

### Alaska Climate Mitigation Advisory Group of the Governor's Climate Change Sub-Cabinet Meeting #6 April 2, 2009 Anchorage, Alaska

Brian Rogers University of Alaska, Fairbanks <u>chancellor@uaf.edu</u>

Ken Colburn / Gloria Flora nks Center for Climate Strategies <u>kcolburn@symbioticstrategies.com</u> <u>gflora@s-o-solutions.org</u> www.climatestrategies.us

April 2, 2009

# Meeting Agenda

- Presentation: Overview of EPA's New GHG Reporting Regulations
- Welcome, Introductions & Objectives for the Day
- Introductory Remarks
- Process Update
- Review and Approve Priority Option Descriptions by TWG
  - Cross-Cutting TWG (45 minutes)
  - Forestry, Agriculture and Waste (45 minutes)
  - Energy Supply and Demand (45 minutes)
- Lunch
- Review and Approve Priority Option Descriptions by TWG
  - Transportation and Land Use (45 minutes)
  - Oil and Gas (45 minutes)
- Next Steps for the MAG and its Technical Work Groups
- Date and Time of Next MAG Meeting
- Public Input and Announcements
- Wrap-Up and Adjournment

# Prospective Timetable: Climate Change Mitigation Advisory Group

| Date                 | Action                                                                               |
|----------------------|--------------------------------------------------------------------------------------|
| May 15, 2008         | 1 <sup>st</sup> Meeting: Launch Process; Review Inventory                            |
| July 15, 2008        | 2 <sup>nd</sup> Meeting: Catalog of Potential Policy Options                         |
| September 22, 2008   | 3 <sup>rd</sup> Meeting: Presentations; Some Selection of Priority Policy<br>Options |
| November 6, 2008     | 4 <sup>th</sup> Meeting: Select Priority Policy Options                              |
| February 5, 2009     | 5 <sup>th</sup> Meeting: Approve Straw Proposals                                     |
| April 2, 2009        | 6 <sup>th</sup> Meeting: Initial Quantification of Options                           |
| June 18, 2009        | 7 <sup>th</sup> Meeting: Approve Recommended Options                                 |
| Following Conclusion | Final Report to Sub-Cabinet                                                          |
| Between Meetings     | Regular TWG teleconference meetings and possible face-to-face meetings               |

# **Stepwise Planning Process**

- 1. Develop/revise baseline inventory and forecast
- 2. Identify a full range of possible actions ("catalog") and programs already in place
- 3. Identify initial priorities for analysis & development
- 4. Develop straw proposals
- 5. Quantify GHG reductions and costs/savings (to the extent possible)
- 6. Identify mechanisms, feasibility issues, co-benefits or costs, etc.
- 7. Develop alternatives if needed to enhance consensus
- 8. Iterate to final agreement
- 9. Finalize and report recommendations to Subcabinet

# **Policy Option Template**

- Policy Description (Concept)
- Policy Design (Goals, Timing, Coverage)
- Implementation Methods (parties, mechanisms)
- Related Programs and Policies (BAU)
- Estimated GHG Reductions and Costs/Savings Per MMTCO<sub>2</sub>e
  - Data sources, methods, and assumptions
  - Key uncertainties
- Additional (non-GHG) Benefits and Costs, as Needed
- Feasibility Issues, as Needed
- Status of Group Approval
- Level of Group Support
- Barriers to Consensus, if Any

Review & Approval of TWGs' Work & Quantification of Policy Options

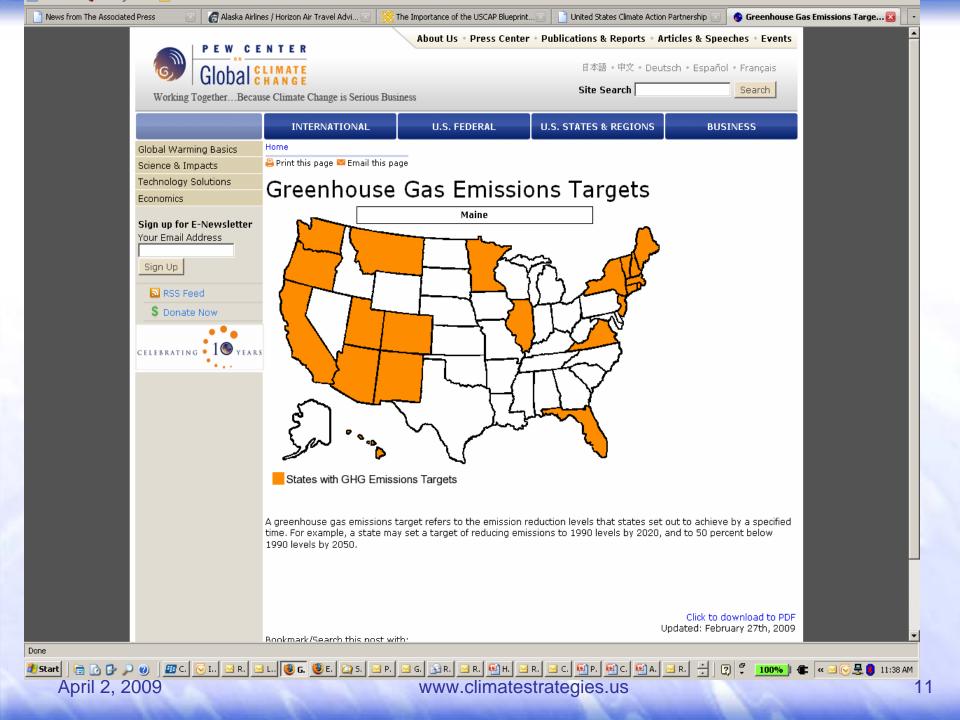
- Cross-Cutting Issues (CC)
- Forestry, Agriculture & Waste (FAW)
- Energy Supply & Demand (ESD)
- Lunch Break
- Transportation & Land Use (TLU)
- Oil & Gas (O&G)

# CC TWG Policy Options

- 1. Establish an Alaska GHG Emissions Reporting Program
- 2. Establish goals for state-wide GHG emission reduction
- 3. Identify and Implement State Government Mitigation Actions
- 4. Integrate Alaska Climate Change Mitigation Strategy with the State Energy Plan
- 5. Explore Various Market-Based Systems to Manage GHG Emissions
- 6. Create an Alaska Climate Change Program that Coordinates State Efforts for Addressing Climate Change

# **CC TWG Policy Options**

| Option |                                                                                                            |                | Redu<br>MMtCC  | ctions<br>D <sub>2</sub> e) | Net<br>Present                     | Cost-<br>Effective- | Status of |
|--------|------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------------------|------------------------------------|---------------------|-----------|
| No.    | Policy Option                                                                                              | 2012           | 2020           | Total<br>2007–<br>2020      | Value<br>2007–2020<br>(Million \$) | ness                | Option    |
| CC-1   | Establish an Alaska Greenhouse Gas<br>Emission Reporting Program                                           |                | 54             | Not G                       | uantified                          |                     | Pending   |
| CC-2   | Establish Goals for Statewide GHG<br>Emission Reduction                                                    |                | Not Quantified |                             | Pending                            |                     |           |
| CC-3   | Identify and Implement State<br>Government Mitigation Actions                                              |                | Not Quantified |                             |                                    |                     | Pending   |
| CC-4   | Integrate Alaska's Climate Change<br>Mitigation Strategy with the Alaska<br>Energy Plan                    | 0              |                | Not Quantified              |                                    |                     | Pending   |
| CC-5   | Explore Various Market-Based<br>Systems to Manage GHG Emissions                                            | Not Quantified |                | Pending                     |                                    |                     |           |
| CC-6   | Create an Alaska Climate Change<br>Program that Coordinates State Efforts<br>for Addressing Climate Change | 5              |                | Not G                       | uantified                          |                     | Pending   |


# CC-1. Establish an Alaska Greenhouse Gas Emissions Reporting Program

- This option would establish a reporting program that ensures accurate, verifiable, and transparent reporting of GHG emissions data within Alaska
- Develop and publish an Alaska GHG inventory and forecast every three years
- Recommend holding on further action on this option for now. A draft federal GHG Reporting Rule was released on March 10th. Review of this rule is underway. The final rule will likely impact this option.

# CC-2. Establish Goals for Statewide Greenhouse Gas Reduction

- Many other states have adopted GHG reduction goals (see next two pages)
- There is support among Alaska industry representatives for GHG goals for Alaska
- The TWG will do additional analysis based on possible reductions reported by other TWGs at this meeting
- The Subcabinet should consider adoption of goals:
  - Begin to reduce GHG emissions by 2012
  - Achieve reductions of 14-20% percent below 1990 levels by 2020
  - Reduce GHG emissions by 60-80% below 1990 levels by 2050

April 2, 2009



#### Summary by State GHG Reduction Goals and Targets

| State,<br>Province, or<br>Region | 1990-2020<br>GHG<br>Forecast | State Goals                                                                                                                                                                  | Climate Plan<br>Coverage |
|----------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Arizona                          | 144%                         | <ul> <li>2000 levels by 2020; 50% below by 2040</li> <li>15% below 2005 levels by 2020 (WCI)</li> </ul>                                                                      | 106%                     |
| California                       | 40%                          | <ul> <li>E.O.: 2000 level by 2010; 1990 by 2020; 80% below 1990 by 2050</li> <li>AB-32: 1990 levels by 2020</li> <li>15% below 2005 levels by 2020 (WCI)</li> </ul>          | 100%                     |
| Colorado                         | 71%                          | <ul> <li>20% below 2005 level by 2020; 80% below by 2050</li> </ul>                                                                                                          | 75%                      |
| Connecticut                      | 32%                          | <ul> <li>1990 level by 2010; 10% below by 2020; 75% below by 2050</li> </ul>                                                                                                 | 100%                     |
| Florida                          | ?                            | <ul> <li>2000 level by 2017; 1990 level by 2025; 80% below 1990 by<br/>2050</li> </ul>                                                                                       | ?                        |
| Massachusetts                    | ?                            | <ul> <li>1990 level by 2010; 10% below by 2020; 75% below by 2050</li> </ul>                                                                                                 | ?                        |
| Maine                            | 34%                          | <ul> <li>1990 level by 2010; 10% below by 2020; 75% below by 2050</li> </ul>                                                                                                 | 100%                     |
| Maryland                         | 42%                          | • Recommended: 10% below 2006 levels by 2012; 15% below 2006 levels by 2015; 25% (enforceable)-50% (science based) below 2006 levels by 2020; 90% below 2006 levels by 2050. | 100%                     |
| Minnesota                        | 48%                          | <ul> <li>Next Generation Energy Act: 15% below 2005 levels by 2015;</li> <li>30% by 2025; 80% by 2050</li> </ul>                                                             | TBD                      |
| Montana                          | 30%                          | <ul> <li>1990 level by 2020; 80% below by 2050 (consumption &amp; production)</li> </ul>                                                                                     | 89%-105%                 |
| North Carolina                   | 113%                         | ?                                                                                                                                                                            | TBD                      |
| NEG/ECP                          | ?                            | • 1990 level by 2010; 10% below by 2020; 75% below by 2050                                                                                                                   | TBD                      |

April 2, 2009

www.climatestrategies.us

#### Summary by State GHG Reduction Goals and Targets

| State,<br>Province, or<br>Region | 1990-2020<br>GHG Forecast | State Goals                                                                                                                                | Climate Plan<br>Coverage |
|----------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| New Jersey                       | 28%                       | • E.O. 54: 1990 level by 2020; 80% below 2006 levels by 2050                                                                               | TBD                      |
| New Mexico                       | 65%                       | <ul> <li>2000 level by 2012; 10% below by 2020; 75% below by 2050</li> <li>15% below 2005 levels by 2020 (WCI)</li> </ul>                  | 133%                     |
| New York                         | 24%                       | • 5% below 1990 by 2010                                                                                                                    | ?                        |
| Ontario                          | ?                         | • 6% below 1990 by 2014                                                                                                                    | n/a                      |
| Oregon                           | 61%                       | <ul> <li>10% below 1990 by 2020; 75% below 1990 by 2050</li> <li>15% below 2005 levels by 2020 (WCI)</li> </ul>                            | 85%                      |
| Puget Sound                      | 37%                       | • 1990 level by 2010; 10% below by 2020; 75% below by 2100                                                                                 | 100%                     |
| Rhode Island                     | 35%                       | • 1990 level by 2010; 10% below by 2020; 75% below by 2050                                                                                 | 100%                     |
| South Carolina                   | 87%                       | Recommended: 5% below 1990 levels by 2020                                                                                                  | 99%                      |
| Vermont                          | 26-59%                    | • 25% below 1990 levels by 2012; 50% below 1990 by 2028; 75% below by 2050                                                                 | TBD                      |
| Utah                             | 95%                       | • 15% below 2005 levels by 2020 (WCI)                                                                                                      | TBD                      |
| Washington                       | 40%                       | <ul> <li>E.O.: 1990 levels by 2020; 25% below 1990 by 2035; 50% below 1990 by 2050</li> <li>15% below 2005 levels by 2020 (WCI)</li> </ul> | TBD                      |
| WCI                              | 54%                       | • 15% below 2005 levels by 2020 (AZ, NM, CA, OR, UT, WA, BC, MB)                                                                           | TBD                      |
| British Columbia                 | 69%                       | • 15% below 2005 levels by 2020 (WCI)                                                                                                      | TBD                      |
| Manitoba                         | TBD                       | • 15% below 2005 levels by 2020 (WCI)                                                                                                      | TBD                      |

April 2, 2009

# CC-3. Identify and Implement State Government Mitigation Actions

- The State implements low cost "Early Actions" that can be taken without significant new funding or legislative approval to reduce GHG emissions
- The State publicizes successes through a "Report Card" to encourage others to act and to generate political momentum
- The TWG will estimate general costs for initial actions identified in the option by working with State Agency contacts
- The Subcabinet should encourage Agencies to adopt the actions (likely with reallocation of funding)

# CC-4. Integrate Alaska's Climate Change Strategy with the Alaska Energy Plan

- Develop an "Energy Database" to track commercial, residential, industrial, and transportation energy consumption and production
  - Currently, no single state agency in Alaska has responsibility for tracking energy consumption and production for Alaska
  - Estimated costs: \$300,000 to \$500,000, depending on whether the State can modify an existing incomplete database
- Develop an Alaska "Climate Protection & Energy Plan"
  - Integrate the Climate Action Strategy with the Alaska Energy Plan
  - Outline mitigation objectives/energy consumption goals through 2020
- The Subcabinet should initiate discussions to accomplish this and allocate funding for building the database

# CC-5. Explore Various Market Based Systems to Manage Greenhouse Gas Emissions

- There is a potential for a federal GHG market-based program – how would various programs impact Alaska?
- A study will help to:
  - Examine interactions of market-based programs with existing and proposed emission reduction measures in AK
  - Consider means to oversee and manage revenues generated by a future market-based approach and consider needed changes to existing laws
- The Subcabinet should allocate funding (up to \$50,000) to conduct a study to determine the effects of market approaches to carbon on AK

# CC-6. Create an Alaska Climate Change Program that Coordinates State Efforts

- The Subcabinet and AG/TWG structure was established as a temporary solution. Numerous agencies are conducting climate change activities. Alaskans do not know where to turn for climate change information. There is a need to provide focus and coordination among State climate change activities
  - Coordinate policy, regulatory, and reporting activities
  - Organize and improve access to information, including reporting on state activities via a Web portal
  - Develop education and outreach materials\*
    - Establish a framework through K-12 education to improve public understanding of the causes/consequences of climate change in Alaska
    - Conduct directed outreach and partnering with stakeholders
    - Provide training for natural resource managers

\* overarching interest – also supported by TWG addressing Adaptation

# CC-6. Create an Alaska Climate Change Program that Coordinates State Efforts

- The Subcabinet should support formation of an Alaska Climate Change Program that coordinates the various climate change activities previously listed across State Agencies
- The Subcabinet should allocate approximately \$650,000 annually to manage this effort (5 FTE + operating expenses)

# Thank you!

Contact info Nancy Tosta, Ross & Associates <u>nancy.tosta@ross-assoc.com</u> (206) 447-1805

April 2, 2009

www.climatestrategies.us





# FAW TWG Policy Options

- 1. Forest Management Strategies for Carbon Sequestration
- 2. Expanded Use of Biomass Feedstocks for Energy Production
- 3. Advanced Waste Reduction and Recycling

# FAW – Initial Quantification Results

|               |                                                                   |                      | GHG Reductions<br>(MMtCO <sub>2</sub> e) |         |                        |                                           | Cost-<br>Effective                   |                     |
|---------------|-------------------------------------------------------------------|----------------------|------------------------------------------|---------|------------------------|-------------------------------------------|--------------------------------------|---------------------|
| Option<br>No. | Policy Option                                                     | 2015                 | 2020                                     | 2025    | Total<br>2010–<br>2025 | Value<br>2010–2025<br>(Million<br>2005\$) | -ness<br>(\$/tCO <sub>2</sub> e<br>) | Level of<br>Support |
|               | Forest Management Strategies<br>for Carbon Sequestration          |                      |                                          |         |                        |                                           |                                      |                     |
|               | A. Coastal Management Pre-<br>Commercial Thinning                 |                      | I                                        | ncludec | l under l              | FAW-2                                     |                                      | Pending             |
| FAW-1         | B. Boreal Forest Mechanical<br>Fuels Treatment                    |                      | I                                        | ncludec | l under l              | FAW-2                                     | 8.5                                  | Pending             |
|               | C. Community Wildfire<br>Protection Plans                         | Included under FAW-2 |                                          |         |                        | Pending                                   |                                      |                     |
| 1.00          | D. Boreal Forest Reforestation                                    | 0.09                 | 0.12                                     | 0.15    | 1.6                    | \$150                                     | \$92                                 | Pending             |
|               | Expanded Use of Biomass<br>Feedstocks for Energy<br>Production    |                      |                                          |         |                        |                                           |                                      |                     |
| FAW-2         | A. Biomass Feedstocks to<br>Offset Heating Oil Use                | 0.08                 | 0.14                                     | 0.20    | 1.7                    | TBD                                       | TBD                                  | Pending             |
| FAVV-2        | B. Biomass Feedstocks for<br>Electricity Use                      | 0.03                 | 0.07                                     | 0.11    | 0.8                    | \$32                                      | \$38                                 | Pending             |
|               | C. Biomass Feedstocks to<br>Offset Fossil Transportation<br>Fuels | 0.03                 | 0.06                                     | 0.09    | 0.8                    | \$41                                      | \$52                                 | Pending             |
| FAW-3         | Advanced Waste Reduction<br>and Recycling                         | 0.27                 | 0.45                                     | 0.65    | 5.3                    | -\$43                                     | -\$8                                 | Pending             |

April 2, 2009

# **ESD TWG Policy Options**

- 1. Transmission system optimization and expansion
- 2. Energy efficiency for residential and commercial customers
- 3. Implementation of renewable energy
- 4. Building standards & incentives
- 5. Efficiency Improvements for Generators
- 6. Energy efficiency for industrial installations
- 7. Implementation of small-scale nuclear power
- 8. R&D for cold-climate renewable technologies
- 9. Implementation of advanced supply-side technologies

# **ESD** – Initial Quantification Results

| Ontion        |                                                                        | GHG Reductions<br>(MMtCO <sub>2</sub> e) |      |      |                        | Net Present<br>Value 2010–  | Cost-                                         |                     |
|---------------|------------------------------------------------------------------------|------------------------------------------|------|------|------------------------|-----------------------------|-----------------------------------------------|---------------------|
| Option<br>No. |                                                                        |                                          | 2020 | 2025 | Total<br>2010–<br>2025 | 2025<br>(Million<br>2005\$) | Effective-<br>ness<br>(\$/tCO <sub>2</sub> e) | Level of<br>Support |
| ESD-1         | Transmission System Optimization<br>and Expansion                      | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| ESD-2         | Energy Efficiency for Residential<br>and Commercial Customers          | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| ESD-3         | Implementation of Renewable<br>Energy<br>(electricity – focus)         | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| ESD-4         | C. Community Wildfire Protection<br>Plans                              | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| ESD-5         | Building Standards/Incentives                                          | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| ESD-6         | Efficiency Improvements for<br>Generators                              | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| ESD-7         | Energy Efficiency for Industrial<br>Installations                      | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| ESD-8         | Research and Development for<br>Cold-Climate Renewable<br>Technologies | TBD                                      | TBD  | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |

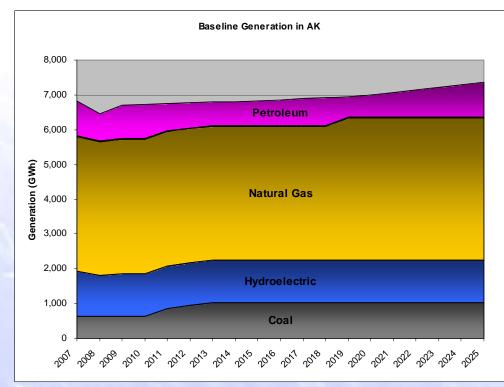
# **Electricity Supply and Demand**

Policy Option Quantification – Preliminary Results Alaska CCS April 2, 2009

April 2, 2009

# **ES&D 1: Transmission Expansion**

- Quantification Method
- Assumptions
- Results
- Analysis


## ES&D 1 - Methods

- Technically achievable RE <u>intertie</u> proposals identified by AEA RE Grant Program
  - Results of Round 1 released (1/22/2009)
- Used AEA analysis assumptions for generation, displaced fossil fuel, cost, and timeline
- Chose projects where pilot or feasibility programs were funded by AEA in Round 1 and project specifically funds an intertie
- Compiled results by year

- Rural Village to Village microgrids
  - 200 villages, each connected to one other village to increase efficiency
  - Estimated 15% fuel savings from larger load centers (eased load-following)
- Assumptions for microgrid scenario are almost all "rough" estimates

### **ES&D 3 - Assumptions**

- Baseline fuel mix changes with discrete projects known or expected by TWG members:
  - HCCP comes online 2011-2013 (50 MW, displaces petroleum)
  - Fairbanks obtains a natural gas supply in 2019 (60 MW fuel switch from petroleum)



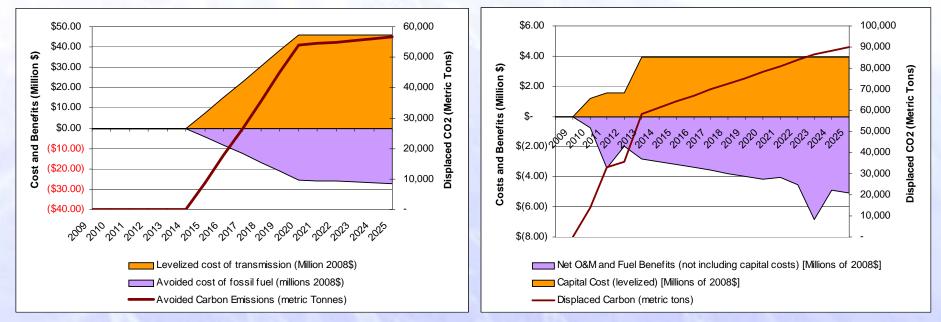
# **ES&D 3 - Assumptions**

- Village-to-village micro-grids
  - Increase efficiency of affected generators 15%
  - Villages are ~20 miles from each other
  - Each village is hooked up to one partner (no-multivillage grids)
  - Distribution lines cost \$300,000 per mile
  - No capital cost for new generators (assume replacement during turnover)
  - Program starts in 2015, ends in 2020

#### Discount Rate: 5% (real)

## **ES&D 3 - Assumptions**

#### • Renewable Energy Grants Program (AEA)


- Only programs which will fund interties counted
  - Metlaktla-Ketchikan
  - North Prince of Wales
  - Kake Petersburg
  - Nome (wind)
  - Lake and Peninsula Borough
- Use AEA analyses for
  - Capital costs (levelized)
  - O&M costs (levelized)
  - Expected generation (kWh)
  - Displaced fuel (gallons)
  - Year of implementation and operation

# ES&D 3 – Results

|                           | GHG Reductions (MMTCO2e) |      |      |                    |                            | Net Present                       |                                        |                                     |
|---------------------------|--------------------------|------|------|--------------------|----------------------------|-----------------------------------|----------------------------------------|-------------------------------------|
| Option #                  | 2015                     | 2020 | 2025 | Total 2010<br>2025 | Gross Cost<br>(Million \$) | Gross<br>Benefits<br>(Million \$) | Value<br>2010-2025<br>(Million 2008\$) | Cost<br>Effectiveness<br>(\$/tCO2e) |
| ES&D-1, Rural Trans.      | 0.01                     | 0.05 | 0.06 | 0.46               | \$229                      | -\$129                            | \$100                                  | \$214.07                            |
| ES&D-1, RE Grants (Trans) | 0.06                     | 0.08 | 0.09 | 1.06               | \$36                       | -\$38                             | -\$2                                   | -\$1.70                             |
| ES&D-1, Total             | 0.07                     | 0.13 | 0.15 | 1.52               | 264.76                     | -167.03                           | 97.73                                  | \$64.16                             |

ES&D-3, Rural Transmission

ES&D-1, RE Grants (AEA)



#### April 2, 2009

#### www.climatestrategies.us

# ES&D 2/4/6: Energy Efficiency

- Policy Design
- Quantification Methods
- Key Assumptions
- Results

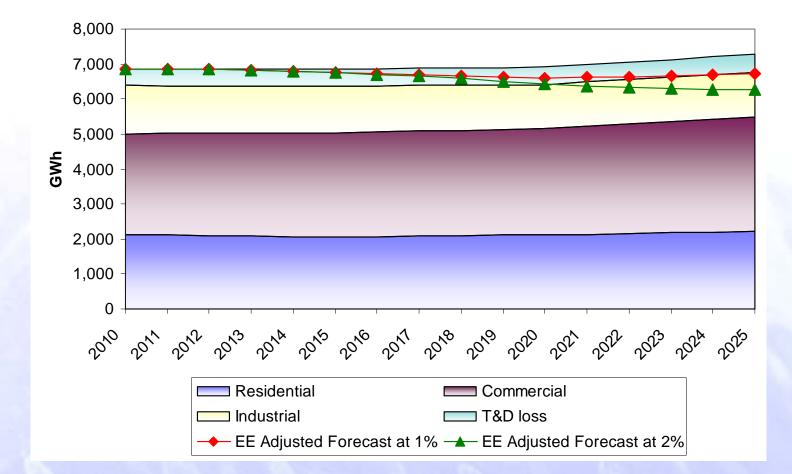
# ES&D 2/4/6 - Policy Design

 Goals: Energy efficiency programs to reduce electricity and natural gas use each year equal to (A) 1% of projected annual sales by 2015 and maintain at this level until 2025, or (B) further increasing to 2% by 2020 and maintain at this level by 2025

#### Annual Incremental Target

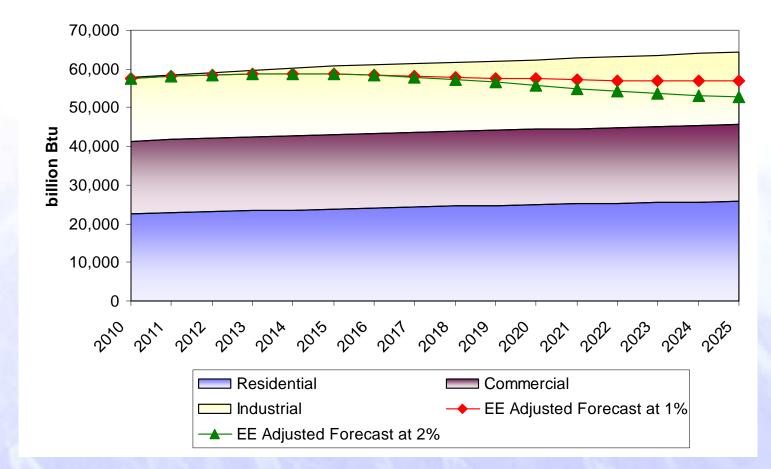
| Scenario    | 2010  | 2015 | 2020 | 2025 |
|-------------|-------|------|------|------|
| 1% per year | 0.20% | 1%   | 1%   | 1%   |
| 2% per year | 0.20% | 1%   | 2%   | 2%   |

Approximate Cumulative Target


| Scenario    | 2010  | 2015 | 2020 | 2025 |
|-------------|-------|------|------|------|
| 1% per year | 0.20% | 3%   | 8%   | 11%  |
| 2% per year | 0.20% | 3%   | 11%  | 18%  |

# Level of Energy Savings in Other States

| Jurisdiction or Entity                               | Annual<br>Saving<br>s (%) | Year(s)    | Source                                                                                             |
|------------------------------------------------------|---------------------------|------------|----------------------------------------------------------------------------------------------------|
| Interstate Power & Light (IPL) (MN)                  | 3.0                       | 2001       | Garvey, E. 2007. "Minnesota's Demand Efficiency Program."                                          |
| San Diego Gas & Electric (SDG&E) (CA)                | 2.1                       | 2005       | SDG&E 2006. Energy Efficiency Programs Annual Summary                                              |
| Minnesota Power                                      | 1.9                       | 2005       | Garvey, E. 2007                                                                                    |
| Sacramento Municipal Utility District<br>(SMUD) (CA) | 1.9                       | 1994       | Data provided by SMUD                                                                              |
| Vermont                                              | 1.8                       | 2007       | Efficiency Vermont 2008. 2007 Preliminary Results and Savings<br>Estimate Report                   |
| Southern California Edison (SCE)                     | 1.7                       | 2005       | SCE 2006. Energy Efficiency Annual Report                                                          |
| Western Mass. Electric Co. (MA)                      | 1.6                       | 1991       | MA Dept. of Telecommunications & Energy (DTE) 2003. Electric<br>Utility Energy Efficiency Database |
| Pacific Gas & Electric (PG&E) (CA)                   | 1.5                       | 2005       | PG&E 2006. Energy Efficiency Programs Annual Summary                                               |
| Massachusetts Electric Co.                           | 1.3                       | 2005       | MECo 2006. 2005 Energy Efficiency Annual Report Revisions                                          |
| Connecticut IOUs                                     | 1.3                       | 2006       | CT Energy Conservation Management Board (ECMB). 2007                                               |
| Commonwealth Electric (MA)                           | 1.2                       | 1990       | MA DTE 2003.                                                                                       |
| Cambridge Electric (MA)                              | 1.1                       | 2000       | MA DTE 2003.                                                                                       |
| Seattle City Light (WA)                              | 1.0                       | 2001       | Seattle City Light 2006. Energy Conservation Accomplishments: 1977-2005                            |
| Eastern Edison (MA)                                  | 1.0                       | 1994, 1998 | MA DTE 2003.                                                                                       |


Source: K. Takahashi and D. Nichols 2008. April 2, 2009 www.climatestrategies.us

# ES&D 2/4/6 Demand Forecast (Electric EE)



April 2, 2009 Utility Sales Only – growth from AEO 2009 Pacific Region

# ES&D 2/4/6 Demand Forecast (Gas EE)



April 2, 2009

www.climatestrategies.us

## ES&D 2/4/6 - Quantification Methods

- Project energy savings based on two scenarios on "annual incremental" savings from new EE programs
  - A 1% per year reduction in annual sales by 2015, maintaining until 2025
  - A 1% per year reduction in annual sales by 2015, increasing to 2% by 2020, maintaining until 2025
- Estimate the total cost of energy savings using statespecific or region-specific data on cost of saved energy from electric energy efficiency measures.
- Estimate the GHG emission reductions through energy efficiency measures.

## ES&D 2/4/6 - Key Assumptions

- Discount Rate: 5% (real)
- Avoided electricity price: 9.5 cents/kWh as the weighted avg. cost of avoided electricity in different regions
  - Railbelt: 6 cents/kWh
  - Southeast: zero
  - Rural: 22 cents/kWh
    - Assuming \$96/barrel of oil
- Avoided NG price: 6.54 \$/mmBtu for city gate natural gas price
  - Price was projected and levelized through 2025 based on 2008 historical price and on AEO 2009 forecast

## ES&D 2/4/6 - Key Assumptions

#### • T&D Loss:

- 7% for electricity
- 0% natural gas

#### Cost of Energy Efficiency Measures:

- 4.2 cents / kWh inflated from "typical" price of EE in lower 48
- \$2.7 per MMBtu inflated from average cost of saved NG (SWEEP '06)
- Efficiency Measure Lifetime: 12 years (average)
- Displaced Emissions for Electricity (diesel gen):
  - 1646.52 lb. /MWh
  - 0.7468 MTCO2 per MWh

### ES&D 2/4/6 - Results

#### 1% EE by 2015, hold at 1%

|                            | GHG Reductions (MMTCO2e) |      |      |                     | Net Present                |                                   |                                        |                                     |
|----------------------------|--------------------------|------|------|---------------------|----------------------------|-----------------------------------|----------------------------------------|-------------------------------------|
| Option #                   | 2015                     | 2020 | 2025 | Total 2010-<br>2025 | Gross Cost<br>(Million \$) | Gross<br>Benefits<br>(Million \$) | Value<br>2010-2025<br>(Million 2008\$) | Cost<br>Effectiveness<br>(\$/tCO2e) |
| RES                        | 0.06                     | 0.14 | 0.14 | 1.44                | \$51                       | -\$110                            | -\$59                                  | -\$41.00                            |
| СОМ                        | 0.09                     | 0.21 | 0.21 | 2.06                | \$74                       | -\$158                            | -\$84                                  | -\$41.00                            |
| IND                        | 0.04                     | 0.09 | 0.09 | 0.89                | \$32                       | -\$68                             | -\$36                                  | -\$41.00                            |
| ES&D-4, Electrical EE (1%) | 0.18                     | 0.44 | 0.44 | 4.38                | \$157                      | -\$336                            | -\$180                                 | -\$41.00                            |

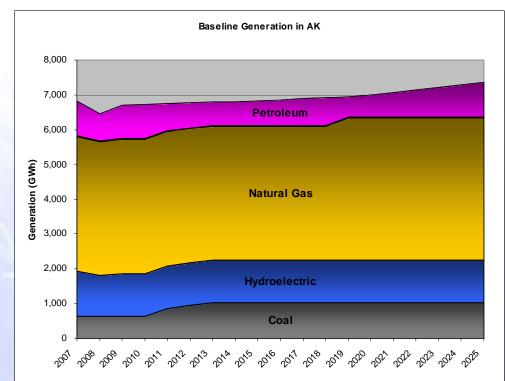
#### 1% EE by 2015, 2% by 2020

|                            | GHG Reductions (MMTCO2e) |      |      |                     |                            | Net Present                       |                                        |                                     |
|----------------------------|--------------------------|------|------|---------------------|----------------------------|-----------------------------------|----------------------------------------|-------------------------------------|
| Option #                   | 2015                     | 2020 | 2025 | Total 2010-<br>2025 | Gross Cost<br>(Million \$) | Gross<br>Benefits<br>(Million \$) | Value<br>2010-2025<br>(Million 2008\$) | Cost<br>Effectiveness<br>(\$/tCO2e) |
| RES                        | 0.06                     | 0.19 | 0.19 | 1.80                | \$63                       | -\$136                            | -\$72                                  | -\$40.33                            |
| СОМ                        | 0.09                     | 0.28 | 0.28 | 2.57                | \$91                       | -\$194                            | -\$104                                 | -\$40.33                            |
| IND                        | 0.04                     | 0.12 | 0.12 | 1.11                | \$39                       | -\$84                             | -\$45                                  | -\$40.33                            |
| ES&D-4, Electrical EE (2%) | 0.18                     | 0.59 | 0.59 | 5.48                | \$193                      | -\$414                            | -\$221                                 | -\$40.33                            |
| April 2, 2009              |                          |      | WWW  | <i>i</i> .climatest | rategies.us                |                                   |                                        | 40                                  |

## ES&D 3: Implementation of Renewable Energy

- Quantification Method
- Assumptions
- Results
- Analysis

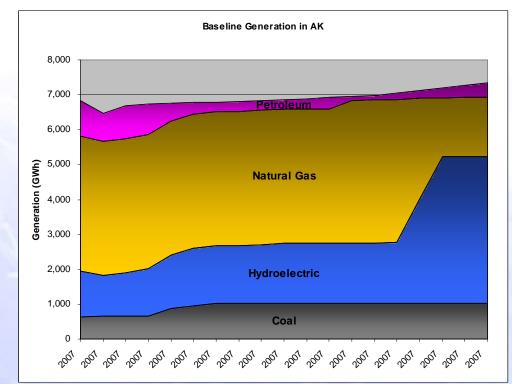
## ES&D 3 - Methods


- AEA RE Grants Program
  - Technically achievable RE proposals identified by AEA RE Grant Program
    - Results of Round 1 released (1/22/2009)
  - Used AEA analysis assumptions for
    - Generation (kWh)
    - Displaced fossil fuel (gal)
    - Capital cost
    - Timeline
  - Chose projects where pilot or feasibility programs were funded by AEA in Round 1
     Compiled results by year\_climatestrategies.us

- Large Hydro Project
  - Susitna (Low Watana dam option) used as proxy
  - Cost and project scope from HDR | DTA report (3/16/2009)
  - Project begins generation in 2022
  - Assume electricity displaces Railbelt natural gas generation
    - Used AEA RE Grant program assumptions for avoided cost of NG electricity

April 2, 2009

## **ES&D 3 - Assumptions**


- Baseline fuel mix changes with discrete projects known or expected by TWG members:
  - HCCP comes online 2011-2013 (50 MW, displaces petroleum)
  - Fairbanks obtains a natural gas supply in 2019 (60 MW fuel switch from petroleum)



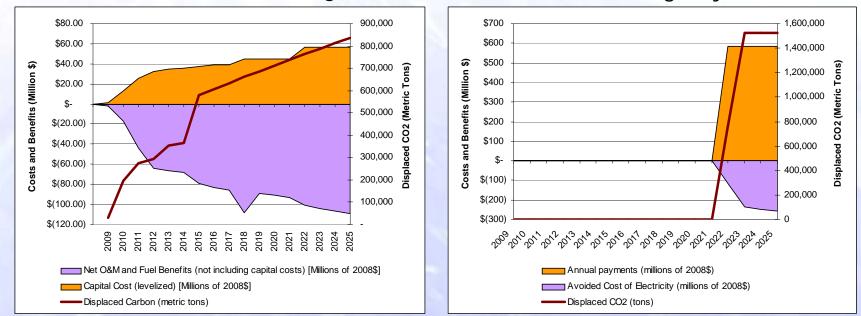
Baseline Fuel Mix (Generation, GWh) in AK EIA for 2007 & 2008

## **ES&D 3 - Assumptions**

- Discount Rate: 5% (real)
- Avoided electricity price
  - AEA RE Grants: Program specific
  - Susitna Hydro: Avoided Railbelt NG generation
- RE Grants Program displaces mostly diesel (97%) and some NG (project-by-project)
- Renewable energy target of 50% by 2025
  - Hydro counts as RE
  - AK currently at 18.3%
     RE in total fuel mix.



ES&D 3 Fuel Mix (Generation, GWh) in AK EIA for 2007 & 2008


#### www.climatestrategies.us

## ES&D 3 – Results

|                        | GHG Reductions (MMTCO2e) |      |      |                     |                            | Net Present                       |                                        |                                     |  |
|------------------------|--------------------------|------|------|---------------------|----------------------------|-----------------------------------|----------------------------------------|-------------------------------------|--|
| Option #               | 2015                     | 2020 | 2025 | Total 2010-<br>2025 | Gross Cost<br>(Million \$) | Gross<br>Benefits<br>(Million \$) | Value<br>2010-2025<br>(Million 2008\$) | Cost<br>Effectiveness<br>(\$/tCO2e) |  |
| ES&D-3, RE Grants (RE) | 0.58                     | 0.71 | 0.84 | 9.33                | \$420                      | -\$834                            | -\$414                                 | -\$44.35                            |  |
| ES&D-3, Large Hydro    | 0.00                     | 0.00 | 1.38 | 4.83                | \$2,067                    | -\$438                            | \$1,629                                | \$336.91                            |  |
| ES&D-3, Total          | 0.58                     | 0.71 | 2.22 | 14.17               | \$2,487                    | -\$1,272                          | \$1,215                                | \$85.74                             |  |

#### ES&D-3, RE Grants Program

ES&D-3, Large Hydro



#### April 2, 2009

#### www.climatestrategies.us





# **TLU TWG Policy Options**

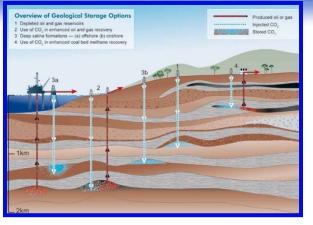
- 1. Transit, ridesharing, and commuter choice programs
- 2. Heavy-duty vehicle idling regulations and/or alternatives
- 3. Transportation system management
- 4. Promote efficient development patterns (Smart Growth)
- 5. Promotion of alternative fuel vehicles
- 6. VMT and GHG reduction goals in planning
- 7. On-road heavy-duty vehicle efficiency improvements
- 8. Marine vessel efficiency improvements
- 9. Aviation emission reductions
- 10. Alternative fuels R&D

## TLU – Initial Quantification Results

| Option |                                                              |              | GHG Rec<br>(MMtC              | Net Present<br>Value | Cost-<br>Effective- | Level of                  |                                 |         |
|--------|--------------------------------------------------------------|--------------|-------------------------------|----------------------|---------------------|---------------------------|---------------------------------|---------|
| No.    | Draft Policy Option                                          | 2015         | 2020 2025 Total 2008-<br>2025 |                      |                     | 2008–2025<br>(Million \$) | ness<br>(\$/tCO <sub>2</sub> e) | Support |
| TLU-1  | Transit, Ridesharing, and Commuter<br>Choice Programs        | 0.002        | 0.003                         | 0.005                | 0.041               | 62.8                      | 1,549                           | Pending |
| TLU-2  | Heavy-Duty Vehicle Idling<br>Regulations and/or Alternatives | 0.004 0.009  |                               | 0.009                | 0.095               | 24.3                      | 255                             | Pending |
| TLU-3  | Transportation System Management                             | 0.005 0.005  |                               | 0.005                | 0.078               | -16.3                     | -208                            | Pending |
| TLU-4  | Promote Efficient Development<br>Patterns (Smart Growth)     |              | Included                      | Net Savings          | NQ                  | Pending                   |                                 |         |
| TLU-5  | Promotion of Alternative Fuel<br>Vehicles                    | 0.024 –0.075 | 0.050 –0.160                  | 0.082 –<br>0.263     | 0.611 – 1.954       | 163 – 501                 | 116 – 820                       | Pending |
| TLU-6  | VMT and GHG Reduction Goals in<br>Planning                   | 0.017        | 0.039                         | 0.061                | 0.454               | NQ                        | NQ                              | Pending |
| TLU-7  | On-Road Heavy-Duty Vehicle<br>Efficiency Improvements        | 0.070        | 0.100                         | 0.100                | 1.22                | NQ                        | NQ                              | Pending |
| TLU-8  | Marine Vessel Efficiency<br>Improvements                     | 0.001        | 0.003                         | 0.003                | 0.029               | 56.7                      | 1,964                           | Pending |
| TLU-9  | Aviation Emission Reductions                                 | NQ           | NQ                            | NQ                   | NQ                  | NQ                        | NQ                              | Pending |
| TLU-10 | Alternative Fuels R&D                                        | NQ           | NQ                            | NQ                   | NQ                  | NQ                        | NQ                              | Pending |

April 2, 2009

# **O&G TWG Policy Options**


- 1. Best Conservation Practices
- 2. Reductions in Fugitive Methane Emissions
- 3. Electrification of Oil & Gas Operations, with Centralized Power Production and Distribution
- 4. Improved Efficiency Upgrades for Oil & Gas Fuel Burning Equipment
- 5. Renewable Energy Sources in Oil & Gas Operations
- 6. Carbon Capture and Geologic Sequestration with EOR from High CO2 Fuel Gas at Prudhoe Bay
- 7. Carbon Capture and Geologic Sequestration with EOD in and near existing Oil or Gas Fields
- 8. Carbon Capture and Geologic Sequestration away from Known Geologic Traps

April 2, 2009

www.climatestrategies.us

## O&G – Initial Quantification Results

|               |                                                                                                                   |      | GHG Rec<br>(MMtC |      |                        | Net Present<br>Value 2010–  | Cost-                                         | Level of<br>Support |
|---------------|-------------------------------------------------------------------------------------------------------------------|------|------------------|------|------------------------|-----------------------------|-----------------------------------------------|---------------------|
| Option<br>No. | Policy Option                                                                                                     | 2015 | 2020             | 2025 | Total<br>2010–<br>2025 | 2025<br>(Million<br>2005\$) | Effective-<br>ness<br>(\$/tCO <sub>2</sub> e) |                     |
| 0G-1          | Best Conservation Practices                                                                                       | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| OG-2          | Reductions in Fugitive Methane Emissions                                                                          | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| OG-3          | Electrification of Oil and Gas Operations, with<br>Centralized Power Production and Distribution                  | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| OG-4          | Improved Efficiency Upgrades for Oil and Gas<br>Fuel Burning Equipment                                            | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| OG-5          | Renewable Energy Sources in Oil and Gas<br>Operations                                                             | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| OG-6          | Carbon Capture and Geologic Sequestration<br>with Enhanced Oil Recovery from High CO2<br>Fuel Gas at Prudhoe Bay  | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| 0G-7          | Carbon Capture and Geologic Sequestration<br>with Enhanced Oil Recovery in and near<br>existing Oil or Gas Fields | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |
| OG-8          | Carbon Capture and Geologic Sequestration away from Known Geologic Traps                                          | TBD  | TBD              | TBD  | TBD                    | TBD                         | TBD                                           | Pending             |







## Oil and Gas Technical Work Group Governor's Sub-Cabinet for Climate Change Status report to the MAG -

## **Options to reduce GHG emissions from O&G**

| MiniCAM |                             | / |
|---------|-----------------------------|---|
|         |                             | _ |
|         |                             |   |
|         |                             |   |
|         | Emissions to the atmosphere |   |

## **Operations**

April 2, 2009 Anchorage

www.climatestrategies.us



## **Overview**

- Enduring Themes
- Progress on Quantification
- Timeline
- Option Review / Quantification Status

# Learnings / Summary

Enduring Themes in Options to Reduce GHG Emissions in Alaska

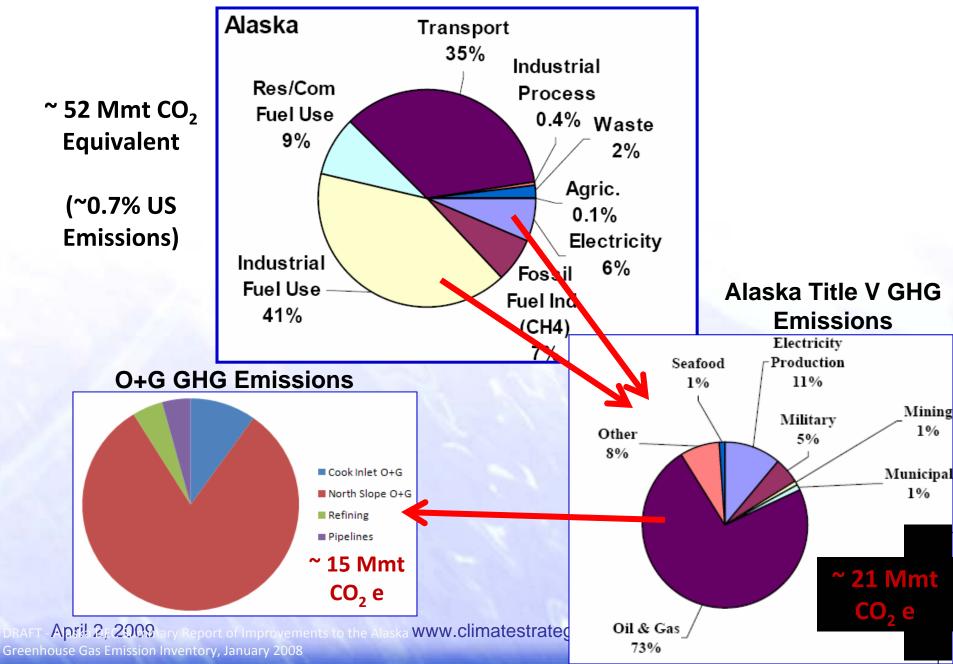
## Support economic vitality of Alaska

## Encourage capital investment

# Ensure regulatory simplicity

April 2, 2009

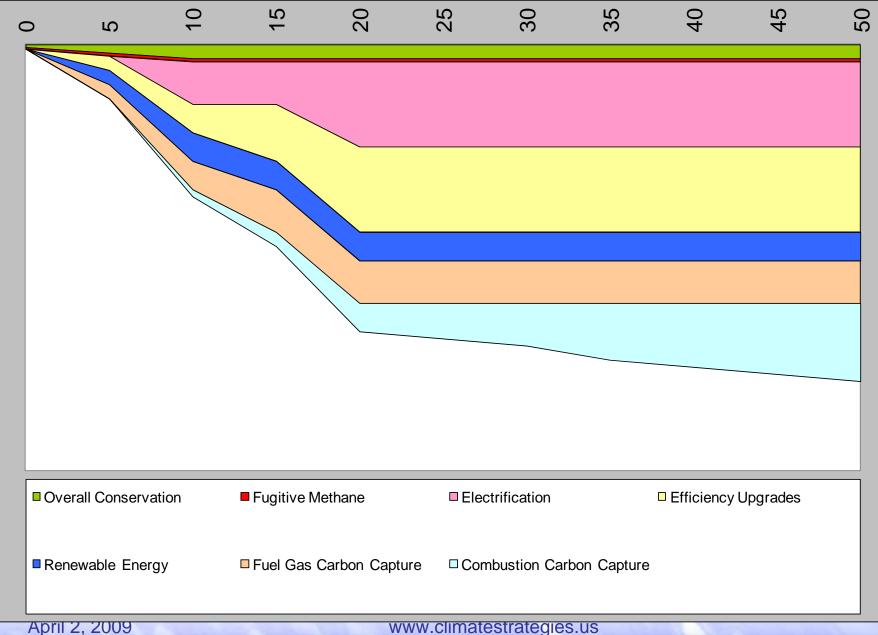
www.climatestrategies.us


Oil & Gas TWG Update on Option Development and Review--Quantification Progress to date

- TWG has been meeting since last MAG. Most options in second and third iterations.
- Excellent support from ICF and industry experts. Meetings very productive.
- Preliminary results of quantification still under analysis, gaining a better understanding of significant assumptions and economic drivers. Results vary widely based on the assumptions.
- Parameters for prioritization not yet finalized, however ranking should be achievable as the quantification gets more refined.

## Timeline

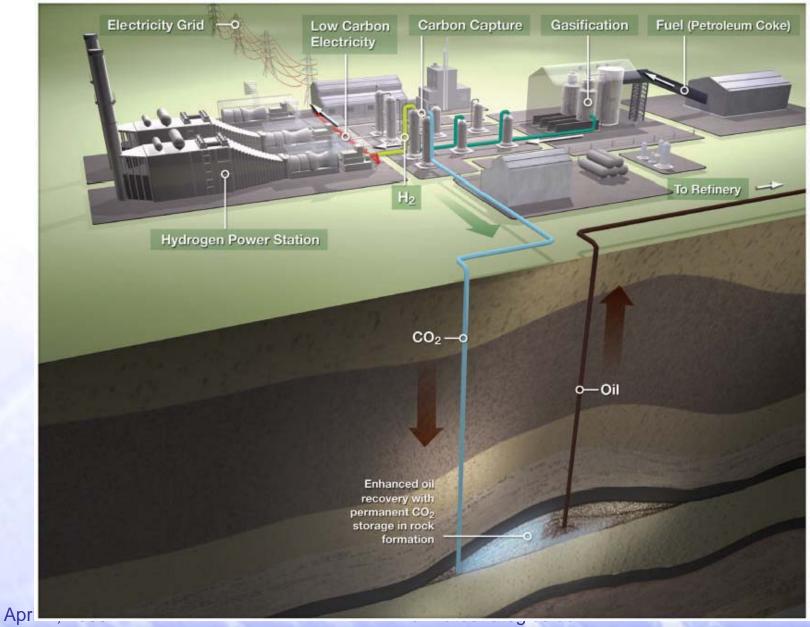
- March 26 April 23 High level quantification estimates completed, final TWG review
- March 26 May 9 Reformat and complete documentation of options, determine ranking methodology
- April 23 May 9 Final quantification review
- April 23 May 9 Develop recommendations on incentives to improve option viability
- May 14 Proposed interim presentation to MAG
- May 15 June 11 Rework and rank options
- June 18 Final MAG presentation


### Alaska Gross GHG Emissions by Sector (2005)



TWG working Options April 2, 2009

| Conservation -                  | 1 | Overall conservations activities, ie reduce liquid fuel consumption, other best practices        |
|---------------------------------|---|--------------------------------------------------------------------------------------------------|
| Concorvation                    | 2 | Reduce Fugitive Methane Emissions                                                                |
| Thormol                         | 3 | Electrification of Oil and Gas Operations, with<br>Centralized Power Production and Distribution |
| Thermal<br>Energy<br>Efficiency | 4 | Improved Efficiency Upgrades for Oil and Gas<br>Fuel burning Equipment                           |
| Lineloney                       | 5 | Use of Renewable Energy Sources in Oil and Gas Operations                                        |
| Carbon                          | 6 | CCS from High CO2 Fuel Gas at Prudhoe Bay                                                        |
| Capture and<br>Sequestration    | 7 | CCS from Combustion Sources in and near<br>Existing Oil and Gas Fields - Focus North Slope       |
| (CCS)<br>April 2, 2009          | 8 | CCS away from Known Geologic Traps -<br>(Interior Alaska)                                        |


### **O&G TWG Conceptual GHG Reduction Timeline**



## **Conservation / Waste Reduction**

- 1) Conservation- Minimize, optimize, and reduce energy consumption, liquid fuels, gas, and electricity use.
- 2) Reduce Fugitive Methane Emissions--Assess potential reductions of fugitive methane;
  - Quantification Status—approach, complexities, challenges, issues
    - No attempts to quantify conservation, keep as qualitative
    - Fugitive methane quantification costs/reductions ongoing
      - Major uncertainties exist in fugitive methane estimates, but appear much less than original CCS/DEC reports. Numbers small when compared to other options.

#### Thermal Energy Efficiency at Oil and Gas Operations



IEA Greenhouse Gas R&D Programme - Storing CO2 Underground

### Thermal Energy Efficiency

3) Electrification of North Slope facilities with centralized power production and distribution 4) Improved efficiency upgrades for fuel burning equipment 5) Use of renewable energy sources for power generation

Electrification of North Slope facilities with centralized power production and distribution

### **Quantification Issues**

- Requires major upgrade and expansion of the entire grid infrastructure on the North Slope
- Will have an overall major efficiency improvement meaning less gas burned and thus significantly reduced GHG emissions.
- Some equipment is already currently at a reasonable thermal efficiency
- Quantification Status Discussic
  - Approach
  - Complexity
  - Challenges



Efficiency upgrades for fuel burning equipment, especially gas turbines

### Quantification Issues

- Efficiency improvements mean less gas burned, resulting in reduced GHG emissions.
- Improvements can be made through upgrading existing industrial gas turbines to modern aeroderivatives, or by addition of waste heat to existing turbines (only former is being quantified.)
- Some equipment is already at its optimal or near optimal (not all equipment is included)
- Quantification Status Discussion
  - Approach
  - Complexity
  - Challenges

Use of renewable energy sources for power generation

**Quantification Issues** 

- The focus is on the North Slope, but it may have application to oil and gas operations elsewhere, including onshore Cook Inlet facilities.
- Wind power is a potential resource, but is an unproven industrial technology for North Slope operations.
- Could be effective in augmenting power generation for electricity by reducing gas usage and GHG emissions as part of a more comprehensive hybrid option combining aspects of 1-4 and 6.
- Quantification Status Discussion
  - Approach
  - Complexity
  - Challenges

### **Carbon Capture and Geologic Sequestration**

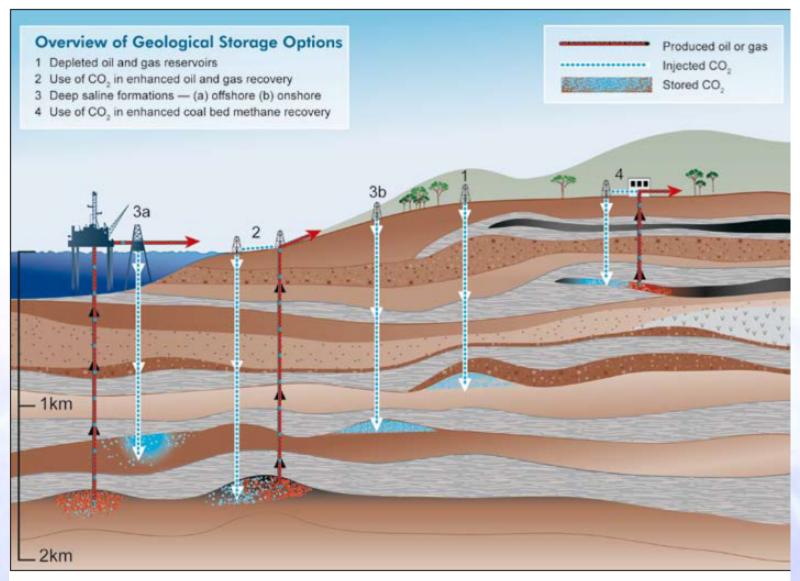



Figure TS.7. Methods for storing  $CO_2$  in deep underground geological formations. Two methods may be combined with the recovery of hydrocarbons: EOR (2) and ECBM (4). See text for explanation of these methods (Courtesy CO2CRC).

IPCC SpecialReportence Capture and www.climatestrategies.us Storage,2005 Carbon Capture and Geologic Sequestration

Remove CO<sub>2</sub> from fuel gas at Prudhoe Bay. Use for EOR.

Remove CO<sub>2</sub> from exhaust gas at Prudhoe Bay. Use for EOR.

 Remove CO2 from exhaust gas at Interior Power Plants or refineries. Ship CO2 to known reservoir or explore for nearby sequestration site.

• Note: This is mostly non oil and gas facilities

- 1) Find appropriate storage reservoir
- 2) Drill Injection Wells
- 3) Capture
- 4) Compression and dehydration
- 5) Pipelines for Transport
- 6) Compression and Injection
- 7) Long Term Monitoring

1) Find appropriate storage reservoir 2) Drill Injection Wells 3) Capture 4) Compression and dehydration 5) Pipelines for Transport 6) Compression and Injection 7) Long Term Monitoring

CCS in oil/gas fields – may already have some of the needed facilities

### **Quantification Issues**

- Option supports early enhanced oil opportunities and provides reduced CO2 emissions.
- Could be stand alone.
- Technology will be needed/required for eventual gas sales (acts as big pilot for major gas sales)

### **Lessons** learned

- Biggest drivers are CO2 capture costs and value from additional oil from EOR
- Choice of field for EOR critical (infrastructure, reserve potential, etc.)
- Parasitic energy losses for capture likely compensated by EOR gains

#### **Quantification Issues**

- Supports early enhanced oil opportunities and provides reduced CO2 emissions.
- **Considerably** more efficient and cost effective to first maximize energy efficiency options. (Realistically only practical when combined with centralized energy efficiency.)

#### Lessons learned

- 1. Gas line impacts **supply**/demand aspect of CO2 for EOR.
- 2. Biggest drivers are CO2 capture costs and value from EOR.
- 3. Choice of field for EOR critical cross unit boundary issues.
- 4. Considerable uncertainty exists in technology application.

Remove CO<sub>2</sub> from exhaust gas away from O&G fields. Ship CO<sub>2</sub> to known reservoir or explore for nearby sequestration site.

**Quantification Issues** 

- Reduces CO2 emissions.
- Primary focus on coal power generation, some refineries
- MUCH more efficient to first maximize energy efficiency.
- Could be required to meet ambitious long-term GHG reduction goals being discussed in Federal Government.

### Lessons Learned

- 1. Capital costs huge , can be twice cost of plant w/out CCS
- 2. Unknowns: Exploration Costs, Pipeline length/costs, Regulatory requirements for long term storage.
- 3. DOE / NETL in large scale testing mode
- 4. Recommend we defer quantification step until more information on costs and regulations are available.

### Summary Options –Stand alone\*

| Option Description                            | Estimated<br>target<br>emissions<br>(in MMT<br>CO <sub>2</sub> e)                                                                                                                                                                                                                                                                                                        | Remainder<br>after max<br>reductions (2-<br>5-09)                                                                                                                                                                                                                                                                                                                            | Current<br>Working<br>Estimate (4-<br>2-09)                                                                                                                                                                                                                                                                                                                                                                                          | Comments/ Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final<br>Estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conservation (NS)                             | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~11.4                                                                                                                                                                                                                                                                                                                                                                        | ?                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Best Conservation Practices                   | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~11.5                                                                                                                                                                                                                                                                                                                                                                        | ?                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBD?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reduce Fugitive Methane                       | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~11.9                                                                                                                                                                                                                                                                                                                                                                        | ~11.9                                                                                                                                                                                                                                                                                                                                                                                                                                | No actual measurements<br>available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thermal Energy Efficiency (NS)                | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~4.0                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrification, Centralized Power            | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~4.0                                                                                                                                                                                                                                                                                                                                                                         | ~6                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27-52% efficiency improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Improved Efficiency Equipment                 | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~6.0                                                                                                                                                                                                                                                                                                                                                                         | ~9                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27-37% efficiency<br>improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Renewable Energy                              | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~11.0                                                                                                                                                                                                                                                                                                                                                                        | ?                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Carbon Capture and Storage (NS)               | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~.5-1.0                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CCS from High CO <sub>2</sub> fuel at Prudhoe | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~11.0                                                                                                                                                                                                                                                                                                                                                                        | ~11                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CCS from Combustion Sources                   | 12.0                                                                                                                                                                                                                                                                                                                                                                     | ~.5-1.0                                                                                                                                                                                                                                                                                                                                                                      | ?                                                                                                                                                                                                                                                                                                                                                                                                                                    | Very expensive, ability to implement on NS uncertain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CCS away from O&G fields                      | 3.0                                                                                                                                                                                                                                                                                                                                                                      | ~2.5                                                                                                                                                                                                                                                                                                                                                                         | ~2.5                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TBD?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                               | Conservation (NS)         Best Conservation Practices         Reduce Fugitive Methane         Thermal Energy Efficiency (NS)         Electrification, Centralized Power         Improved Efficiency Equipment         Renewable Energy         Carbon Capture and Storage (NS)         CCS from High CO <sub>2</sub> fuel at Prudhoe         CCS from Combustion Sources | Option Descriptiontarget<br>emissions<br>(in MMT<br>CO2e)Conservation (NS)12.0Best Conservation Practices12.0Reduce Fugitive Methane12.0Thermal Energy Efficiency (NS)12.0Electrification, Centralized Power12.0Improved Efficiency Equipment12.0Renewable Energy12.0Carbon Capture and Storage (NS)12.0CCS from High CO2 fuel at Prudhoe12.0CCS from Combustion Sources12.0 | Option Descriptiontarget<br>emissions<br>(in MMT<br>CO2e)Remainder<br>after max<br>reductions (2-<br>5-09)Conservation (NS)12.0~11.4Best Conservation Practices12.0~11.5Reduce Fugitive Methane12.0~11.9Thermal Energy Efficiency (NS)12.0~4.0Electrification, Centralized Power12.0~4.0Improved Efficiency Equipment12.0~4.0Renewable Energy12.0~11.0CCS from High CO2 fuel at Prudhoe12.0~11.0CCS from Combustion Sources12.0~11.0 | Option Descriptiontarget<br>emissions<br>(in MMT<br>CO2e)Remainder<br>after max<br>reductions (2-<br>5-09)Current<br>Working<br>Estimate (4-<br>2-09)Conservation (NS)12.0~11.4?Best Conservation Practices12.0~11.5?Reduce Fugitive Methane12.0~11.9~11.9Thermal Energy Efficiency (NS)12.0~4.0Electrification, Centralized Power12.0~4.0~6Improved Efficiency Equipment12.0~6.0~9Carbon Capture and Storage (NS)12.0~11.0?CCS from High CO2 fuel at Prudhoe12.0~11.0~11CCS from Combustion Sources12.0~11.0~11Creme function Combustion Sources12.0~11.0~11 | Option Descriptiontarget<br>emissions<br>(in MMT<br>CO2e)Remainder<br>after max<br>reductions (2-<br>5-09)Current<br>Working<br>Estimate (4-<br>2-09)Comments/ AssumptionsConservation (NS)12.0~11.4?Best Conservation Practices12.0~11.5?Reduce Fugitive Methane12.0~11.9No actual measurements<br>availableNo actual measurements<br>availableThermal Energy Efficiency (NS)12.0~4.0Electrification, Centralized Power12.0~4.027-52% efficiency<br>improvementImproved Efficiency Equipment12.0~4.027-37% efficiency<br>improvementRenewable Energy12.0~11.0?Carbon Capture and Storage (NS)12.0~5-1.0CCS from High CO2 fuel at Prudhoe12.0~11.0?11CCS from Combustion Sources12.0~5-1.0?Core12.0~5-1.0?Core12.0~5-1.0?Core for Method Sources12.0~5-1.0?Core for Method Sources12.0~5-1.0?Core for Combustion Sources12.0~5-1.0?Core for Method Sources12.0~5-1.0?Core for Method Sources12.0~5-1.0?Core for Method Sources12.0~5-1.0?Core for Method Sources12.0~5-1.0? <t< td=""></t<> |

\*All numbers are rounded approximations only Total NS emissions ~ 12 MMT, Total Interior emissions ~ 3 MMT

# Incentives for long term viability for GHG reductions – Initial discussions

- Encourage capital investment
- Streamline/simplify (in some cases identify) regulatory environment
- Encourage maximization of ultimate hydrocarbon recovery
- Prepare for implications of potential Federal Carbon regulations to Alaska

Note: All GHG emission estimates based on Title V stationary source emissions based on fuel burned from 2002. ie no accounting for new developments or gas pipeline

April 2, 2009

- Economics
- Many options are Mega Projects Significant overlapping resource requirements among options, and with construction related to major gas sales.
  - So Even with no economic constraints, we can't do everything.
- Cross Unit issues will delay full implementation
   affects power generation, CO2 transport, regulated power utility issues, commercial issues between different owners.
- Most options are not stand alone, but may be most effectively implemented as some kind of a hybrid scheme
  - ie improving energy efficiency of individual pieces of equipment while centralizing power, thereby adding carbon capture technology to the fewest pieces of machinery, etc.

Enduring Themes in Options to Reduce GHG Emissions in Alaska

- Support economic vitality of Alaska
- Encourage capital investment
- Ensure regulatory simplicity (consistency!)

## Timeline

- March 26 April 23 High level quantification estimates completed, final TWG review
- March 26 May 9 Reformat and complete documentation of options, determine ranking methodology
- April 23 May 9 Final quantification review
- April 23 May 9 Develop recommendations on incentives to improve option viability
- May 14 Proposed interim presentation to MAG
- May 15 June 11 Rework and rank options
- June 18 Final MAG presentation

April 2, 2009

## Questions





## Next Steps for MAG & TWGs

- 2-3 TWG calls between now and June meeting to:
  - Refine quantification per MAG feedback today
  - Complete policy option templates
- Possible interim MAG conference call in May
- MAG gives final approval to Alaska Inventory and Forecast
- MAG gives final approval of policy option recommendations at June meeting

## Public Input & Announcements

April 2, 2009

## **Next MAG Meeting**

### • Agenda

- Final approval of all policy option recommendations to forward to the Climate Change Subcabinet
- Final approval of Alaska GHG Inventory & Forecast
- Date and Location
  - June 18, 2009
  - Anchorage





The Center for Climate Strategies

Helping States and the Nation Tackle Climate Change

## Thank you for your continuing time and effort!

Brian Rogers University of Alaska, Fairbanks <u>chancellor@uaf.edu</u> Ken Colburn / Gloria Flora Center for Climate Strategies <u>kcolburn@symbioticstrategies.com</u> gflora@s-o-solutions.org

April 2, 2009

www.climatestrategies.us