

4. If B > C, return error. 927

5. Go to Step 1. 928

Running the test requires enough memory to store 929

A: the sample value currently being counted, 930

B: the number of times that A has been seen in the current window, 931

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 23

W: the window size, 932

i: the counter for the number of samples examined in the current window, and 933

C: the cutoff value at with the test fails. 934

The cutoff value C is chosen such that the probability of observing more than C identical samples 935

in a window size of W is at most . Mathematically, C satisfies the following equation4. 936

Pr (B > C) = , 937

where p = 2-H. The following tables give cutoff values for various min-entropy estimates per 938

sample and window sizes with = 2-40. For example, the cutoff value for binary sources with 939

H=0.4 is 867, and the probability of detecting a loss of 50% of the entropy using 1024 samples is 940

0.86, and the probability of detecting the same failure is almost 1 during the startup tests that use 941

at least 4096 samples. Note that the noise source failures whose probability of detection is listed 942

in the tables are of a very specific form – some value becomes much more common than it should 943

be, given the source’s entropy estimate, so that the maximum probability pmax is much higher, and 944

thus h = − log2 (pmax) is much lower than claimed by the noise source’s entropy estimate. 945

Table 2 Adaptive proportion test on binary data for various entropy/sample levels with W=1024 946

H
Cutoff

value

Probability of detecting noise source failure

50% entropy loss 33% entropy loss

in one

window
in startup

in one

window
in startup

0.2 960 0.25 0.69 0 0
0.4 867 0.86 ≈1 0.06 0.23

0.6 779 0.81 ≈1 0.29 0.74

0.8 697 0.76 ≈1 0.50 0.94

1 624 0.71 0.99 0.56 0.96
Table 3 Adaptive proportion test on non-binary data for various entropy/sample levels with W=512 947

H
Cutoff

value

Probability of detecting noise source failure

50% entropy loss 33% entropy loss

in one

window
in startup

in one

window
in startup

0.2 491 0.25 0.69 0 0.0
0.5 430 0.43 0.99 0 0.02

1 335 0.70 ≈1 0.7 0.44

2 200 0.50 ≈1 0.23 0.88

3 122 0.35 0.97 0.18 0.79
4 77 0.25 0.90 0.10 0.57
5 50 0.18 0.79 0.5 0.35

4 This probability can be computed using widely-available spreadsheet applications. In Microsoft Excel, Open Office

Calc,and iWork Numbers, the calculation is done with the function =CRITBINOM(). For example, in Microsoft Excel,

C would be computed as =CRITBINOM(W, power(2,(-H)),1-α).

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 24

6 34 0.12 0.66 0.2 0.16
7 25 0.9 0.52 0.1 0.04
8 18 0.6 0.40 0 0.02

 948

4.5 Vendor-Defined Alternatives to the Continuous Health Tests 949

Designer-defined tests are always permitted in addition to the two approved tests listed in Section 950

4.4. Under some circumstances, the vendor-defined tests may take the place of the two approved 951

tests. The goal of the two approved continuous health tests in Section 4.4, is to detect two 952

conditions: 953

a. Some value is consecutively repeated many more times than expected, given the assessed 954

entropy per sample of the source. 955

b. Some value becomes much more common in the sequence of noise source outputs than 956

expected, given the assessed entropy per sample of the source. 957

The designer of the entropy source is in an excellent position to design health tests specific to the 958

source and its known and suspected failure modes. Therefore, this Recommendation also permits 959

designer-defined alternative health tests to be used in place of the approved tests in Section 4.4, 960

so long as the combination of the designer-defined tests and the entropy source itself can guarantee 961

that these two conditions will not occur without being detected by the source with at least the same 962

probability. 963

4.6 Alternative Health Test Criteria 964

For concreteness, these are the criteria that are required for any alternative continuous health tests: 965

a. If a single value appears more than 100/H consecutive times in a row in the sequence of 966

noise source samples, the test shall detect this with probability of at least 99%. 967

b. Let P = 2-H. If the noise source's behavior changes so that the probability of observing a 968

specific sample value increases to at least P* = 2-H/2, then the test shall detect this with a 969

probability of at least 50% when examining 50,000 consecutive samples from this degraded 970

source. 971

The submitter can avoid the need to use the two approved continuous health tests by providing 972

convincing evidence that the failure being considered will be reliably detected by the vendor-973

defined continuous tests. This evidence may be a proof or the results of statistical simulations. 974

 975

5 Testing the IID Assumption 976

The samples from a noise source are considered to be independent and identically distributed (IID) 977

if each sample has the same probability distribution as every other sample, and all samples are 978

mutually independent. The IID assumption significantly simplifies the process of entropy 979

estimation. When the IID assumption does not hold, i.e., the samples are either not identically 980

distributed or are not independently distributed (or both), estimating entropy is more difficult and 981

requires different methods. 982

This section includes statistical tests that are designed to find evidence that the samples are not IID 983

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 25

and if no evidence is found that the samples are non-IID, then it is assumed that the samples are 984

IID (see Section 3.1.1). These tests take the sequence S = (s1,…,sL), where si ϵ A = {x1,…,xk}, as 985

input, and test the hypothesis that the values in S are IID. If the hypothesis is rejected by any of 986

the tests, the values in S are assumed to be non-IID. 987

Statistical tests based on permutation testing (also known as shuffling tests) are given in Section 988

5.1. Five additional chi-square tests are presented in Section 5.2. 989

5.1 Permutation Testing 990

Permutation testing is a way to test a statistical hypothesis in which the actual value of the test 991

statistic is compared to a reference distribution that is inferred from the input data, rather than a 992

standard statistical distribution. The general approach of permutation testing is summarized in 993

Figure 4. This is repeated for each of the test statistics described in Sections 5.1.1 – 5.1.11. The 994

shuffle algorithm of step 2.1 is provided in Figure 5. 995

Input: S = (s1,…, sL)

Output: Decision on the IID assumption

1. For each test i

1.1. Assign the counters Ci,0 and Ci,1 to zero.

1.2. Calculate the test statistic Ti on S: denote the result as ti.

2. For j = 1 to 10,000

2.1. Permute S using the Fisher-Yates shuffle algorithm.

2.2. For each test i

2.2.1. Calculate the test statistic on the permuted data: denote the result as ti.

2.2.2. If (ti ' > ti), increment Ci,0. If (t'=t), increment Ci,1.

3. If ((Ci,0+Ci,1≤5) or (Ci,0 ≥ 9995)) for any i, reject the IID assumption; else, assume that

the noise source outputs are IID.

Figure 4 Generic Structure of Permutation Testing 996

If the samples are IID, permuting the dataset is not expected to change the value of the test statistics 997

significantly. In particular, the original dataset and permuted datasets are expected to be drawn 998

from the same distribution; therefore, their test statistics should be similar. Unusually high or low 999

test statistics are expected to occur infrequently. However, if the samples are not IID, then the 1000

original and permuted test statistics may be significantly different. The counters Ci,0 and C i,1 are 1001

used to find the ranking of the original test statistics among permuted test statistics (i.e., where a 1002

statistic for the original dataset fit within an ordered list of the permuted datasets). Extreme values 1003

for the counters suggest that the data samples are not IID. If the sum of Ci,0 and C i,1 is less than 5, 1004

it means that the original test statistic has a very high rank; conversely, if Ci,0 is greater than 9995, 1005

it means that the original test statistics has a very low rank. The cutoff values for C i,0 and C i,1 are 1006

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 26

calculated using a type I error5 of 0.001. 1007

The tests described in the following subsections are intended to check the validity of the IID 1008

assumption. Some of the tests (e.g., the compression test) are effective at detecting repeated 1009

patterns of particular values (for example, strings of sample values that occur more often than 1010

would be expected by chance if the samples were IID), whereas some of the other tests (e.g., the 1011

number of directional runs test and the runs based on the median test) focus on the association 1012

between the numeric values of the successive samples in order to find an indication of a trend or 1013

some other relation, such as high sample values that are usually followed by low sample values. 1014

Input: S = (s1,…, sL)

Output: Shuffled S = (s1,…, sL)

1. i = L

2. While (i >1)

a. Generate a random integer j that is uniformly distributed between 0 and i.

b. Swap sj and si

c. i = i −1

Figure 5 Pseudo-code of the Fisher-Yates Shuffle 1015

For some of the tests, the number of distinct sample values, denoted k (the size of the set A), 1016

significantly affects the distribution of the test statistics, and thus the type I error. For such tests, 1017

one of the following conversions is applied to the input data, when the input is binary, i.e., k = 2. 1018

 Conversion I partitions the sequences into 8-bit non-overlapping blocks, and counts the 1019

number of ones in each block. For example, let the 20-bit input be 1020

(1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1). The first and the second 8-bit blocks include four 1021

and six ones, respectively. The last block, which is not complete, includes two ones. The 1022

output sequence is (4, 6, 2). 1023

 Conversion II partitions the sequences into 8-bit non-overlapping blocks, and calculates 1024

the integer value of each block. For example, let the input message be (1,0,0,0,1,1,1,0, 1025

1,1,0,1,1,0,1,1,0,0,1,1). The integer values of the first two blocks are 142, and 219. Zeroes 1026

are appended when the last block has less than 8 bits. Then, the last block becomes 1027

(0,0,1,1,0,0,0,0) with an integer value of 48. The output sequence is (142, 219, 48). 1028

Descriptions of the individual tests will provide guidance on when to use each of these conversions. 1029

5.1.1 Excursion Test Statistic 1030

The excursion test statistic measures how far the running sum of sample values deviates from its 1031

average value at each point in the dataset. Given S = (s1,…, sL), the test statistic T is the largest 1032

5 A type I error occurs when the null hypothesis is true, but is rejected by the test.

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 27

deviation from the average and is calculated as follows: 1033

1. Calculate the average of the sample values, i.e., �̅� = (s1 + s2 + … + sL) / L 1034

2. For i = 1 to L 1035

Calculate di = | ∑ 𝑠𝑗 − 𝑖 ×𝑖
𝑗=1 �̅� |. 1036

3. T = max (d1,…, dL). 1037

Example 1: Let the input sequence be S = (2, 15, 4, 10, 9). The average of the sample values is 8, 1038

and d1 = |2–8| = 6; d2 = |(2+15) – (28)| = 1; d3 = |(2+15+4) – (38)| = 3; d4 = |(2+15+4+10) – 1039

(48)| = 1; and d5 = |(2+15+4+10+9) – (58)| = 0. Then, T=max(6, 1, 3, 1, 0) = 6. 1040

Handling Binary data: The test can be applied to binary data, and no additional conversion steps 1041

are required. 1042

5.1.2 Number of Directional Runs 1043

This test statistic determines the number of runs constructed using the relations between 1044

consecutive samples. Given S = (s1,…, sL), the test statistic T is calculated as follows: 1045

1. Construct the sequence 𝑆′ = (𝑠1
′ ,…, 𝑠𝐿−1

′), where 1046

𝑠𝑖
′ = {

 −1, if 𝑠𝑖 > 𝑠𝑖+1

+1, if 𝑠𝑖 ≤ 𝑠𝑖+1
 1047

 for i = 1, …, L–1. 1048

2. The test statistic T is the number of runs in 𝑆′. 1049

Example 2: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then 𝑆′= (+1, +1, +1, +1, 1050

+1, +1, 1, 1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (1, 1) and (+1, +1), so T 1051

= 3. 1052

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence. 1053

5.1.3 Length of Directional Runs 1054

This test statistic determines the length of the longest run constructed using the relations between 1055

consecutive samples. Given S = (s1,…, sL), the test statistic T is calculated as follows: 1056

1. Construct the sequence 𝑆′= (𝑠1
′ , … , 𝑠𝐿−1

′), where 1057

𝑠𝑖
′ = {

 −1, if 𝑠𝑖 > 𝑠𝑖+1

+1, if 𝑠𝑖 ≤ 𝑠𝑖+1
 1058

for i =1, …, L-1. 1059

2. The test statistic T is the length of the longest run in 𝑆′. 1060

Example 3: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S′= (+1, +1, +1, +1, 1061

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 28

+1, +1, 1, 1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (1, 1) and (+1, +1), so T 1062

= 6. 1063

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence. 1064

5.1.4 Number of Increases and Decreases 1065

This test statistic determines the maximum number of increases or decreases between consecutive 1066

sample values. Given S = (s1,…, sL), the test statistic T is calculated as follows: 1067

1. Construct the sequence 𝑆′ = (𝑠1
′ , … , 𝑠𝐿−1

′), where 1068

𝑠𝑖
′ = {

 −1, if 𝑠𝑖 > 𝑠𝑖+1

+1, if 𝑠𝑖 ≤ 𝑠𝑖+1
 1069

for i = 1, …, L-1. 1070

2. Calculate the number of –1’s and +1’s in 𝑆′; the test statistic T is the maximum of these 1071

numbers, i.e., T = max (number of -1’s, number of +1’s). 1072

Example 4: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S′= (+1, +1, +1, +1, 1073

+1, +1, 1, 1, +1, +1). There are eight +1’s and two 1’s in S′, so T = max (number of +1s, 1074

number of 1s) = max (8, 2) = 8. 1075

Handling Binary data: To test binary input data, first apply the Conversion I to the input sequence. 1076

5.1.5 Number of Runs Based on the Median 1077

This test statistic determines the number of runs that are constructed with respect to the median of 1078

the input data. Given S = (s1, …, sL), the test statistic T is calculated as follows: 1079

1. Find the median �̃� of S = (s1, …, sL). 1080

2. Construct the sequence 𝑆′ = (𝑠1
′ , … , 𝑠𝐿

′) where 1081

𝑠𝑖
′ = {

 −1, if 𝑠𝑖 < �̃�

+1, if 𝑠𝑖 ≥ �̃�
 1082

for i =1, …, L. 1083

3. The test statistic T is the number of runs in 𝑆′. 1084

Example 5: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median of the input sequence 1085

is 9. Then, 𝑆′ = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1). 1086

There are five runs, hence T = 5. 1087

Handling Binary data: When the input data is binary, the median of the input data is assumed to 1088

be 0.5. No additional conversion steps are required. 1089

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 29

5.1.6 Length of Runs Based on Median 1090

This test statistic determines the length of the longest run that is constructed with respect to the 1091

median of the input data and is calculated as follows: 1092

1. Find the median �̃� of S = (s1, …, sL). 1093

2. Construct a temporary sequence 𝑆′ = (𝑠1
′ , … , 𝑠𝐿

′) from the input sequence S = (s1,…, sL), as 1094

𝑠𝑖
′ = {

 −1, if 𝑠𝑖 < �̃�

+1, if 𝑠𝑖 ≥ �̃�
 1095

for i = 1, …, L. 1096

3. The test statistic T is the length of the longest run 𝑆′. 1097

Example 6: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median for this data subset 1098

is 9. Then, S ' = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1). 1099

The longest run has a length of 2; hence, T =2. 1100

Handling Binary data: When the input data is binary, the median of the input data is assumed to 1101

be 0.5. No additional conversion steps are required. 1102

5.1.7 Average Collision Test Statistic 1103

The average collision test statistic counts the number of successive sample values until a duplicate 1104

is found. The average collision test statistic is calculated as follows: 1105

1. Let C be a list of the number of the samples observed to find two occurrences of the same 1106

value in the input sequence S = (s1,…, sL). C is initially empty. 1107

2. Let i = 1. 1108

3. While i < L 1109

a. Find the smallest j such that (si,…, si+j-1) contains two identical values. If no such j 1110

exists, break out of the while loop. 1111

b. Add j to the list C. 1112

c. i = i + j + 1 1113

4. The test statistic T is the average of all values in the list C. 1114

Example 7: Let the input sequence be S = (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). The first collision occurs for 1115

j = 3, since the second and third values are the same. 3 is added to the list C. Then, the first three 1116

samples are discarded, and the next sequence to be examined is (2, 0, 1, 0, 1, 1, 2). The collision 1117

occurs for j = 4. The third sequence to be examined is (1,1,2), and the collision occurs for j = 2. 1118

There are no collisions in the final sequence (2). Hence, C = [3,4,2]. The average of the values in 1119

C is T = 3. 1120

Handling Binary data: To test binary input data, first apply Conversion II to the input sequence. 1121

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 30

5.1.8 Maximum Collision Test Statistic 1122

The maximum collision test statistic counts the number of successive sample values until a 1123

duplicate is found. The maximum collision test statistic is calculated as follows: 1124

1. Let C be a list of the number of samples observed to find two occurrences of the same value 1125

in the input sequence S = (s1,…, sL). C is initially empty. 1126

2. Let i = 1. 1127

3. While i < L 1128

a. Find the smallest j such that (si,…, si+j-1) contains two identical values. If no such j 1129
exists, break out of the while loop. 1130

b. Add j to the list C. 1131

c. i=i+j+1 1132

4. The test statistic T is the maximum value in the list C. 1133

Example 8: Let the input data be (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). C = [3,4,2] is computed as in Example 1134

7. T = max(3,4,2) = 4. 1135

Handling Binary data: To test binary input data, first apply Conversion II to the input sequence. 1136

5.1.9 Periodicity Test Statistic 1137

The periodicity test aims to determine the number of periodic structures in the data. The test takes 1138

a lag parameter p as input, where p < L, and the test statistic T is calculated as follows: 1139

1. Initialize T to zero. 1140

2. For i = 1 to L − p 1141

If (si = si+p), increment T by one. 1142

Example 9: Let the input data be (2, 1, 2, 1, 0, 1, 0, 1, 1, 2), and let p = 2. Since si = si+p for five 1143

values of i (1, 2, 4, 5 and 6), T = 5. 1144

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence. 1145

The test is repeated for five different values of p: 1, 2, 8, 16, and 32. 1146

5.1.10 Covariance Test Statistic 1147

The covariance test measures the strength of the lagged correlation. The test takes a lag value p < 1148

L as input. The test statistic is calculated as follows: 1149

1. Initialize T to zero. 1150

2. For i = 1 to L – p 1151

T=T+(s i×s i+p) 1152

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 31

Example 10: Let the input data be (5, 2, 6, 10, 12, 3, 1), and let p be 2. T is calculated as (5×6) + 1153

(2×10) + (6×12) + (10×3) + (12×1) = 164. 1154

Handling Binary data: To test binary input data, first apply Conversion I to the input sequence. 1155

The test is repeated for five different values of p: 1, 2, 8, 16, and 32. 1156

5.1.11 Compression Test Statistics 1157

General-purpose compression algorithms are well adapted for removing redundancy in a character 1158

string, particularly involving commonly recurring subsequences of characters. The compression 1159

test statistic for the input data is the length of that data subset after the samples are encoded into a 1160

character string and processed by a general-purpose compression algorithm. The compression test 1161

statistic is computed as follows: 1162

1. Encode the input data as a character string containing a list of values separated by a single 1163

space, e.g., “S = (144, 21, 139, 0, 0, 15)” becomes “144 21 139 0 0 15”. 1164

2. Compress the character string with the bzip2 compression algorithm provided in [BZ2]. 1165

3. T is the length of the compressed string, in bytes. 1166

Handling Binary data: The test can be applied directly to binary data, with no conversion required. 1167

5.2 Additional Chi-square Statistical Tests 1168

This section includes additional chi-square statistical procedures to test independence and 1169

goodness-of-fit. The independence tests attempt to discover dependencies in the probabilities 1170

between successive samples in the (entire) sequence submitted for testing (see Section 5.2.1 for 1171

non-binary data and Section 5.2.3 for binary data); the goodness-of-fit tests attempt to discover a 1172

failure to follow the same distribution in ten data subsets produced from the (entire) input sequence 1173

submitted for testing (see Section 5.2.2 for non-binary data and Section 5.2.4 for binary data). The 1174

length of the longest repeated substring test is provided in Section 5.2.5. 1175

5.2.1 Testing Independence for Non-Binary Data 1176

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, the following steps are initially performed 1177

to determine the number of bins q needed for the chi-square tests. 1178

1. Find the proportion 𝑝𝑖 of each xi in S, i.e., 𝑝𝑖 =
number of 𝑥𝑖 in 𝑆

𝐿
. Calculate the expected number 1179

of occurrences of each possible pair (𝑧𝑖, 𝑧𝑗) in S, as 𝑒𝑖,𝑗= 𝑝𝑖𝑝𝑗(𝐿 − 1). 1180

2. Allocate the possible (𝑧𝑖, 𝑧𝑗) pairs, starting from the smallest 𝑒𝑖,𝑗, into bins such that the 1181

expected value of each bin is at least 5. The expected value of a bin is equal to the sum of the 1182

𝑒𝑖,𝑗 values of the pairs that are included in the bin. After allocating all pairs, if the expected 1183

value of the last bin is less than 5, merge the last two bins. Let q be the number of bins 1184

constructed after this procedure. 1185

After constructing the bins, the Chi-square test is executed as follows: 1186

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 32

1. For each pair (sj, sj+1), 1 ≤ j ≤ L-1, count the number of observed values for each bin, denoted 1187

as oi, (1 ≤ i ≤ q). 1188

2. The test statistic is calculated as T = ∑
 (𝑜𝑖 − 𝐸(𝐵𝑖𝑛𝑖))2

𝐸(𝐵𝑖𝑛𝑖)

𝑞
𝑖=1 . The test fails if T is greater than the 1189

critical value of the Chi-square test statistic with q-1 degrees of freedom when the type I error 1190

is chosen as 0.001. 1191

Example 11: Let S be (2, 2, 3, 1, 3, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 1192

2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 2, 2, 2, 1, 3, 3, 3, 2, 3, 1193

2, 1, 2, 2, 3, 3, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1). The sample space 1194

consists of k=3 values {1, 2, 3}; and p1, p2, and p3 are 0.21, 0.41 and 0.38, respectively. With 1195

L=100, the sorted expected values are calculated as: 1196

(zi, zj) (1,1) (1,3) (3,1) (1,2) (2,1) (3,3) (2,3) (3,2) (2,2)

𝑒𝑖,𝑗 4.41 7.98 7.98 8.61 8.61 14.44 15.58 15.58 16.81

The pairs can be allocated into q = 8 bins. 1197

Bin Pairs 𝐸(𝐵𝑖𝑛𝑖)

1 (1,1), (1,3) 12.39

2 (3,1) 7.98

3 (1,2) 8.61

4 (2,1) 8.61

5 (3,3) 14.44

6 (2,3) 15.58

7 (3,2) 15.58

8 (2,2) 16.81

 1198

The frequencies for the bins are calculated as 13, 9, 8, 8, 10, 19, 18 and 14 respectively, and the 1199

test statistics is calculated as 3.2084. The hypothesis is not rejected, since the test statistics is less 1200

than the critical value 24.322. 1201

 1202

5.2.2 Testing Goodness-of-fit for non-binary data 1203

The test checks whether the distribution of samples are identical for different parts of the input. 1204

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, perform the following steps to calculate 1205

the number of bins q for the test. 1206

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 33

1. Let 𝑐𝑖 be the number of occurrences of xi in S, and let 𝑒𝑖 = 𝑐𝑖/10, for 1 ≤ i ≤ k. Note that ci is 1207

divided by ten because S will be partitioned into ten data subsets. 1208

2. Let List[i] be the sample value with the ith smallest 𝑒𝑖 (e.g., List[1] has the smallest value for 1209

𝑒𝑖; 𝐿𝑖𝑠𝑡[2] has the next smallest value, etc.) 1210

3. Starting from List[1], allocate the sample values into bins. Assign consecutive List[i] values to 1211

a bin until the sum of the 𝑒𝑖 for those binned items is at least five, then begin assigning the 1212

following List[i] values to the next bin. If the expected value of the last bin is less than five, 1213

merge the last two bins. Let q be the number of bins constructed after this procedure. 1214

4. Let Ei be the expected number of sample values in Bin i; Ei is the sum of the ei for the listed 1215

items in that bin. For example, if Bin 1 contains (x1, x10 and x50), then E1 = e1 + e10 + e50. 1216

Example 12: Let the number of distinct sample values k be 4; and let c1=43, c2=55, c3=52 and 1217

c4=10. After partitioning the input sequence into 10 parts, the expected value of each sample 1218

becomes e1=4.3, e2=5.5, e3=5.2 and e4=1. The sample list starting with the smallest expected value 1219

is formed as List = [4, 1, 3, 2]. The first bin contains sample 4 and 1, and the expected value of 1220

Bin 1 becomes 5.3 (= e4+e1). The second bin contains sample 2, and the last bin contains sample 1221

3. Since the expected value of the last bin is greater than five, no additional merging is necessary. 1222

The chi-square goodness-of-fit test is executed as follows: 1223

1. Partition S into ten non-overlapping sequences of length ⌊
𝐿

10
⌋, where 𝑆𝑑 =1224

 (𝑠𝑑⌊𝐿/10⌋+1, … , 𝑠(𝑑+1)⌊𝐿/10⌋) for d = 0,…, 9. If L is not a multiple of 10, the remaining bits are 1225

not used. 1226

2. T = 0. 1227

3. For d = 0 to 9 1228

3.1. For i = 1 to q 1229

3.1.1. Let oi be the number of sample values from Bin i in the data subset 𝑆𝑑. 1230

3.1.2. T = T +
 (𝑜𝑖− 𝐸𝑖)2

𝐸𝑖
 1231

The test fails if the test statistic T is greater than the critical value of chi-square with 9(q-1) degrees 1232

of freedom when the type I error is chosen as 0.001. 1233

5.2.3 Testing Independence for Binary Data 1234

This test checks the independence assumption for binary data. A chi-square test for independence 1235

between adjacent bits could be used, but its power is limited, due to the small output space (i.e., 1236

the use of binary inputs). A more powerful check can be achieved by comparing the frequencies 1237

of m-bit tuples to their expected values that are calculated by multiplying the probabilities of each 1238

successive bit, i.e., assuming that the samples are independent. If nearby bits are not independent, 1239

then the expected probabilities of m-bit tuples derived from their bit probabilities will be biased 1240

for the whole dataset, and a chi-square test statistic will be much larger than expected. 1241

Given the input binary data S = (s1, …, sL), the length of the tuples, m, is determined as follows: 1242

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 34

1. Let p0 and p1 be the proportion of zeroes and ones in S, respectively, i.e., 𝑝0 =1243

number of zeroes in 𝑆

𝐿
, and 𝑝1 =

number of ones in 𝑆

𝐿
. 1244

2. Find the maximum integer m such that (p0)
m > 5/L and (p1)

m > 5/L. If m is greater than 11, 1245

assign m to 11. If m is 1, the test fails. For example, for p0 = 0.14, p1 = 0.86, and L = 1000, 1246

the value of m is selected as 3. 1247

The test is applied if m ≥ 2. 1248

1. Initialize T to 0. 1249

2. For each possible m-bit tuple (a1,a2,…, am) 1250

a. Let o be the number of times that the pattern (a1, a2,…, am) occurs in the input 1251

sequence S. Note that the tuples are allowed to overlap. For example, the number 1252

of times that (1,1,1) occurs in (1,1,1,1) is 2. 1253

b. Let w be the number of ones in (a1, a2,…, am). 1254

c. Let e = 𝑝1
𝑤(𝑝0)𝑚−𝑤(𝐿 − 𝑚 + 1). 1255

d. T = T +
(𝑜−𝑒)2

𝑒
 . 1256

The test fails if the test statistic T is greater than the critical value of chi-square with 2m-1 degrees 1257

of freedom, when the type I error is chosen as 0.001. 1258

5.2.4 Testing Goodness-of-fit for Binary Data 1259

This test checks the distribution of the number of ones in non-overlapping intervals of the input 1260

data to determine whether the distribution of the ones remains the same throughout the sequence. 1261

Given the input binary data S = (s1, …, sL), the test description is as follows: 1262

1. Let p be the proportion of ones in S, i.e., p = (the number of ones in S)/ L. 1263

2. Partition S into ten non-overlapping sub-sequences of length ⌊
𝐿

10
⌋, where 𝑆𝑑= 1264

(𝑠𝑑⌊𝐿/10⌋+1, … , 𝑠(𝑑+1)⌊𝐿/10⌋) for d = 0,…, 9. If L is not a multiple of 10, the remaining bits 1265

are discarded. 1266

3. Initialize T to 0. 1267

4. Let the expected number of ones in each sub-sequence Sd be 𝑒 = 𝑝 ⌊
𝐿

10
⌋. 1268

5. For d = 0 to 9 1269

a. Let 𝑜 be the number of ones in 𝑆𝑑. 1270

b. T = T +
(𝑜−𝑒)2

𝑒
. 1271

T is a chi-square random variable with 9 degrees of freedom. The test fails if S is larger than the 1272

critical value at 0.001, which is 27.88. 1273

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 35

5.2.5 Length of the Longest Repeated Substring Test 1274

This test checks the IID assumption using the length of the longest repeated substring. If this length 1275

is significantly longer than the expected value, then the test invalidates the IID assumption. The 1276

test can be applied to binary and non-binary inputs. 1277

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1278

1. Find the proportion 𝑝𝑖 of each possible input value xi in S, i.e., 𝑝𝑖 =
number of 𝑥𝑖 in 𝑆

𝐿
. 1279

2. Calculate the collision probability as pcol = ∑ 𝑝𝑖
2𝑘

𝑖=1 . 1280

3. Find the length of the longest repeated substring W, i.e., find the largest W such that, for at 1281

least one i ≠ j, si = sj, si+1 = sj+1,... ,si+W-1 = sj+W-1. 1282

4. The number of overlapping subsequences of length W in S is L–W+1, and the number of pairs 1283

of overlapping subsequences is (
𝐿 − 𝑊 + 1

2
). 1284

5. Let E be a binomially distributed random variable with parameters N=(
𝐿 − 𝑊 + 1

2
) and a 1285

probability of success pcol. Calculate the probability that E is greater than or equal to 1, i.e., 1286

Pr (E ≥ 1) = 1− Pr (E = 0) = 1− (1− pcol)
N. 1287

The test fails if Pr (E ≥ 1) is less than 0.001. 1288

6 Estimating Min-Entropy 1289

One of the essential requirements of an entropy source is the ability to reliably create random 1290

outputs. To ensure that sufficient entropy is input to an RBG construction in SP 800-90C, the 1291

amount of entropy produced per noise source sample must be determined. This section describes 1292

generic estimation methods that will be used to test the noise source and also the conditioning 1293

component, when non-vetted conditioning components are used. 1294

Each estimator takes a sequence S = (s1, …, sL) as its input, where each si comes from an output 1295

space A = {x1,…, xk} that is specified by the submitter. The estimators presented in this 1296

Recommendation follow a variety of strategies, which cover a range of assumptions about the data. 1297

For further information about the theory and origins of these estimators, see Appendix H. The 1298

estimators that are to be applied to a sequence depend on whether the data has been determined to 1299

be IID or non-IID. For IID data, the min-entropy estimation is determined as specified in Section 1300

6.1, whereas for non-IID data, the procedures in Section 6.2 are used. 1301

The estimators presented in this section work well when the entropy-per-sample is greater than 1302

0.1. For alphabet sizes greater than 256, some of the estimators are not very efficient. Therefore, 1303

for efficiency purposes, the method described in Section 6.4 can used to reduce the sample space 1304

of the outputs. 1305

6.1 IID Track: Entropy Estimation for IID Data 1306

For sources with IID outputs, the min-entropy estimation is determined using the most common 1307

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 36

value estimate described in Section 6.3.1. It is important to note that the estimate provides an 1308

overestimation when the samples from the source are not IID. 1309

6.2 Non-IID Track: Entropy Estimation for Non-IID Data 1310

Many viable noise sources fail to produce IID outputs. Moreover, some sources may have 1311

dependencies that are beyond the ability of the tester to address. To derive any utility out of such 1312

sources, a diverse and conservative set of entropy tests are required. Testing sequences with 1313

dependent values may result in overestimates of entropy. However, a large, diverse battery of 1314

estimates minimizes the probability that such a source’s entropy is greatly overestimated. 1315

For non-IID data, the following estimators are calculated on the outputs of the noise source, outputs 1316

of any conditioning component that is not listed in Section 3.1.5.1.1 and outputs of any vetted 1317

conditioning function that hasn’t been validated as correctly implemented, and the minimum of all 1318

the estimates is taken as the entropy assessment of the entropy source for this Recommendation: 1319

 The Most Common Value Estimate (Section 6.3.1), 1320

 The Collision Estimate (Section 6.3.2), 1321

 The Markov Estimate (Section 6.3.3), 1322

 The Compression Estimate (Section 6.3.4), 1323

 The t-Tuple Estimate (Section 6.3.5), 1324

 The Longest Repeated Substring (LRS) Estimate (Section 6.3.6), 1325

 The Multi Most Common in Window Prediction Estimate (Section 6.3.7), 1326

 The Lag Prediction Estimate (Section 6.3.8), 1327

 The MultiMMC Prediction Estimate (Section 6.3.9), and 1328

 The LZ78Y Prediction Estimate (Section 6.3.10). 1329

6.3 Estimators 1330

6.3.1 The Most Common Value Estimate 1331

This method first finds the proportion �̂� of the most common value in the input dataset, and then 1332

constructs a confidence interval for this proportion. The upper bound of the confidence interval is 1333

used to estimate the min-entropy per sample of the source. 1334

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1335

1. Find the proportion of the most common value �̂� in the dataset, i.e., 1336

�̂�=max
𝑖

#{𝑥𝑖 in 𝑆}

𝐿
. 1337

2. Calculate an upper bound on the probability of the most common value 𝑝𝑢 as 1338

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 37

𝑝𝑢 = min (1, �̂� + 2.576√
�̂� (1 − �̂�)

𝐿
). 1339

3. The estimated min-entropy is –log2(𝑝𝑢). 1340

Example: If the dataset is S = (0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 1), with L = 20, the 1341

most common value is 1, with �̂� = 0.4. 𝑝𝑢 = 0.4 + 2.576√0.012 = 0.6822. The min-entropy 1342

estimate is −log2 (0.6822) = 0.5518. 1343

6.3.2 The Collision Estimate 1344

The collision estimate, proposed by Hagerty and Draper [HD12], measures the mean number of 1345

samples to the first collision in a dataset, where a collision is any repeated value. The goal of the 1346

method is to estimate the probability of the most-likely output value, based on the collision times. 1347

The method will produce a low entropy estimate for noise sources that have considerable bias 1348

toward a particular output or value (i.e., the mean time until a collision is relatively short), while 1349

producing a higher entropy estimate for a longer mean time to collision. 1350

Given the input S = (s1,…, sL), where si ϵ A = {x1, …, xk}, 1351

1. Set v = 1, index =1. 1352

2. Beginning with sindex, step through the input until any observed value is repeated; i.e., find 1353

the smallest j such that si = sj, for some i with index ≤ 𝑖 < 𝑗. 1354

3. Set tv = j – index + 1, v = v + 1, and index = j + 1. 1355

4. Repeat steps 2-3 until the end of the dataset is reached. 1356

5. Set v = v – 1. 1357

6. If v < 1000, map down the noise source outputs (see Section 6.4), based on the ranking 1358

provided, and retest the data. 1359

7. Calculate the sample mean �̅�, and the sample standard deviation �̂�, of ti as 1360

�̅� =
1

𝑣
∑ 𝑡𝑖

𝑣
𝑖=1 , �̂� = √1

𝑣
∑ (𝑡𝑖− �̅�)2𝑣

𝑖=1 . 1361

8. Compute the lower-bound of the confidence interval for the mean, based on a normal 1362

distribution with a confidence level of 99%, 1363

𝑋′̅ = �̅� − 2.576
�̂�

√𝑣
. 1364

9. Let k be the number of possible values in the output space. Using a binary search, solve 1365

for the parameter p, such that 1366

𝑋′̅ = 𝑝𝑞−2 (1 +
1

𝑘
(𝑝−1 − 𝑞−1)) 𝐹(𝑞) − 𝑝𝑞−1

1

𝑘
(𝑝−1 − 𝑞−1). 1367

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 38

 where 1368

𝑞 =
1 − 𝑝

𝑘 − 1
, 1369

 𝑝 ≥ 𝑞, 1370

𝐹(1 𝑧⁄) = Γ(𝑘 + 1, 𝑧)𝑧−𝑘−1𝑒𝑧, 1371

and Γ(a,b) is the incomplete Gamma function6. 1372

10. If the binary search yields a solution, then the min-entropy estimation is the negative 1373

logarithm of the parameter, p: 1374

min-entropy = –log2(p). 1375

If the search does not yield a solution, then the min-entropy estimation is: 1376

min-entropy = log2(k). 1377

Example: Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0). After step 5, v=6, 1378

and the sequence (t1, … tv) is (2, 3, 4, 4, 4, 3). For purposes of illustration, step 6 is skipped in this 1379

example. Then �̅� = 3.3333, �̂� = 0.7454, and �̅�′ = 2.5495. The solution to the equation is p = 1380

0.7063, giving an estimated min-entropy of 0.5016. 1381

6.3.3 The Markov Estimate 1382

In a first-order Markov process, the next sample value depends only on the latest observed sample 1383

value; in an nth-order Markov process, the next sample value depends only on the previous n 1384

observed values. Therefore, a Markov model can be used as a template for testing sources with 1385

dependencies. The Markov estimate provides a min-entropy estimate by measuring the 1386

dependencies between consecutive values from the input dataset. The min-entropy estimate is 1387

based on the entropy present in any subsequence (i.e., chain) of outputs, instead of an estimate of 1388

the min-entropy per output. 1389

The key component in estimating the entropy of a Markov process is the ability to accurately 1390

estimate the transition matrix probabilities of the Markov process. The main difficulty in making 1391

these estimates is the large data requirement necessary to resolve the dependencies. In particular, 1392

low-probability transitions may not occur often in a “small” dataset; the more data provided, the 1393

easier it becomes to make accurate estimates of transition probabilities. This method, however, 1394

avoids large data requirements by overestimating the low-probability transitions; as a 1395

consequence, an underestimate of min-entropy is obtained with less data. 1396

6 The equation presented here uses the incomplete gamma function, which has known efficient computation methods and can be

found in many software libraries. An efficient approximation for the incomplete Gamma function is provided in Appendix H. For

additional representations of the 𝑋′̅ calculation in step 9, see [HD12].

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 39

The data requirement for this estimation method depends on the number of output samples k (i.e., 1397

the alphabet size); the largest k accommodated by this test is 26. An alphabet size greater than 26 1398

cannot be accommodated, since an unreasonable amount of data would be required to accurately 1399

estimate the matrix of transition probabilities − far more than is specified in Section 3.1.17. For 1400

16-bit samples, for instance, a transition matrix of size 216 216, containing 232 sample entries, 1401

would have to be approximated, and the data requirement for this would be impractical. 1402

As an alternative for datasets with a number of samples greater than 64, the method in Section 6.4 1403

for mapping noise source outputs (based on a ranking of the bits in the output) shall be 1404

implemented. This will reduce the data requirement to a more feasible quantity. 1405

Samples are collected from the noise source, and specified as d-long chains of samples. From this 1406

data, probabilities are determined for both the initial state and transitions between any two states. 1407

Any values for which these probabilities cannot be determined empirically are overestimated to 1408

guarantee that the eventual min-entropy estimate is a lower bound. These probabilities are used to 1409

determine the highest probability of any particular d-long chain of samples. The corresponding 1410

maximum probability is used to determine the min-entropy present in all such chains generated by 1411

the noise source. This min-entropy value is particular to d-long chains and cannot be extrapolated 1412

linearly; i.e., chains of length wd will not necessarily have w times as much min-entropy present 1413

as a d-long chain. It may not be possible to know what a typical output length will be at the time 1414

of testing. Therefore, although not mathematically correct, in practice, calculating an entropy 1415

estimate per sample (extrapolated from that of the d-long chain) provides estimates that are close. 1416

The following algorithm uses output values as list indices. If the output set does not consist of 1417

consecutive values, then the values are adjusted before this algorithm is applied. This can be done 1418

without altering entropy estimates, as the data is categorical. For example, if the output set is {0, 1419

1, 4}, and the observed sequence is (0, 0, 4, 1, 0, 4, 0, 1), 0 can stay the same, 1, can stay the same, 1420

but 4 must be changed to 2. The new set is {0, 1, 2}, and the new sequence is (0, 0, 2, 1, 0, 2, 0, 1421

1). 1422

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1423

1. Define the confidence level to be 𝛼 = 𝑚𝑖𝑛(0.99𝑘2
, 0.99𝑑), where d = 128 is the assumed 1424

length of the chain. 1425

2. Estimate the initial probabilities for each output value. Let P be a list of length k. For i from 1426

1 to k: 1427

𝑃𝑖 = min {1,
𝑜𝑖

𝐿
+ 𝜀}, 1428

where oi denotes the number of times that value xi has occurred in S, and is defined by: 1429

7 This statement assumes that the output space is defined such that it contains all 26 (or more) possible outputs; if, however,

the output space is defined to have 26 or less elements, regardless of the sample size, the test can accurately estimate the

transition probabilities with the amount of data specified in Section 3.1.1.

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 40

𝜀 = √
log2 (

1

1−𝛼
)

2𝐿
. 1430

3. Let 𝑜𝑠𝐿
= 𝑜𝑠𝐿

− 1. This step removes one from the count of the last symbol of the 1431

sequence, which is necessary to compute sample proportions in the next step. 1432

 1433

4. Let T be a 𝑘 × 𝑘 matrix. Estimate the probabilities in the bounding matrix T, 1434

overestimating where 1435

𝑇𝑖,𝑗 = {

1 if 𝑜𝑖 = 0

min {1,
𝑜𝑖,𝑗

𝑜𝑖
+ 𝜀𝑖} otherwise,

 1436

and oi,j is the number of transitions from state xi to state xj observed in the sample, and i is 1437

defined to be 1438

𝜀𝑖 = √
log2 (

1

1−𝛼
)

2𝑜𝑖
. 1439

5. Using the bounding matrix T, find the probability of the most likely sequence of outputs, 1440

�̂�max, using a dynamic programming algorithm as follows: 1441

a. For j from 1 to d – 1: 1442

i. Let h be a list of length k. 1443

ii. Find the highest probability for a sequence of length j+1 ending in each 1444

sample value. For c from 1 to k: 1445

1. Let 𝑃′ be a list of length k. 1446

2. For i from 1 to k: 1447

a. 𝑃𝑖
′ = 𝑃𝑖 × 𝑇𝑖,𝑐 1448

3. ℎ𝑐 = max
𝑖=1..𝑘

(𝑃𝑖
′) 1449

iii. Store the highest probability for a sequence of length j+1 ending in each 1450

value in P. For all i ϵ{1,..., k}, set 𝑃𝑖 = ℎ𝑖. 1451

b. �̂�𝑚𝑎𝑥 = max
𝑖=1..𝑘

(𝑃𝑖) 1452

6. The min-entropy estimate is the negative logarithm of the probability of the most likely 1453

sequence of outputs, �̂�max: 1454

min-entropy = –1/d log2(�̂�max). 1455

Example: Suppose that k = 3, L = 21 and S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1456

0). In step 1, 𝛼 = min(0.999, 0.99𝑑) = 0.2762. After step 2, 𝜀 = 0.0877, P1 = 0.4687 P2 = 1457

0.4211, and P3 = 0.3734. After step 4, the bounding matrix T has values: 1458

 1459

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 41

 0 1 2

0 0.4376 0.7233 0.2948

1 0.5805 0.2948 0.5805

2 0.6641 0.4974 0.3308

 1460

After step 5a, the loop iteration for j=1 completes, P1 = 0.2480 P2 = 0.3390, and P3 = 0.2444. 1461

This represents the most probable sequence of length two ending in x1=0, x2=1, and x3=2, 1462

respectively. After step 6, the highest probability of any chain of length 128 generated by this 1463

bounding matrix is 1.7372 10-24, yielding an estimated min-entropy of 0.6166. 1464

6.3.4 The Compression Estimate 1465

The compression estimate, proposed by Hagerty and Draper [HD12], computes the entropy rate of 1466

a dataset, based on how much the dataset can be compressed. This estimator is based on the Maurer 1467

Universal Statistic [Mau92]. The estimate is computed by generating a dictionary of values, and 1468

then computing the average number of samples required to produce an output, based on the 1469

dictionary. One advantage of using the Maurer statistic is that there is no assumption of 1470

independence. When output with dependencies is tested with this statistic, the compression rate is 1471

affected (and therefore the entropy), but an entropy estimate is still obtained. A calculation of the 1472

Maurer statistic is efficient, as it requires only one pass through the dataset to provide an entropy 1473

estimate. 1474

Given a dataset from the noise source, the samples are first partitioned into two disjoint groups. 1475

The first group serves as the dictionary for the compression algorithm; the second group is used 1476

as the test group. The compression values are calculated over the test group to determine the mean, 1477

which is the Maurer statistic. Using the same method as the collision estimate, the probability 1478

distribution that has the minimum possible entropy for the calculated Maurer statistic is 1479

determined. For this distribution, the entropy per sample is calculated as the lower bound on the 1480

entropy that is present. 1481

The following algorithm uses output values as list indices. If the output set does not consist of 1482

consecutive values, then the values must be adjusted before this algorithm is applied. This can be 1483

done without altering entropy estimates, as the data is categorical. For example, if the output set is 1484

{0, 1, 4}, and the observed sequence is (0, 0, 4, 1, 0, 4, 0, 1), 0 can stay the same, 1 can stay the 1485

same, but 4 must be changed to 2. The new set is {0, 1, 2}, and the new sequence is (0, 0, 2, 1, 0, 1486

2, 0, 1). 1487

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1488

1. Partition the dataset into two disjoint groups. These two groups will form the dictionary 1489

and the test data. 1490

a. Create the dictionary from the first d = 1000 observations, (s1, s2, …, sd). 1491

b. Use the remaining 𝑣 = 𝐿 − 𝑑 observations, (sd+1, …, sL), for testing. 1492

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 42

2. Initialize the dictionary dict to an all zero array of size k. For i from 1 to d, let dict[si] = i. 1493

dict[si] is the index of last occurrence of each si in the dictionary. 1494

3. Run the test data against the dictionary created in Step 2. 1495

a. Let Di be a list of length v. 1496

b. For i from 𝑑 + 1 to L: 1497

i. If dict[si] is non-zero, then Di-d = i – dict[si]. Update the dictionary with the 1498

index of the most recent observation, dict[si] = i. 1499

ii. If dict[si] is zero, add that value to the dictionary, i.e., dict[si]=i. Let Di-d = 1500

i. 1501

4. Let 𝑏 = ⌊log2(max (𝑥1, … , 𝑥𝑘))⌋ + 1, the number of bits needed to represent the largest 1502

symbol in the output alphabet. Calculate the sample mean, �̅�, and sample standard 1503

deviation8, �̂�, of (log2(D1),…, log2(Dv)). 1504

 1505

�̅� =
∑ log2𝐷𝑖

𝑣
𝑖=1

𝑣
 , 1506

𝑐 = 0.7 −
0.8

𝑏
+

(4 +
32

𝑏
) 𝑣−3 𝑏⁄

15
 1507

and 1508

�̂� = 𝑐√
∑ (log2𝐷𝑖)2𝑣

𝑖=1

𝑣
− �̅�2 . 1509

5. Compute the lower-bound of the confidence interval for the mean, based on a normal 1510

distribution using 1511

𝑋′̅ = �̅� −
2.576�̂�

√𝑣
. 1512

6. Using a binary search, solve for the parameter p, such that the following equation is true: 1513

𝑋′̅ = 𝐺(𝑝) + (𝑛 − 1)𝐺(𝑞), 1514

 where 1515

𝐺(𝑧) =
1

𝑣
∑ ∑ log2(𝑢)𝐹(𝑧, 𝑡, 𝑢)𝑡

𝑢=1
𝐿
𝑡=𝑑+1 , 1516

8 Note that a correction factor is applied to the standard deviation, as described in [Maurer]. This correction factor reduces the

standard deviation to account for dependencies in the Di values.

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 43

𝐹(𝑧, 𝑡, 𝑢) = {
𝑧2(1 − 𝑧)𝑢−1 𝑖𝑓 𝑢 < 𝑡

𝑧(1 − 𝑧)𝑡−1 𝑖𝑓 𝑢 = 𝑡
 , 1517

and 1518

𝑞 =
1 − 𝑝

𝑘 − 1
. 1519

7. If the binary search yields a solution, then the min-entropy is the negative logarithm of the 1520

parameter, p: 1521

min-entropy = –log2(p). 1522

If the search does not yield a solution, then the min-entropy estimation is: 1523

min-entropy = log2(k). 1524

Example: For illustrative purposes, suppose that d = 10 (instead of 1000), k = 3, L = 21 and S = (2, 1525

2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0). The dictionary sequence is (2, 2, 0, 1, 0, 2, 0, 1526

1, 2, 1), and the testing sequence is (2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0). v = 11. After the dictionary is 1527

initialized, dict[0] = 7, dict[1] = 10, and dict[2] = 9. In Step 4, b is calculated as 2. After processing 1528

the test sequence, �̅� = 1.098, �̂� = 0.2620 and 𝑋′̅ = 0.8944. The value of p that solves the 1529

equation is 0.7003, and the min-entropy estimate is 0.5139. 1530

6.3.5 t-Tuple Estimate 1531

This method examines the frequency of t-tuples (pairs, triples, etc.) that appears in the input dataset 1532

and produces an estimate of the entropy per sample, based on the frequency of those t-tuples. The 1533

frequency of the t-tuple (x1, x2, …, xt) in S = (s1, …, sL) is the number of i’s such that si = x1, si+1 = 1534

x2,…, si+t-1 = xt. It should be noted that the tuples can overlap. 1535

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1536

1. Find the largest t such that the number of occurrences of the most common t-tuple in S is 1537

at least 35. 1538

2. Let Q[i] store the number of occurrences of the most common i-tuple in S for i=1, ..., t. For 1539

example, in S=(2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), Q[1] = 1540

max(#0’s,#1’s,#2’s) = #0’s = 9, and Q[2] = 4 is obtained by the number of 01’s in S. 1541

3. For i=1 to t, an estimate for pmax is computed as 1542

a. Let P[i]=Q[i] / (L-i+1), and compute an estimate on the maximum individual 1543

sample value probability as 𝑃𝑚𝑎𝑥[𝑖] = 𝑃[𝑖]1/𝑖. 1544

4. The entropy estimate is calculated as –log2 max (𝑃𝑚𝑎𝑥[1], … , 𝑃𝑚𝑎𝑥[𝑡]). 1545

6.3.6 Longest Repeated Substring (LRS) Estimate 1546

This method estimates the collision entropy (sampling without replacement) of the source, based 1547

on the number of repeated substrings (tuples) within the input dataset. Although this method 1548

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 44

estimates collision entropy (an upper bound on min-entropy), this estimate handles tuple sizes that 1549

are too large for the t-tuple estimate, and is therefore a complementary estimate. 1550

Given the input S = (s1, …, sL), where si ϵ A = {x1, …,xk}, 1551

1. Find the smallest u such that the number of occurrences of the most common u-tuple in S 1552

is less than 20. 1553

2. Find the largest v such that the number of occurrences of the most common v-tuple in S is 1554

at least 2 and the most common (v+1)-tuple in S occurs once. In other words, v is the largest 1555

length that a tuple repeat occurs. If v < u, this estimate cannot be computed. 1556

3. For W=u to v, compute the estimated W-tuple collision probability 1557

𝑃𝑊 =
∑ (𝐶𝑖

2
)𝑖

(𝐿−𝑊+1
2

)
 , 1558

 where Ci is the number of occurrences of the ith unique W-tuple. 1559

4. For each PW, compute the estimated average collision probability per string symbol 1560

𝑃𝑚𝑎𝑥,𝑊 = 𝑃𝑊
1/𝑊. 1561

The collision entropy estimate is calculated as –log2 max(Pmax,u, …, Pmax,v). 1562

6.3.7 Multi Most Common in Window Prediction Estimate 1563

The Multi Most Common in Window (MultiMCW) predictor contains several subpredictors, each 1564

of which aims to guess the next output, based on the last w outputs. Each subpredictor predicts the 1565

value that occurs most often in that window of w previous outputs. The MultiMCW predictor keeps 1566

a scoreboard that records the number of times that each subpredictor was correct, and uses the 1567

subpredictor with the most correct predictions to predict the next value. In the event of a tie, the 1568

most common sample value that has appeared most recently is predicted. This predictor was 1569

designed for cases where the most common value changes over time, but still remains relatively 1570

stationary over reasonable lengths of the sequence. 1571

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1572

1. Let window sizes be w1=63, w2=255, w3=1023, w4=4095, and N = L - w1. Let correct be 1573

an array of N Boolean values, each initialized to 0. 1574

2. Let scoreboard be a list of four counters, each initialized to 0. Let frequent be a list of four 1575

values, each initialized to Null. Let winner = 1. 1576

3. For i = w1 + 1 to L: 1577

a. For j =1 to 4, 1578

i. If i > wj, let frequentj be the most frequent value in (si-wj, si-wj+1, …, si-1). If 1579

there is a tie, then frequentj is assigned to the most frequent value that has 1580

appeared most recently. 1581

ii. Else, let frequentj = Null. 1582

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 45

b. Let prediction = frequentwinner. 1583

c. If (prediction = si), let correcti- w1 = 1. 1584

d. Update the scoreboard. For j =1 to 4, 1585

i. If (frequentj = si) 1586

1. Let scoreboardj = scoreboardj +1 1587

2. If scoreboardj ≥ scoreboardwinner, let winner =j 1588

4. Let C be the number of ones in correct. 1589

5. Calculate a 99% upper bound on the predictor’s global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 =
𝐶

𝑁
 as: 1590

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 + 2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1591

6. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1592

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1593

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1594

0.99 =
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 ×

1

𝑥𝑁+1
 , 1595

where 𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 and x = x10, derived by iterating the recurrence relation 1596

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1597

for j from 1 to 10, and x0=1. 1598

7. The min-entropy is the negative logarithm of the greater performance metric 1599

min-entropy = −log2(max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1600

Example: Suppose that S = (1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 0, 0), so that L = 12. For the purpose of the 1601

example, suppose that w1=3, w2=5, w3=7, w4=9 (instead of w1=63, w2=255, w3=1023, w4=4095). 1602

Then N=9. In step 3, the values are as follows: 1603

i frequent scoreboard

(step 3b)

Winner

(step 3b)

prediction si correcti-w1 scoreboard (step

3d)

4 (1, --, --, --) (0, 0, 0, 0) 1 1 0 0 (0, 0, 0, 0)

5 (0, --, --, --) (0, 0, 0, 0) 1 0 2 0 (0, 0, 0, 0)

6 (2, 2, --, --) (0, 0, 0, 0) 1 2 1 0 (0, 0, 0, 0)

7 (1, 1, --, --) (0, 0, 0, 0) 1 1 1 1 (1, 1, 0, 0)

8 (1, 1, 1, --) (1, 1, 0, 0) 2 1 2 0 (1, 1, 0, 0)

9 (1, 2, 2, --) (1, 1, 0, 0) 2 2 2 1 (1, 2, 1, 0)

10 (2, 2, 2, 2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0)

11 (2, 2, 2,2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0)

12 (0, 0, 2, 0) (1, 2, 1, 0) 2 0 0 1 (2, 3, 1, 1)

 1604

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 46

After all of the predictions are made, correct = (0, 0, 0, 1, 0, 1, 0, 0, 1). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.3333, 1605

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 0.7627, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.5, and the resulting min-entropy estimate is 0.3909. 1606

6.3.8 The Lag Prediction Estimate 1607

The lag predictor contains several subpredictors, each of which predicts the next output, based on 1608

a specified lag. The lag predictor keeps a scoreboard that records the number of times that each 1609

subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the 1610

next value. 1611

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1612

1. Let D = 128, and N = L −1. Let lag be a list of D values, each initialized to Null. Let correct 1613

be a list of N Boolean values, each initialized to 0. 1614

1. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1. 1615

2. For i = 2 to L: 1616

a. For d = 1 to D: 1617

i. If (d < i), lagd = si-d , 1618

ii. Else lagd = Null . 1619

b. Let prediction = lagwinner. 1620

c. If (prediction = si,) let correcti-1 = 1. 1621

d. Update the scoreboard. For d = 1 to D: 1622

i. If (lagd = si) 1623

1. Let scoreboardd = scoreboardd +1. 1624

2. If scoreboardd ≥ scoreboardwinner , let winner = d. 1625

3. Let C be the number of ones in correct. 1626

4. Calculate a 99% upper bound on the predictor’s global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 =
𝐶

𝑁
 as: 1627

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 + 2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1628

5. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1629

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1630

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1631

0.99 =
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 ×

1

𝑥𝑁+1
 , 1632

where 1633

𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 1634

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 47

and x = x10, derived by iterating the recurrence relation 1635

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1636

for j from 1 to 10, and x0=1. 1637

6. The min-entropy is the negative logarithm of the greater performance metric 1638

min-entropy = −log2(max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1639

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2), so that L = 10 and N = 9. For the purpose of 1640

the example, suppose that D = 3 (instead of 128). The following table shows the values in step 3. 1641

i lag scoreboard

(step 3b)

Winner

(step 3b)

prediction si correcti-1 scoreboard

(step 3d)

2 (2, --, --) (0, 0, 0) 1 2 1 0 (0, 0, 0)

3 (1, 2, --) (0, 0, 0) 1 1 3 0 (0, 0, 0)

4 (3, 1, 2) (0, 0, 0) 1 3 2 0 (0, 0, 1)

5 (2, 3, 1) (0, 0, 1) 3 1 1 1 (0, 0, 2)

6 (1, 2, 3) (0, 0, 2) 3 3 3 1 (0, 0, 3)

7 (3, 1, 2) (0, 0, 3) 3 2 1 0 (0, 1, 3)

8 (1, 3, 1) (0, 1, 3) 3 1 3 0 (0, 2, 3)

9 (3, 1, 3) (0, 2, 3) 3 3 1 0 (0, 3, 3)

10 (1, 3, 1) (0, 3, 3) 2 3 2 0 (0, 3, 3)

 1642

After all of the predictions are made, correct = (0, 0, 0, 1, 1, 0, 0, 0, 0). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.2222, 1643

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 0.6008, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.6667, and the resulting min-entropy estimate is 0.5850. 1644

6.3.9 The MultiMMC Prediction Estimate 1645

The MultiMMC predictor is composed of multiple Markov Model with Counting (MMC) 1646

subpredictors. Each MMC predictor records the observed frequencies for transitions from one 1647

output to a subsequent output (rather than the probability of a transition, as in a typical Markov 1648

model), and makes a prediction, based on the most frequently observed transition from the current 1649

output. MultiMMC contains D MMC subpredictors running in parallel, one for each depth from 1 1650

to D. For example, the MMC with depth 1 creates a first-order model, while the MMC with depth 1651

D creates a Dth-order model. MultiMMC keeps a scoreboard that records the number of times that 1652

each MMC subpredictor was correct, and uses the subpredictor with the most correct predictions 1653

to predict the next value. 1654

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 1655

1. Let D = 16, and N = L − 2. Let subpredict be a list of D values, each initialized to Null. Let 1656

correct be an array of N Boolean values, each initialized to 0. 1657

2. For d = 1 to D, let Md be a list of counters, where Md[x, y] denotes the number of observed 1658

transitions from output x to output y for the dth-order MMC. 1659

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 48

3. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1. 1660

4. For i=3 to L: 1661

a. For d = 1 to D: 1662

i. If d < i-1, increment MMCd[(si-d-1,…,si-2), si-1] by 1. 1663

b. For d = 1 to D: 1664

i. Find the y value that corresponds to the highest Md[(si-d,…,si-1), y] value, and 1665

denote that y as ymax. Let subpredictd = ymax. If all possible values of Md 1666

[(si-d,…,si-1), y] are 0, then let subpredictd = Null. 1667

c. Let prediction = subpredictwinner. 1668

d. If (prediction = si), let correcti-2 = 1. 1669

e. Update the scoreboard. For d = 1 to D: 1670

i. If (subpredictd = si) 1671

1. Let scoreboardd = scoreboardd +1. 1672

2. If scoreboardd ≥ scoreboardwinner, let winner =d. 1673

5. Let C be the number of ones in correct. 1674

6. Calculate a 99% upper bound on the predictor’s global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 =
𝐶

𝑁
 as: 1675

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 + 2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1676

7. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1677

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1678

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1679

0.99 =
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 ×

1

𝑥𝑁+1
 , 1680

where 1681

𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 1682

and x = x10, derived by iterating the recurrence relation 1683

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1684

for j from 1 to 10, and x0=1. 1685

8. The min-entropy is the negative logarithm of the greater performance metric 1686

min-entropy = −log2(max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1687

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1), so that L = 9 and N = 7. For the purpose of 1688

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 49

example, further suppose that D=3 (instead of 16). After each iteration of step 4 is completed, the 1689

values are: 1690

i subpredict scoreboard

(step 4c)

Winner

(step 4c)

prediction si correcti-2 scoreboard

(step 4e)

3 (Null, Null, Null) (0, 0, 0) 1 Null 3 0 (0, 0, 0)

4 (Null, Null, Null) (0, 0, 0) 1 Null 2 0 (0, 0, 0)

5 (1, Null, Null) (0, 0, 0) 1 1 1 1 (1, 0, 0)

6 (3, 3, Null) (1, 0, 0) 1 3 3 1 (2, 1, 0)

7 (2, 2, 2) (2, 1, 0) 1 2 1 0 (2, 1, 0)

8 (3, Null, Null) (2, 1, 0) 1 3 3 1 (3, 1, 0)

9 (2, 2, Null) (3, 1, 0) 1 2 1 0 (3, 1, 0)

 1691

Let {xy:c} denote a nonzero count c for the transition from x to y. Models M1, M2, and M3 are 1692

shown below after step 4a (the model update step) for each value of i. 1693

i M1 M2 M3

3 {21:1} -- --

4 {13:1},

{21:1}

{(2, 1)3:1} --

5 {13:1},

{21:1},

{32:1}

{(1, 3)2:1},

{(2, 1)3:1}

{(2, 1, 3)2:1}

6 {13:1},

{21:2},

{32:1}

{(1, 3)2:1},

{(2, 1)3:1},

{(3, 2)1:1}

{(1, 3, 2)1:1},

{(2, 1, 3)2:1}

7 {13:2},

{21:2},

{32:1}

{(1, 3)2:1},

{(2, 1)3:2},

{(3, 2)1:1}

{(1, 3, 2)1:1},

{(2, 1, 3)2:1},

{(3, 2, 1)3:1}

8 {13:2},

{21:2},

{31:1},

{32:1}

{(1, 3)1:1},

{(1, 3)2:1},

{(2, 1)3:2},

{(3, 2)1:1}

{(1, 3, 2)1:1},

{(2, 1, 3)1:1},

{(2, 1, 3)2:1},

{(3, 2, 1)3:1}

9 {13:3},

{21:2},

{31:1},

{32:1}

{(1, 3)1:1},

{(1, 3)2:1},

{(2, 1)3:2},

{(3, 1)3:1},

{(3, 2)1:1}

{(1, 3, 1)3:1},

{(1, 3, 2)1:1},

{(2, 1, 3)1:1},

{(2, 1, 3)2:1},

{(3, 2, 1)3:1}

 1694

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 0). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.4286, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ =1695

0.9490, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.6667, and the resulting min-entropy estimate is 0.0755. 1696

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 50

6.3.10 The LZ78Y Prediction Estimate 1697

The LZ78Y predictor is loosely based on LZ78 encoding with the Bernstein's Yabba scheme 1698

[Sal07] for adding strings to the dictionary. The predictor keeps a dictionary of strings that have 1699

been added to the dictionary so far, and continues adding new strings to the dictionary until the 1700

dictionary has reached its maximum capacity. Each time that a sample is processed, every 1701

substring in the most recent B samples updates the dictionary or is added to the dictionary. 1702

Given the input S = (s1, …, sL), where si ϵ A = {x1,…,xk}, 1703

1. Let B = 16, and N = L – B – 1. Let correct be an array of N Boolean values, each initialized 1704

to 0. Let maxDictionarySize = 65536. 1705

2. Let D be an empty dictionary. Let dictionarySize = 0. 1706

3. For i=B+2 to L: 1707

a. For j=B down to 1: 1708

i. If (si-j-1, …, si-2) is not in D, and dictionarySize < maxDictionarySize: 1709

1. Let D[si-j-1, …, si-2] be added to the dictionary. 1710

2. Let D[si-j-1, …, si-2][si-1] = 0. 1711

3. dictionarySize = dictionarySize + 1 1712

ii. If (si-j-1, … , si-2) is in D, 1713

1. Let D[si-j-1, …, si-2][si-1] = D[si-j-1, … ,si-2][si-1] + 1. 1714

b. Use the dictionary to predict the next value, si. Let prediction = Null, and let 1715

maxcount = 0. For j = B down to 1: 1716

i. Let prev = (si-j, … si-1). 1717

ii. If prev is in the dictionary, find the y ϵ {x1,…,xk} that has the highest 1718

D[prev][y] value. 1719

iii. If D[prev][y] > maxcount: 1720

1. prediction = y. 1721

2. maxcount = D[prev][y]. 1722

c. If (prediction = si), let correcti-B-1 = 1. 1723

4. Let C be the number of ones in correct. Calculate a 99% upper bound on the predictor’s 1724

global performance 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 =
𝐶

𝑁
 as: 1725

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 + 2.576√

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1−𝑃𝑔𝑙𝑜𝑏𝑎𝑙)

𝑁−1
 . 1726

5. Calculate the predictor’s local performance, based on the longest run of correct predictions. 1727

Let r be one greater than the length of the longest run of ones in correct. Use a binary 1728

search to solve the following for 𝑃𝑙𝑜𝑐𝑎𝑙: 1729

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 51

0.99 =
1 − 𝑃𝑙𝑜𝑐𝑎𝑙𝑥

(𝑟 + 1 − 𝑟𝑥)𝑞
 ×

1

𝑥𝑁+1
 , 1730

where 𝑞 = 1 − 𝑃𝑙𝑜𝑐𝑎𝑙 and x = x10, derived by iterating the recurrence relation 1731

𝑥𝑗 = 1 + 𝑞𝑃𝑙𝑜𝑐𝑎𝑙
𝑟 𝑥𝑗−1

𝑟+1 1732

for j from 1 to 10, and x0=1. 1733

6. The min-entropy is the negative logarithm of the greater performance metric 1734

min-entropy = −log2 (max(𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ , 𝑃𝑙𝑜𝑐𝑎𝑙)). 1735

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2), and L=13. For the purpose of example, 1736

suppose that B=4 (instead of 16), then N=8. 1737

i Add to D prev Max D[prev] entry prediction si correcti-B-1

6 D[2, 1, 3, 2][1]

D[1, 3, 2][1]

D[3, 2][1]

D[2][1]

(1, 3, 2, 1) Null Null 3 0

(3, 2, 1) Null

(2, 1) Null

(1) Null

7 D[1, 3, 2, 1][3]

D[3, 2, 1][3]

D[2, 1][3]

D[1][3]

(3, 2, 1, 3) Null Null 1 0

(2, 1, 3) Null

(1, 3) Null

(3) Null

8 D[3, 2, 1, 3][1]

D[2, 1, 3][1]

D[1, 3][1]

D[3][1]

(2, 1, 3, 1) Null 3 3 1

(1, 3, 1) Null

(3, 1) Null

(1) 3

9 D[2, 1, 3, 1][3]

D[1, 3, 1][3]

D[3, 1][3]

D[1][3]

(1, 3, 1, 3) Null 1 1 1

(3, 1, 3) Null

(1, 3) 1

(3) 1

10 D[1, 3, 1, 3][1]

D[3, 1, 3][1]

D[1, 3][1]

D[3][1]

(3, 1, 3, 1) Null 3 2 0

(1, 3, 1) 3

(3, 1) 3

(1) 3

11 D[3, 1, 3, 1][2]

D[1, 3, 1][2]

D[3, 1][2]

D[1][2]

(1, 3, 1, 2) Null 1 1 1

(3, 1, 2) Null

(1, 2) Null

(2) 1

12 D[1, 3, 1, 2][1]

D[3, 1, 2][1]

D[1, 2][1]

D[2][1]

(3, 1, 2, 1) Null 3 3 1

(1, 2, 1) Null

(2, 1) 3

(1) 3

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 52

13 D[3, 1, 2, 1][3]

D[1, 2, 1][3]

D[2, 1][3]

D[1][3]

(1, 2, 1, 3) Null 1 2 0

(2, 1, 3) 1

(1, 3) 1

(3) 1

 1738

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 1, 0). Then, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 0.5, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
′ =1739

0.9868, 𝑃𝑙𝑜𝑐𝑎𝑙 = 0.6667, and the resulting min-entropy estimate is 0.0191. 1740

6.4 Reducing the Sample Space 1741

It is often the case that the data requirements for a test on noise source samples depends on the 1742

number of possible different bitstrings from the noise source (i.e., the size of the alphabet A). For 1743

example, consider two different noise sources. The first source outputs four-bit samples, and thus 1744

has a possible total of 24 = 16 different outputs, and the second source outputs 32-bit samples, for 1745

a possible total of 232 different outputs. 1746

In many cases, the variability in the output that contributes to the entropy in a sample may be 1747

concentrated among some portion of the bits in the sample. For example, consider a noise source 1748

that outputs 32-bit high-precision clock samples that represent the time it takes to perform some 1749

system process. Suppose that the bits in a sample are ordered in the conventional way, so that the 1750

lower-order bits of the sample correspond to the higher resolution measurements of the clock. It is 1751

easy to imagine that in this case, the low-order bits would contain most of the variability. In fact, 1752

it would seem likely that some of the high-order bits may be constantly 0. For this example, it 1753

would be reasonable to truncate the 32-bit sample to a four-bit string by taking the lower four bits, 1754

and perform the tests on the four-bit strings. Of course, it must be noted that in this case, only a 1755

maximum of four bits of min-entropy per sample could be credited to the noise source. 1756

The description below provides a method for mapping the n-bit samples, collected as specified in 1757

Section 3.1.1, to m-bit samples, where n ≥ m. The resulting strings can be used as input to tests 1758

that may have infeasible data requirements if the mapping were not performed. Note that after the 1759

mapping is performed, the maximum amount of entropy possible per n-bit sample is m bits. 1760

Given a noise source that produces n-bit samples, where n exceeds the bit-length that can be 1761

handled by the test, the submitter shall provide the tester with an ordered ranking of the bits in the 1762

n-bit samples (see Section 3.2.2). The rank of ‘1’ corresponds to the bit assumed to be contributing 1763

the most entropy to the sample, and the rank of n corresponds to the bit contributing the least 1764

amount. If multiple bits contribute the same amount of entropy, the ranks can be assigned 1765

arbitrarily among those bits. The following algorithm, or its equivalent, is used to assign ranks. 1766

Input: A noise source and corresponding statistical model with samples of the form X = a1a2…an, 1767

where each ai is a bit. 1768

Output: An ordered ranking of the bits a1 through an, based on the amount of entropy that each 1769

bit is assumed to contribute to the noise source outputs. 1770

1. Set M = {a1, a2, …, an}. 1771

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 53

2. For i = 1 to n: 1772

a. Choose an output bit a from M such that no other bit in S is assumed to contribute 1773

more entropy to the noise source samples than a. 1774

b. Set the rank of a to i. 1775

c. Remove a from M. 1776

Given the ranking, n-bit samples are mapped to m-bit samples by simply taking the m-bits of 1777

greatest rank in order (i.e., bit 1 of the m-bit string is the bit from an n-bit sample with rank 1, bit 1778

2 of the m-bit string is the bit from an n-bit sample with rank 2, … and bit m of the m-bit string is 1779

the bit from an n-bit sample with rank m). 1780

Note that for the estimators in Section 6, a reference to a sample in the dataset will be interpreted 1781

as a reference to the m-bit subsets of the sample when the test necessitates processing the dataset 1782

as specified in this section. 1783

 1784

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 54

Acronyms 1785

Selected acronyms and abbreviations used in this paper are defined below. 1786

AES Advanced Encryption Standard

ANS American National Standard

CAVP Cryptographic Algorithm Validation Program

CMVP Cryptographic Module Validation Program

DRBG Deterministic Random Bit Generator

FIPS Federal Information Processing Standard

HMAC Hash-based Message Authentication Code

IID Independent and Identically Distributed

LRS Longest Repeated Substring

NIST National Institute of Standards and Technology

NRBG Non-deterministic Random Bit Generator

NVLAP National Voluntary Laboratory Accreditation Program

RBG Random Bit Generator

SP NIST Special Publication

 1787

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 55

Glossary 1788

Alphabet A finite set of two or more symbols.

Alphabet size See sample size.

Algorithm A clearly specified mathematical process for computation; a set

of rules that, if followed, will give a prescribed result.

Approved FIPS-approved or NIST-Recommended.

Array A fixed-length data structure that stores a collection of elements,

where each element is identified by its integer index.

Assessment (of entropy)
An evaluation of the amount of entropy provided by a (digitized)

noise source and/or the entropy source that employs it.

Biased

A value that is chosen from a sample space is said to be biased if

one value is more likely to be chosen than another value.

(Contrast with unbiased.)

Binary data (from a

noise source)

Digitized and possibly post-processed output from a noise source

that consists of a single bit; that is, each sampled output value is

represented as either 0 or 1.

Bitstring
A bitstring is an ordered sequence of 0’s and 1’s. The leftmost bit

is the most significant bit.

Collision An instance of duplicate sample values occurring in a dataset.

Conditioning (of noise

source output)

A method of processing the raw data to reduce bias and/or ensure

that the entropy rate of the conditioned output is no less than some

specified amount.

Confidence interval

An interval, [low, high], where the true value of a parameter p

falls within that interval with a stated probability. E.g., a 95%

confidence interval about an estimate for p yields values for low

and high such that low ≤ p ≤ high with probability 0.95.

Continuous test

A type of health test performed within an entropy source on the

output of its noise source in order to gain some level of assurance

that the noise source is working correctly, prior to producing each

output from the entropy source.

Consuming application

(for an RBG)

An application that uses the output from an approved random bit

generator.

Dataset A sequence of sample values. (See Sample.)

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 56

Deterministic Random

Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and (at least initially)

has access to a source of entropy input. The DRBG produces a

sequence of bits from a secret initial value called a seed, along

with other possible inputs. A DRBG is often called a

Pseudorandom Number (or Bit) Generator.

Developer
The party that develops the entire entropy source or the noise

source.

Dictionary

A dynamic-length data structure that stores a collection of

elements or values, where a unique label identifies each element.

The label can be any data type.

Digitization The process of generating bits from the noise source.

DRBG mechanism

The portion of an RBG that includes the functions necessary to

instantiate and uninstantiate the RBG, generate pseudorandom

bits, (optionally) reseed the RBG and test the health of the DRBG

mechanism. Approved DRBG mechanisms are specified in SP

800-90A.

Entropy

A measure of the disorder, randomness or variability in a closed

system. Min-entropy is the measure used in this

Recommendation.

Entropy rate

The rate at which a digitized noise source (or entropy source)

provides entropy; it is computed as the assessed amount of

entropy provided by a bitstring output from the source, divided by

the total number of bits in the bitstring (yielding assessed bits of

entropy per output bit). This will be a value between zero (no

entropy) and one.

Entropy source

The combination of a noise source, health tests, and an optional

conditioning component that produce random bitstrings to be

used by an RBG.

Estimate
The estimated value of a parameter, as computed using an

estimator.

Estimator A technique for estimating the value of a parameter.

False positive

An erroneous acceptance of the hypothesis that a statistically

significant event has been observed. This is also referred to as a

type 1 error. When “health-testing” the components of a device,

it often refers to a declaration that a component has malfunctioned

– based on some statistical test(s) – despite the fact that the

component was actually working correctly.

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 57

Health testing

Testing within an implementation immediately prior to or during

normal operation to determine that the implementation continues

to perform as implemented and as validated.

Independent

Two random variables X and Y are independent if they do not

convey information about each other. Receiving information

about X does not change the assessment of the probability

distribution of Y (and vice versa).

Independent and

Identically Distributed

(IID)

A sequence of random variables for which each element of the

sequence has the same probability distribution as the other values,

and all values are mutually independent.

List
A dynamic-length data structure that stores a sequence of values,

where each value is identified by its integer index.

Markov model

A model for a probability distribution where the probability that

the ith element of a sequence has a given value depends only on

the values of the previous n elements of the sequence. The model

is called an nth order Markov model.

Min-entropy

The min-entropy (in bits) of a random variable X is the largest

value m having the property that each observation of X provides

at least m bits of information (i.e., the min-entropy of X is the

greatest lower bound for the information content of potential

observations of X). The min-entropy of a random variable is a

lower bound on its entropy. The precise formulation for min-

entropy is (log2 max pi) for a discrete distribution having

probabilities p1,...,pk. Min-entropy is often used as a worst-case

measure of the unpredictability of a random variable.

Narrowest internal

width

The maximum amount of information from the input that can

affect the output. For example, if f(x) = SHA-1(x) || 01, and x

consists of a string of 1000 binary bits, then the narrowest internal

width of f(x) is 160 bits (the SHA-1 output length), and the output

width of f(x) is 162 bits (the 160 bits from the SHA-1 operation,

concatenated by 01.

Noise source

The component of an entropy source that contains the non-

deterministic, entropy-producing activity. (e.g., thermal noise or

hard drive seek times)

Non-deterministic

Random Bit Generator

(NRBG)

An RBG that has access to an entropy source and (when working

properly) produces outputs that have full entropy (see SP 800-

90C). Also called a true random bit (or number) generator.

(Contrast with a DRBG)

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 58

On-demand test
A type of health test that is available to be run whenever a user or

a relying component requests it.

Output space
The set of all possible distinct bitstrings that may be obtained as

samples from a digitized noise source.

P-value

The probability that the chosen test statistic will assume values

that are equal to or more extreme than the observed test statistic

value, assuming that the null hypothesis is true.

Predictor
A function that predicts the next value in a sequence, based on

previously observed values in the sequence.

Probability distribution
A function that assigns a probability to each measurable subset of

the possible outcomes of a random variable.

Probability model A mathematical representation of a random phenomenon.

Pseudorandom

A deterministic process (or data produced by such a process)

whose output values are effectively indistinguishable from those

of a random process, as long as the internal states and internal

actions of the process are unknown. For cryptographic purposes,

“effectively indistinguishable” means “not within the

computational limits established by the intended security

strength.”

Random

A non-deterministic process (or data produced by such a process)

whose output values follow some probability distribution. The

term is sometimes (mis)used to imply that the probability

distribution is uniform, but no uniformity assumption is made in

this Recommendation.

Random Bit Generator

(RBG)

A device or algorithm that outputs a random sequence that is

effectively indistinguishable from statistically independent and

unbiased bits. An RBG is classified as either a DRBG or an

NRBG.

Raw data Digitized and possibly post-processed output of the noise source.

Run (of output

sequences)

A sequence of identical values.

Sample

An observation of the raw data. Common examples of output

values obtained by sampling are single bits, single bytes, etc. (The

term “sample” is often extended to denote a sequence of such

observations; this Recommendation will refrain from that

practice.)

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 59

Sample size
The number of possible distinct values that a sample can have.

May also be called alphabet size.

Security boundary

A conceptual boundary that is used to assess the amount of

entropy provided by the values output from an entropy source.

The entropy assessment is performed under the assumption that

any observer (including any adversary) is outside of that

boundary.

Seed

A bitstring that is used as input to (initialize) an algorithm. In this

Recommendation, the algorithm using a seed is a DRBG. The

entropy provided by the seed must be sufficient to support the

intended security strength of the DRBG.

Sequence An ordered list of quantities.

Shall

The term used to indicate a requirement that needs to be fulfilled

to claim conformance to this Recommendation. Note that shall

may be coupled with not to become shall not.

Should

The term used to indicate an important recommendation. Ignoring

the recommendation could result in undesirable results. Note that

should may be coupled with not to become should not.

Start-up testing

A suite of health tests that are performed every time the entropy

source is initialized or powered up. These tests are carried out on

the noise source before any output is released from the entropy

source.

Submitter

The party that submits the entire entropy source and output from

its components for validation. The submitter can be any entity that

can provide validation information as required by this

Recommendation (e.g., developer, designer, vendor or any

organization).

Testing laboratory An accredited cryptographic security testing laboratory

Unbiased

A value that is chosen from a sample space is said to be

unbiased if all potential values have the same probability of

being chosen. (Contrast with biased.)

 1789

 1790

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 60

References 1791

[BZ2] BZIP2 Compression Algorithm. http://www.bzip.org/.

[Cac97] C. Cachin, Entropy Measures and Unconditional Security in Cryptography,

PhD Thesis, Reprint as vol.1 of ETH Series in Information Security and

Cryptography, ISBN 3-89649-185-7, Hartung-Gorre Verlag, Konstanz, ETH

Zurich, 1997.

[Fel50] W. Feller, An Introduction to Probability Theory and its Applications, volume

one, chapter 13, John Wiley and Sons, Inc., 1950.

[FIPS140] Federal Information Processing Standard 140-2, Security Requirements for

Cryptographic Modules, May 25, 2001.

[FIPS180] Federal Information Processing Standard 180-4, Secure Hash Standard (SHS),

August 2015.

[FIPS197] Federal Information Processing Standard 197, Specification for the Advanced

Encryption Standard (AES), November 2001.

[FIPS198] Federal Information Processing Standard 198-1, The Keyed-Hash Message

Authentication Code (HMAC), July 2008.

[FIPS202] Federal Information Processing Standard 202, SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions, August 2015.

[HD12] P. Hagerty and T. Draper, Entropy Bounds and Statistical Tests, NIST

Random Bit Generation Workshop, December 2012,

http://csrc.nist.gov/groups/ST/rbg_workshop_2012/hagerty_entropy_paper.p

df. (Presentation available at http://csrc.nist.gov/groups/ST/rbg_workshop_

2012/hagerty .pdf.)

[IG140-2] National Institute of Standards and Technology Special Publication,

Communications Security Establishment Canada, Implementation Guidance

for FIPS PUB 140-2 and the Cryptographic Module Validation Program,

September 15, 2015

[Kel15] J. Kelsey, Kerry A. McKay, M. Sonmez Turan, Predictive Models for Min-

Entropy Estimation, Proceedings of the Workshop on Cryptographic

Hardware and Embedded Systems 2015 (CHES 2015), France

[Mau92] U. Maurer, A Universal Statistical Test for Random Bit Generators, Journal

of Cryptology, Vol. 5, No. 2, 1992, pp. 89-105.

http://www.bzip.org/
http://csrc.nist.gov/groups/ST/rbg_workshop_2012/hagerty_entropy_paper.pdf
http://csrc.nist.gov/groups/ST/rbg_workshop_2012/hagerty_entropy_paper.pdf
http://csrc.nist.gov/groups/ST/rbg_workshop_%202012/hagerty%20.pdf
http://csrc.nist.gov/groups/ST/rbg_workshop_%202012/hagerty%20.pdf

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 61

[Sal07] D. Salomon, Data Compression: The Complete Reference, Chapter 3,

Springer, 2007

[Shan51] C.E Shannon, Prediction and Entropy of Printed English, Bell System

Technical Journal, volume 30, pp. 50-64, January 1951,

https://archive.org/details/bstj30-1-50.

[SP800-38B] National Institute of Standards and Technology Special Publication (SP) 800-

38B Recommendations for Block Cipher Modes of Operation: The CMAC

Mode for Authentication, May 2005

[SP800-57] National Institute of Standards and Technology Special Publication (SP) 800-

57 Recommendation for Key Management – Part I: General (Revision 3),

January 2016.

[SP800-90A] National Institute of Standards and Technology Special Publication (SP) 800-

90A, Recommendation for Random Number Generation Using Deterministic

Random Bit Generators, June 2015.

[SP800-90C]

National Institute of Standards and Technology Special Publication (SP) 800-

90C, Recommendations for Random Bit Generator (RBG) Constructions,

Draft.

[SP800-107] National Institute of Standards and Technology Special Publication (SP) 800-

107, Revision 1, Recommendations for Applications using Approved Hash

Functions, August 2012.

 Min-Entropy and Optimum Guessing Attack Cost 1792

Suppose that an adversary wants to determine at least one of several secret values, where each 1793

secret value is independently chosen from a set of M possibilities, with probability distribution P 1794

= {p1, p2, …, pM}. Assume that these probabilities are sorted so that p1 ≥ p2 ≥ …≥ pM . Consider a 1795

guessing strategy aimed at successfully guessing as many secret values as possible. The adversary's 1796

goal would be to minimize the expected number of guesses per successful recovery. Such a strategy 1797

would consist of guessing a maximum of k possibilities for a given secret value, moving on to a 1798

new secret value when either a guess is correct or k incorrect guesses for the current value have 1799

been made. In general, the optimum value of k can be anywhere in the range 1 ≤ k ≤ M, depending 1800

on the probability distribution P. Note that when k = M, the Mth guess is considered a valid (though 1801

trivial) guess. Regardless of the value of k chosen, it is clear that the k guesses selected for a given 1802

secret value should be the k most likely possible values, in decreasing order of probability. 1803

The expected work per success can be computed for this attack as follows. For 1 ≤ j ≤ k – 1, the 1804

attacker will make exactly j guesses if the secret value is the jth most likely value, an event having 1805

probability pj. The attacker will make exactly k guesses if the secret value is not any of the k – 1 1806

most likely values, an event having probability 1 − ∑ 𝑝𝑗
𝑘−1
𝑗=1 . Thus, the expected number of guesses 1807

for the attack is given by the following: 1808

https://archive.org/details/bstj30-1-50

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 62

𝑝1 + 2𝑝2 + ⋯ + (𝑘 − 1)𝑝𝑘−1 + 𝑘 (1 − ∑ 𝑝𝑗

𝑘−1

𝑗=1

). 1809

Since this attack will be successful if and only if the secret value is one of the k most likely 1810

possibilities, which is the case with probability ∑ 𝑝𝑗
𝑘
𝑗=1 , the expected number of times the attack 1811

must be performed until the first success is the reciprocal of this probability. Multiplying this 1812

reciprocal by the expected number of guesses per attack gives the following as the expected work 1813

per success: 1814

𝑊𝑘(𝑃) =
𝑝1 + 2𝑝2 + ⋯ + (𝑘 − 1)𝑝𝑘−1 + 𝑘 (1 − ∑ 𝑝𝑗

𝑘−1
𝑗=1)

∑ 𝑝𝑗
𝑘
𝑗=1

. 1815

It is not critical to determine the value k* that minimizes 𝑊𝑘(𝑃), since the min-entropy of P leads 1816

to an accurate approximation (and sometimes the exact value) of 𝑊𝑘∗(𝑃). Stated more precisely, 1817

𝑊1(𝑃) =
1

𝑝1
 is an upper bound of 𝑊𝑘∗(𝑃), and it can be shown that 𝑊𝑘(𝑃) ≥

1

2𝑝1
+

1

2
 for all k 1818

such that 1 ≤ k ≤ M. Since the min-entropy of P is − log2(𝑝1), these two bounds imply that the 1819

error between the min-entropy of P and log2(𝑊𝑘∗(𝑃)) can be bounded as follows: 1820

0 ≤ − log2 𝑝1 − log2(𝑊𝑘∗(𝑃)) ≤ 1 − log2(𝑝1 + 1). 1821

Notice that since
1

𝑀
 ≤ 𝑝1 ≤ 1, the upper bound on the error approaches 0 as 𝑝1 → 1, and 1822

alternatively, this bound approaches 1 as 𝑀 → ∞ and 𝑝1 →
1

𝑀
. In other words, the min-entropy of 1823

P either corresponds to the exact expected work, measured in bits, needed to perform the optimum 1824

guessing attack or over-estimates this work by at most one bit. 1825

In order to prove the claim that 𝑊𝑘(𝑃) ≥
1

2𝑝1
+

1

2
, for 1 ≤ k ≤ M, rewrite the expected work per 1826

success as 1827

𝑊𝑘(𝑃) =
1 + (1 − 𝑝1) + (1 − 𝑝1 − 𝑝2) + ⋯ + (1 − 𝑝1 − 𝑝2 − ⋯ − 𝑝𝑘−1)

𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘
. 1828

Consider an alternative probability distribution on a set of M possibilities 𝑃′ =1829

{𝑝1, 𝑝1, … , 𝑝1, 𝑟, 0, … ,0}, where 𝑝1 occurs 𝑡 = ⌊
1

𝑝1
⌋ times and 𝑟 = 1 − 𝑡𝑝1. It is straightforward to 1830

see that 𝑊𝑘(𝑃) ≥ 𝑊𝑘(𝑃′), since each term in the numerator of 𝑊𝑘(𝑃) is at least as large as the 1831

corresponding term in 𝑊𝑘(𝑃′), and the denominator of 𝑊𝑘(𝑃′) is at least as large as the 1832

denominator of 𝑊𝑘(𝑃). 1833

Now to show that 𝑊𝑘(𝑃′) ≥
1

2𝑝1
+

1

2
. Based on the above formula for 𝑊𝑘(𝑃), for 1 ≤ k ≤ t + 1, 1834

the numerator of 𝑊𝑘(𝑃′) can be written as 1835

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 63

∑ (1 − 𝑖𝑝1) = 𝑘 −
𝑘(𝑘 − 1)

2
𝑝1 = 𝑘𝑝1 (

1

𝑝1
−

𝑘 − 1

2
)

𝑘−1

𝑖=0
. 1836

Consider the following two cases where 1 ≤ k ≤ t and k = t + 1. These are the only cases to check, 1837

since if M > t + 1, then 𝑊𝑘(𝑃′) = 𝑊𝑡+1(𝑃′) for k > t + 1, because the remaining probabilities are 1838

all zero. Furthermore, r = 0 if and only if
1

𝑝1
 is an integer, and when this happens, only the first 1839

case needs to be addressed since 𝑊𝑡+1(𝑃′) = 𝑊𝑡(𝑃′). 1840

For 1 ≤ k ≤ t, the denominator of 𝑊𝑘(𝑃′) = 𝑘𝑝1. Then, 1841

𝑊𝑘(𝑃′) =
𝑘𝑝1 (

1

𝑝1
−

𝑘−1

2
)

𝑘𝑝1
=

1

𝑝1
−

𝑘 − 1

2
, 1842

≥
1

𝑝1
−

1

2
 (⌊

1

𝑝1
⌋ − 1) , 1843

≥
1

𝑝1
−

1

2
 (

1

𝑝1
− 1) , 1844

≥
1

2𝑝1
+

1

2
 . 1845

For k = t +1, the denominator of 𝑊𝑘(𝑃′) is tp1+r =1. Let x =
1

𝑝1
− ⌊

1

𝑝1
⌋, so 0 ≤ x < 1. This implies 1846

 1847

𝑊𝑘(𝑃′) = 𝑘𝑝1 (
1

𝑝1
−

𝑘 − 1

2
) = (⌊

1

𝑝1
⌋ + 1) 𝑝1 (

1

𝑝1
−

1

2
⌊

1

𝑝1
⌋) , 1848

= (
1

𝑝1
− 𝑥 + 1) (

1

2
+

𝑝1𝑥

2
) , 1849

=
1

2𝑝1
+

1

2
+

𝑝1𝑥(1 − 𝑥)

2
, 1850

≥
1

2𝑝1
+

1

2
. 1851

Therefore, it has been shown that 𝑊𝑘(𝑃) ≥ 𝑊𝑘(𝑃′) ≥
1

2𝑝1
+

1

2
 for 1 ≤ k ≤ M. Note that this lower 1852

bound is sharp, since 𝑊𝑘(𝑃) achieves this value when P is a uniform distribution. 1853

Post-processing Functions 1854

This section provides the details of the allowed post-processing functions for a noise source. 1855

 1856

Von Neumann’s method: This method produces independent unbiased random bits for a source 1857

that generates independent biased output bits. This method divides the sequence into pairs and 1858

applies the following mapping: 1859

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 64

input output

00 discard

01 1

10 0

11 discard

For a source that produces independent biased random bits (s1, s2,…), with Pr(si = 0) = p, and p ≠ 1860

½, the method extracts approximately np(1 – p) unbiased bits from n biased bits. Independent of 1861

the value of p, the method throws away a pair of bits at least half of the time. It should be noted 1862

that the bias in the correlated sources might increase after applying the technique. 1863

Linear filtering method: This method divides the sequence into non-overlapping blocks of w bits 1864

and applies a linear function to each block. Mathematically, the output of the jth block is calculated 1865

as f(sjw+1,…, s(j+1)w) = c1sjw+1+… + cws(j+1)w, where the ci values are predetermined binary constants. 1866

A typical value of w may be between 16 and 64; this Recommendation does not put a restriction 1867

on the selection of the block size w. 1868

Length of runs method: This method outputs the length of the runs in (s1, s2,…), where the si’s are 1869

bits. 1870

 1871

 The Narrowest Internal Width 1872

The narrowest internal width of a conditioning component is the maximum amount of information 1873

from the input that can affect the output. It can also be considered as the logarithm of an upper 1874

bound on the number of distinct outputs, based on the size of the internal state. 1875

Example: Let F(X) be a function defined as follows: 1876

1. Let h1 be the output of SHA256(X) truncated to 64 bits. 1877

2. Return SHA256(h1|| h1) truncated to 128 bits. 1878

This function takes an arbitrarily-long input X and will yield 128-bit output value, but its internal 1879

width is only 64 bits, because the value of the output only depends on the value of 64-bit h1. 1880

CBC-MAC Specification 1881

A conditioning component may be based on the use of CBC-MAC using a 128-bit approved 1882

block-cipher algorithm. This CBC-MAC construction shall not be used for any other purpose than 1883

as the algorithm for a conditioning component, as specified in Section 3.1.5.1.1. The following 1884

notation is used for the construction. 1885

Let E(Key, input_string) represent the approved encryption algorithm, with a Key and an 1886

input_string as input parameters. The length of the input_string shall be an integer multiple of the 1887

output length n of the block-cipher algorithm and shall always be the same length (i.e., variable 1888

length strings shall not be used as input). 1889

Let n be the length (in bits) of the output block of the approved block cipher algorithm, and let w 1890

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 65

be the number of n-bit blocks in the input_string. 1891

Let output_string be the n-bit output of CBC-MAC. 1892

CBC-MAC: 1893
Input: bitstring Key, input_string. 1894

Output: bitstring output_string. 1895

Process: 1896

1. Let 𝑠0, 𝑠1, … 𝑠𝑤−1 be the sequence of blocks formed by dividing input string into n-bit 1897

blocks; i.e., each 𝑠𝑖 consists of n bits. 1898

2. V = 0. 1899

3. For i = 0 to w-1 1900

V = E(Key, V 𝑠𝑖). 1901

4. Output V as the CBC-MAC output. 1902

 1903

Different Strategies for Entropy Estimation 1904

Each of the estimation methods presented in Section 6 follows one of two approaches to estimating 1905

min-entropy. The first approach is based on entropic statistics, first described for IID data in 1906

[HD12], and later applied to non-IID data [HD12]. The most common value test estimates entropy 1907

by bounding the probability of the most-common output. In the IID case, the collision and 1908

compression estimators in Section 6.3 provide a lower bound on min-entropy by fitting the 1909

distribution to a near-uniform distribution, where one probability is highest, and the rest are all 1910

equal. Empirically, these estimators appear to be conservative for independent, but not necessarily 1911

identically distributed samples, as well. The final estimator proposed in [HD12] and specified in 1912

Section 6.3.3 constructs a first-order Markov model and estimates entropy from the most-probable 1913

sequence. 1914

H.1 Entropic Statistics 1915

The entropic statistics presented in [HD12], each designed to compute a different statistic on the 1916

samples, provide information about the structure of the data: collision, collection, compression, 1917

and Markov. While the estimators (except for the Markov) were originally designed for application 1918

to independent outputs, the tests have performed well when applied to data with dependencies. 1919

Given empirical evidence and the confidence level of the tests, their application to non-IID data 1920

will produce valid, although conservative, entropy estimates. 1921

The estimators assume that a probability distribution describes the output of a random noise source, 1922

but that the probability distribution is unknown. The goal of each estimator is to reveal information 1923

about the unknown distribution, based on a statistical measurement. 1924

The collision and compression estimators in Section 6 each solve an equation for an unknown 1925

parameter, where the equation is different for each estimator. These equations come from the target 1926

statistic’s expected value using a near-uniform distribution, which provides a lower bound for min-1927

entropy. A near-uniform distribution is an instance of a one-parameter family of probability 1928

distributions parameterized by p, Pp: 1929

NIST SP 800-90B (2nd Draft) Recommendation for the Entropy Sources
 Used for Random Bit Generation

 66

𝑃𝑝(𝑖) = {
𝑝, if 𝑖 = 0

1 − 𝑝

𝑘 − 1
, otherwise

 1930

where k is the number of states in the output space, and 𝑝 ≤
1−𝑝

𝑘−1
. In other words, one output state 1931

has the maximum probability, and the remaining output states are equally likely. For more 1932

information, see [HD12]. 1933

H.1.1 Approximation of 𝐅(𝟏/𝐳) 1934

The function F(1/z), used by the collision estimate (Section 6.3.2), can be approximated by the 1935

following continued fraction9: 1936

1

𝑧 +
−𝑛

1+
1

𝑧+
1−𝑛

1+
2

𝑧+
2−𝑛

1+
3
…

 1937

H.2 Predictors 1938

Shannon first published the relationship between the entropy and predictability of a sequence in 1939

1951 [Shan51]. Predictors construct models from previous observations, which are used to predict 1940

the next value in a sequence. The prediction-based estimation methods in this Recommendation 1941

work in a similar way, but attempt to find bounds on the min-entropy of integer sequences 1942

generated by an unknown process (rather than N-gram entropy of English text, as in [Shan51]). 1943

The predictor approach uses two metrics to produce an estimate. The first metric is based on the 1944

global performance of the predictor, called accuracy in machine-learning literature. Essentially, a 1945

predictor captures the proportion of guesses that were correct. This approximates how well one 1946

can expect a predictor to guess the next output from a noise source, based on the results over a 1947

long sequence of guesses. The second metric is based on the greatest number of correct predictions 1948

in a row, which is called the local entropy estimate. This metric is useful for detecting cases where 1949

a noise source falls into a highly predictable state for some time, but the predictor may not perform 1950

well on long sequences. The calculations for the local entropy estimate come from the probability 1951

theory of runs and recurrent events [Fel50]. For more information about min-entropy estimation 1952

using predictors, see [Kel15]. 1953

9 Derived from Equation 8.9.2 at http://dlmf.nist.gov/8.9.

http://dlmf.nist.gov/8.9

