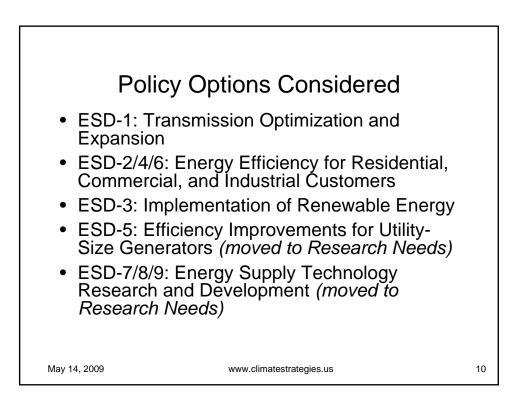


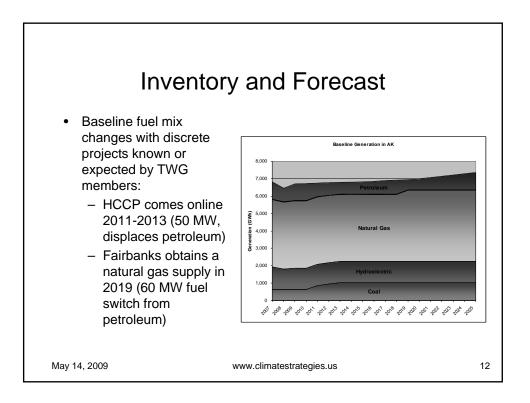
	ospective Timetable: nge Mitigation Advisory Group
Date	Action
May 15, 2008	1 st Meeting: Launch Process; Review Inventory
July 15, 2008	2 nd Meeting: Catalog of Potential Policy Options
September 22, 2008	3 rd Meeting: Presentations; Some Selection of Priority Policy Options
November 6, 2008	4th Meeting: Select Priority Policy Options
February 5, 2009	5 th Meeting: Approve Straw Proposals
April 2, 2009	6th Meeting: Initial Quantification of Options
May 14, 2009	7 th Meeting: Continue Quantification Review
June 18, 2009	8 th Meeting: Approve Recommended Options
Following Conclusion	Final Report to Sub-Cabinet
Between Meetings	Regular TWG teleconference meetings and possible face-to-face meetings
May 14, 2009	www.climatestrategies.us

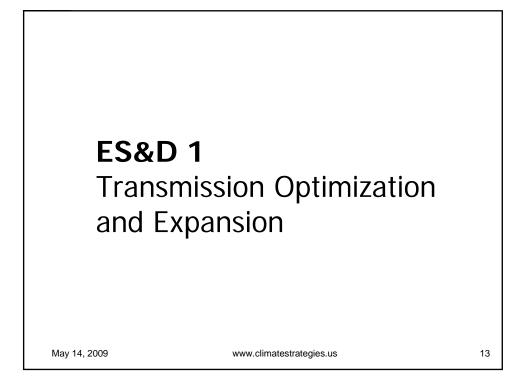
ESD TWG Policy Options

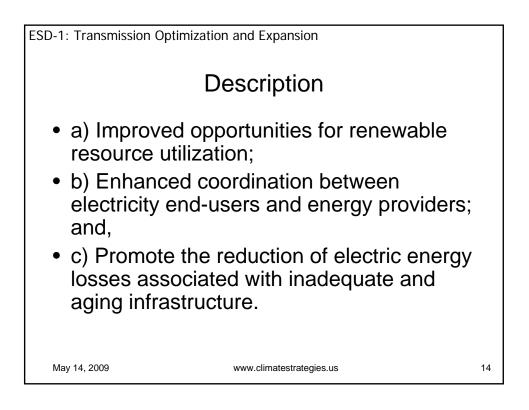
- 1. Transmission system optimization and expansion
- 2. Energy efficiency for residential and commercial customers
- 3. Implementation of renewable energy
- 4. Building standards & incentives
- 5. Efficiency Improvements for Generators
- 6. Energy efficiency for industrial installations
- 7. Implementation of small-scale nuclear power
- 8. R&D for cold-climate renewable technologies
- 9. Implementation of advanced supply-side technologies

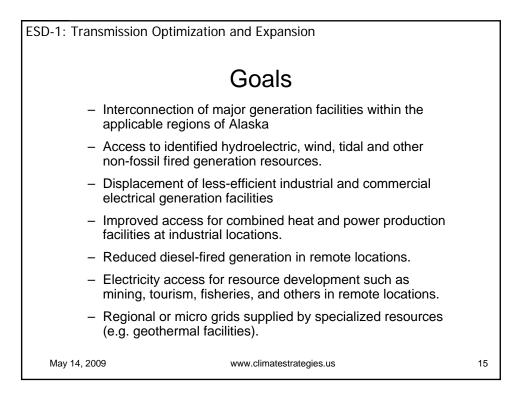

May 14, 2009

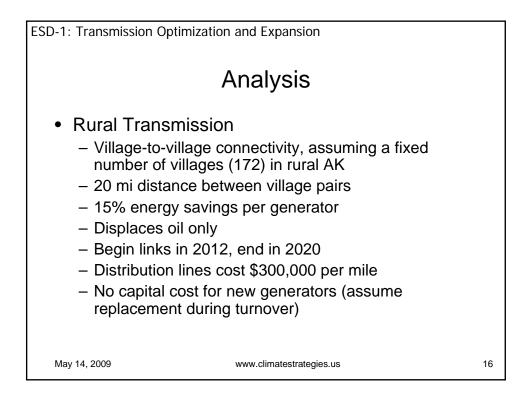
www.climatestrategies.us

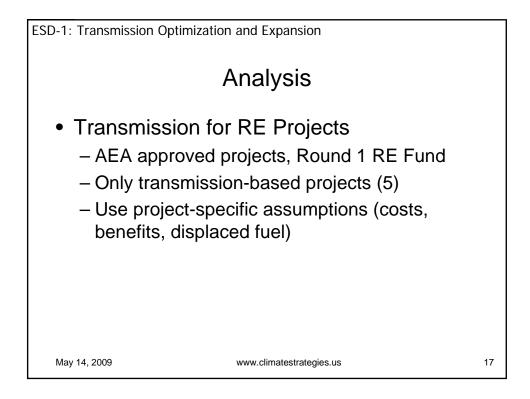

				GHG Reductions (MMtCO,e) Gross Net Present						
	Policy Option	201 5	2020	2025	Total 2010- 2025	Gross Cost (Million \$)	Gross Benefits (Million \$)	Value 2010–2025 (Million \$)	Cost-Effective- ness (\$/tCO ₂ e)	Level of Support
ESD-1	Transmission System Optimization and Expansion	0.08	0.11	0.12	1.38	\$279	(\$130)	\$149	\$108	
SD- 2/4/6a	Energy Efficiency 1%	0.34	0.81	1.19	9.28	\$322	(\$886)	-\$564	-\$61	
SD- 2/4/6a	Energy Efficiency 2%	0.34	1.08	1.85	12.48	\$423	(\$1,161)	-\$738	-\$59	
ESD-2	Energy Efficiency for Residential and Commercial Customers					Quantified w	ith ESD-4 and	ESD-6	II	
ESD-3	Implementation of Renewable Energy	1.09	1.24	2.75	19.82	\$2,078	(\$1,610)	\$468	\$24	
ESD-4 Building Standards/Incentives Quantified with ESD-2 and ESD-6										
ESD-5	Efficiency Improvements for Generators					Moved to	Research Ne	eds		
ESD-6	Energy Efficiency for Industrial Installations					Quantified w	ith ESD-2 and	ESD-4		
ESD-7	Implementation of Small-Scale Nuclear Power					Moved to	Research Ne	eds		
	Research and Development for Cold- Climate Renewable Technologies					Moved to	Research Ne	eds		
	Implementation of Advanced Supply- Side Technologies				-	Moved to	Research Ne	eds		
	Sector Total After Adjusting for Overlaps*									
	Reductions From Recent Actions									
	Sector Total Plus Recent Actions									

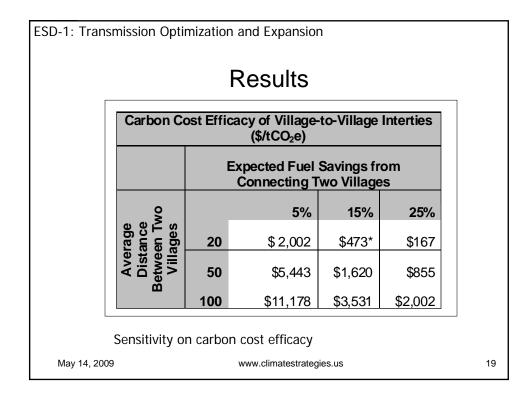

Alaska Energy Supply and Demand Policy Option Discussion

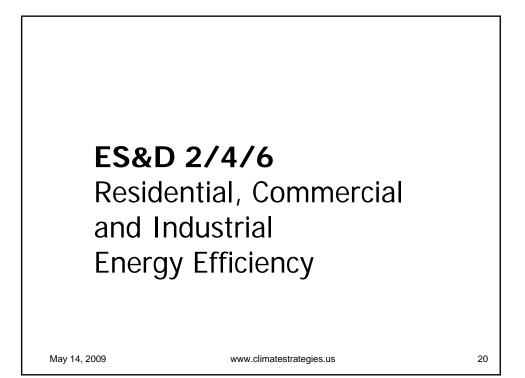

May 14, 2009

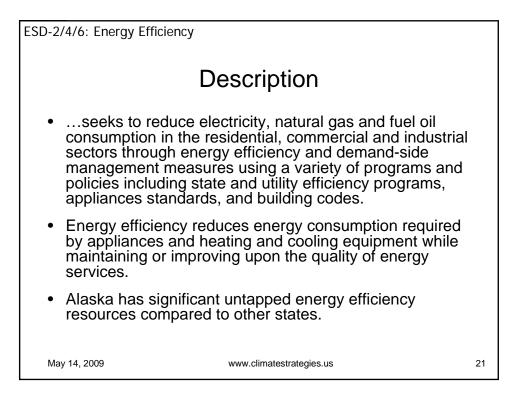


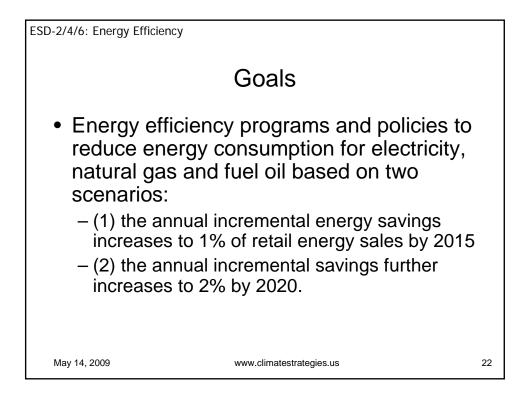

	ES&D Results											
Option #	2015	GHG Re 2020	ductions 2025	Total 2010- 2025	Gross Cost (Million \$)	Gross Benefits (Million \$)	Net Present Value 2010–202	Cost- Effective ness (\$/tCO2e)				
ES&D 1 Transmission	0.08	0.11	0.12	1.38	\$279	-\$130	\$149	\$108				
ES&D 2/4/6a Energy Efficiency 1%	0.34 0.81 1.19 9.28 \$322 -\$886 -\$564 -\$6											
ES&D 2/4/6a Energy Efficiency 2%	0.34	1.08	1.85	12.48	\$423	-\$1,161	-\$738	-\$59				
ES&D 3 Renewable Energy	1.09	1.24	2.75	19.82	\$2,078	-\$1,610	\$468	\$24				
ES&D 5 Generator Efficiency			Μοι	/ed to Re	search Ne	eds						
ES&D 7/8/9 R&D			Μοι	/ed to Re	search Ne	eds						
May 14, 2009			www.clim	atestrategie	es.us			11				

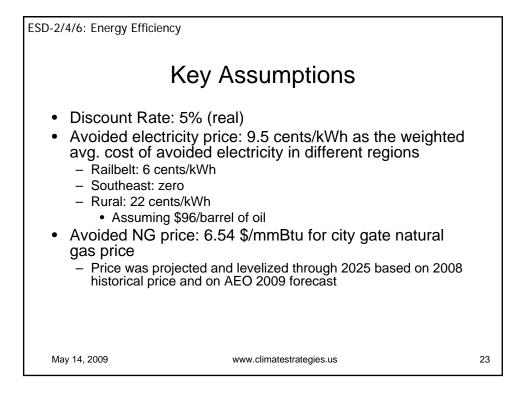


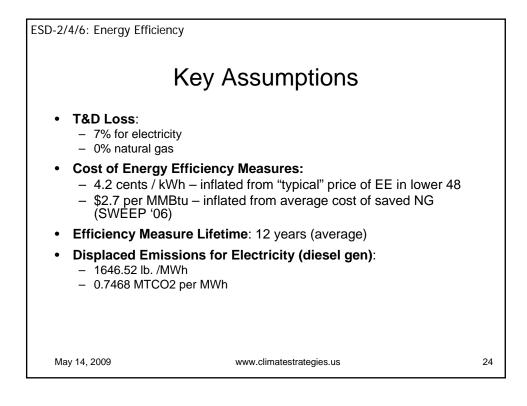


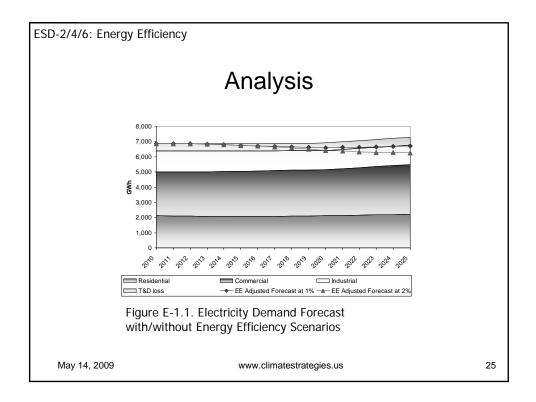


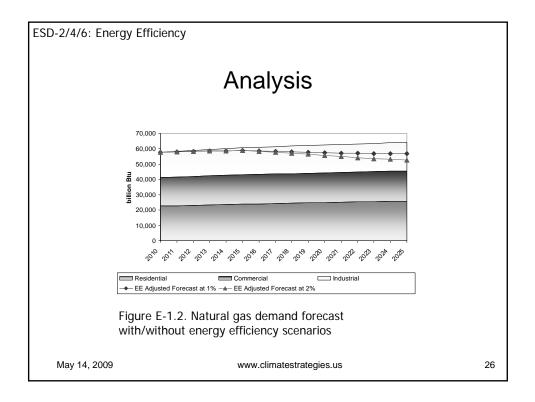


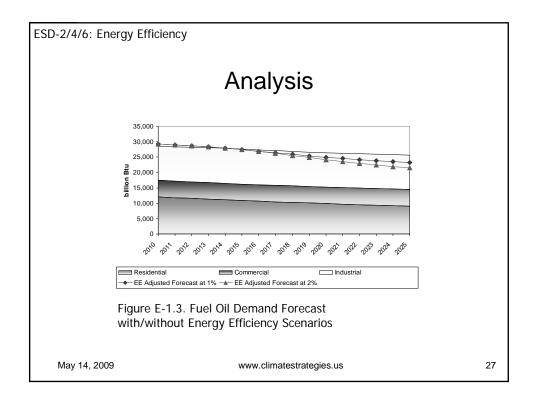


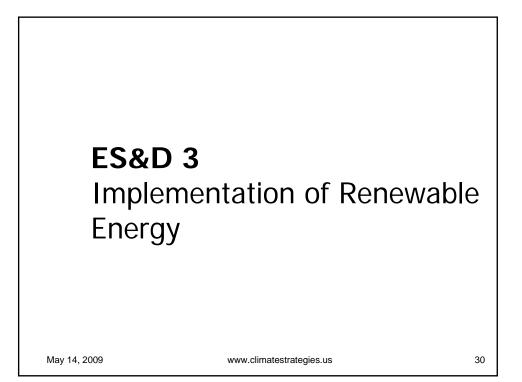

ESD-1:	Transmission Opti	mizati	on an	d Exp	ansio	n			
			Re	esu	lts				
#	Policy	GHG F 2015	Reductio 2020	ns (MMT 2025	Total 2010- 2025	Gross Cost (Million \$)	Gross Benefits (Million \$)	Net Present Value 2010-2025 (Million 2008\$)	Cost Effectiven ess (\$/tCO2e)
ES&D-1a	Transmission, Rural	0.01	0.03	0.03	0.32	\$243	-\$93	\$151	\$473
ES&D-1b	Transmission, RE Grants	0.06	0.08	0.09	1.06	\$36	-\$38	-\$2	-\$2
ES&D-1	Transmission Optimization and Expansion	0.08	0.11	0.12	1.38	\$279	-\$130	\$149	\$108
						-		·	
May 1	4, 2009		ww	w.climat	testrateç	jies.us			18

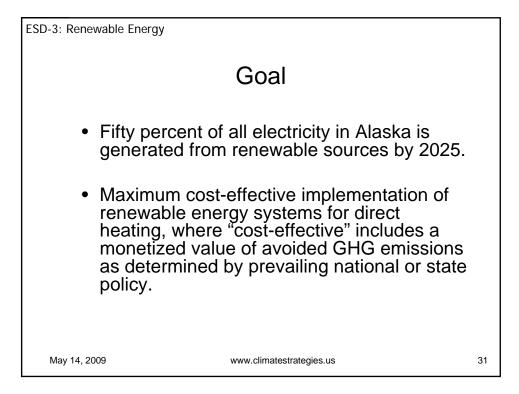


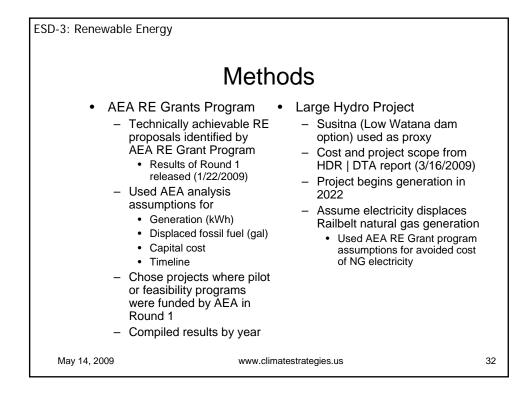












ESD-2/4/6	6: Energy Effic	iency								
				Re	esu	lts				
	Option #	2015	GHG Re (MMt0	duction CO2e) 2025	s Total 2010- 2025	Gross Cost (Million \$)	Gross Benefits (Million \$)	Net Present Value 2010– 2025 (Million \$)	Cost- Effectiveness (\$/tCO2e)	
	ES&D-2,4 & 6a - Electricity	0.16	0.38	0.56	4.35	\$178	-\$364	-\$187	-\$43	
	ES&D-2,4 & 6a - NG	0.11	0.26	0.39	3.03	\$99	-\$216	-\$117	-\$39	
	ES&D-2,4 & 6a - Oil	0.07	0.17	0.23	1.90	\$45	-\$306	-\$260	-\$137	
	ES&D-2,4,6 - Total	0.34	0.81	1.19	9.28	\$322	-\$886	-\$564	-\$61	
	Goal: 1% EE	E per N	/ear							
May 14	4, 2009			ww	w.clima	testrategie	s.us			28
L										

				0.011	S			
		GHG Re (MMt	duction CO2e)	S	Gross	Gross	Net Present	
Option #	2015	2020	2025	Total 2010- 2025	Cost (Million \$)	Benefits (Million \$)	Value 2010– 2025 (Million \$)	Cost- Effectiveness (\$/tCO2e)
ES&D-2,4 & 6a -	0.16	0.50	0.88	5.86	\$234	-\$480	-\$246	-\$42
Electricity ES&D-2,4 & 6b - NG	0.16	0.35	0.61	4.09	\$234 \$130	-\$480	-\$240	-\$42
ES&D-2,4 & 6c - Oil	0.07	0.33	0.36	2.53	\$59	-\$396	-\$337	-\$134
ES&D-2,4,6 - Total	0.34	1.08	1.85	12.48	\$423	-\$1,161	-\$738	-\$59
Goal: 2% EE g	oer Ye	ar	www.					

ESD-3: Renewable Energy

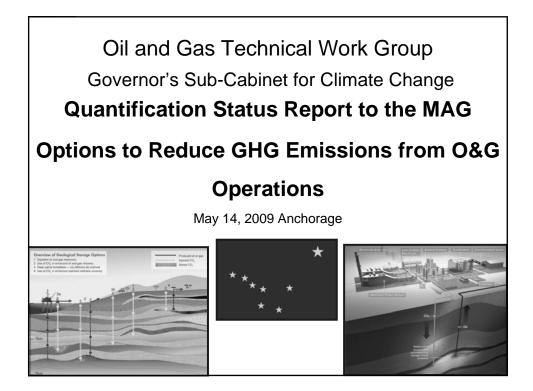
Assumptions

- Discount Rate: 5% (real)
- Avoided electricity price
 - AEA RE Grants: Program specific
 - Susitna Hydro: Avoided Railbelt NG generation
- RE Grants Program displaces mostly diesel (97%) and some NG (project-by-project)
- Renewable energy target of 50% by 2025
 - Hydro counts as RE
 - AK currently at 18.3% RE in total fuel mix.

May 14, 2009

www.climatestrategies.us

ESD-3: F	Renewable Energy								
			Re	esu	lts				
		GHG F	Reductio	ns (MM1			_	Net Present Value	Cost
#	Policy	2015	2020	2025	Total 2010- 2025	Gross Cost (Million \$)	Gross Benefits (Million \$)	2010-2025 (Million 2008\$)	Effectiven ess (\$/tCO2e)
ES&D-3a	Renewable Energy Grants, Round 1	0.58	0.71	0.84	9.33	\$420	-\$834	-\$414	-\$44
ES&D-3b	Renewable Energy Grants, Round 2	0.51	0.53	0.53	6.10	\$24	-\$338	-\$314	-\$51
ES&D-3c	Large Hydroelectric	0.00	0.00	1.38	4.39	\$1,634	-\$438	\$1,196	\$273
ES&D-3	Implementation of Renewable Energy	1.09	1.24	2.75	19.82	\$2,078	-\$1,610	\$468	\$24
Мау	14, 2009		ww	w.clima	testrateç	gies.us			34



- 1. Best Conservation Practices
- 2. Reductions in Fugitive Methane Emissions
- 3. Electrification of Oil & Gas Operations, with Centralized Power Production and Distribution
- 4. Improved Efficiency Upgrades for Oil & Gas Fuel Burning Equipment
- 5. Renewable Energy Sources in Oil & Gas Operations
- 6. Carbon Capture and Geologic Sequestration with EOR from High CO2 Fuel Gas at Prudhoe Bay
- 7. Carbon Capture and Geologic Sequestration with EOD in and near existing Oil or Gas Fields
- 8. Carbon Capture and Geologic Sequestration away from Known Geologic Traps

May 14, 2009

www.climatestrategies.us

	Policy Option	Aggregate GHG Reduction s (MMtCO,		G Reduc MMtCO ₂		Net Present Value (million 2009\$) 5% Discount Rate	Cost Effectiveness (2009\$ / tCO ₂ e) 5% discount Rate
		e)	2015	2020	2025	2010 to 2025	
OG-2	Reductions in Fugitive Methane Emissions	3.2	0.2	0.2	0.2	181.4	57
OG-3	Electrification of Oil and Gas Operations, with Centralized Power Production and Distribution	26.6	-	3.0	4.4	7,791.0	293
OG-4	Improved Efficiency Upgrades for Oil and Gas Fuel Burning Equipment	19.7	0.5	2.1	2.1	1,600.1	81
OG-5	Renewable Energy Sources in Oil and Gas Operations	8.0	0.7	0.7	0.7	2,603.4	327
OG-6	Carbon Capture (from North Slope High CO_2 fuel gas) and Geologic Sequestration with Enhanced Oil Recovery	7.8	-	0.9	0.9	1,368.8	176
OG-7	Carbon Capture (from exhaust gas at a centralized facility) and Geologic Sequestration with Enhanced Oil Recovery	19.7	1.8	1.8	1.8	3,094.1	157
OG-8	Carbon Capture (from exhaust gas) and Geologic Sequestration away from Known Geologic Traps	8.0	0.7	0.7	0.7	7,937.7	994

OG	τw	G working Options May 14, 2009
Conservation –	1	Overall conservations activities, ie reduce liquid fuel consumption, other best practices
	2	Reduce Fugitive Methane Emissions
Thermal	3	Electrification of Oil and Gas Operations, with Centralized Power Production and Distribution
Energy –	4	Improved Efficiency Upgrades for Oil and Gas Fuel burning Equipment
	5	Use of Renewable Energy Sources in Oil and Gas Operations
Carbon	6	CCS from High CO2 Fuel Gas on North Slope
Capture and	7	CCS from Combustion Sources in and near Existing Oil and Gas Fields - Focus North Slope
(CCS)	8	CCS away from Known Geologic Traps - (Interior Alaska)

Quantification Methodology

• Ground up, first principles approach

• Good internal discussions and refinements, though significant uncertainties remain

• Good methodology for gross order of magnitude estimates Detailed Approach:

1.Estimate current emissions

Used DEC DRAFT Inventory based on 2002 emissions for all options except OG-2 Fugitive

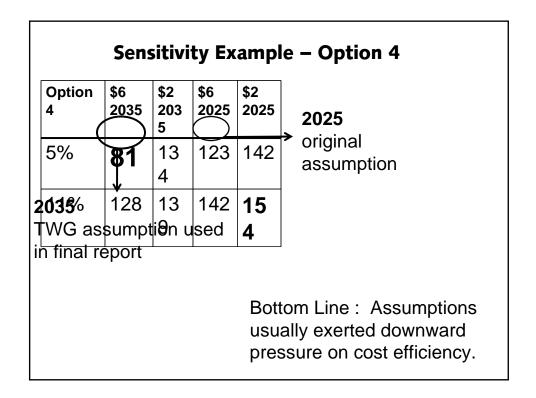
2.Estimate expected emissions reductions

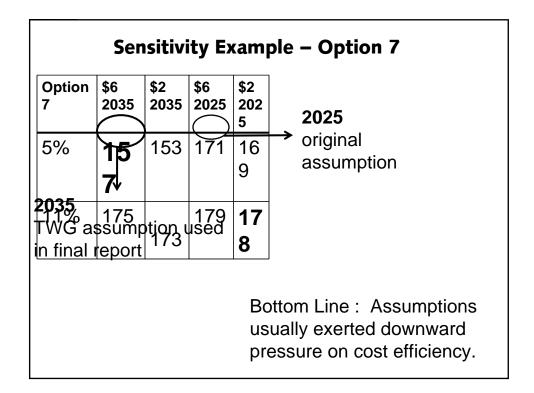
Taken from field experiences or literature values and based on a realistic inventory from step 1

3.Estimate costs

For each defined step, bottom-up costs were estimated from field experiences and literature; allowing some comparison and confirmation to similar independent studies IE IPCC, or report on North Slope EOR.

	Policy Option *	Aggregate GHG Reductions (MMtCO2e)		Reduc MtCO2		Net Present Value (million 2009\$)		Confidenc
		. ,	2015	2020	2025	2010 to 2025		
0G-1	Conservation	N/A	N/A	N/A	N/A	N/A	N/A	
OG 2	Reductions in Fugitive Methane Emissions	3.2	0.2	0.2	0.2	181.4	57	
OG 3	Electrification of Oil and Gas Operations, with Centralized Power Production and Distribution	26.6	-	3.0	4.4	7,791.0	293	
OG 4	Improved Efficiency Upgrades for Oil and Gas Fuel Burning Equipment	19.7	0.5	2.1	2.1	1,600.1	81	
OG 5	Renewable Energy Sources in Oil and Gas Operations at a Centralized Power Facility	8.0	0.7	0.7	0.7	2,603.4	327	
OG 6	Carbon Capture (from North Slope High CO2 fuel gas) and Geologic Sequestration with Enhanced Oil Recovery	7.8	-	0.9	0.9	1,368.8	176	
0G 7	Carbon Capture (from exhaust gas at a centralized facility) and Geologic Sequestration with Enhanced Oil Recovery	19.7	1.8	1.8	1.8	3,094.1	157	
OG 8	Carbon Capture (from exhaust gas) and Geologic Sequestration away from Known Geologic Traps	8.0	0.7	0.7	0.7	7,937.7	994	


Common Economics Notes


• Results are gross economics that do not include consideration of taxes or royalties.

- Value of carbon assumed to be zero
- Well head price Natural Gas \$6 (also tested 2 and 4)

• Discount rate 5% (also tested 11%)

• Amortization date 2035 (also tested 2025)

	Policy Option *	Aggregat e GHG Reductio ns (MMtCO2 e)	(M	Reduc MtCO2	2e)	Net Presen t Value (million 2009\$) 2010 to 2025	Cost Effecti venes s (2009\$ / tCO2e)	e
0G-1	Conservation	N/A	N/A	N/A	N/A	N/A	N/A	

- Encourage oil and gas workforce in continued energy conservation efforts
- Ensure that companies' ongoing efforts are creditable under any future GHG regulatory program

	Policy Option *	Aggregat e GHG Reductio ns (MMtCO2	(M	Reduc MtCO2	2e)	Net Presen t Value (million 2009\$) 2010	Cost Effecti venes s (2009\$ /	e
		e)	2015	2020	2025	to	40020	
OG 2	Reductions in Fugitive Methane Emissions	3.2	0.2	0.2	0.2	181.4	57	

Key Sensitivities/Uncertainties

- North Slope methane fugitive comparability with lower 48 leak rate data
- Types and sizes of leaks/ emissions
- Value of North Slope Natural Gas at well head = \$0 until 2020. From 2020-2035 =\$6 per mscf.

45

	Policy Option *	Aggregat e GHG Reductio ns		Reduc MtCO2		Net Presen t Value (million 2009\$)	Cost Effecti venes s (2009\$	e
		(MMtCO2	2015	2020	2025	2010 to 2025	/ tCO2e)	
OG 3	Electrification of Oil and Gas Operations, with Centralized Power Production and Distribution at a centralized gas facility	26.6	-	3.0	4.4	7,791. 0	293	

Key Sensitivities/Uncertainties

- Regulatory environment / lease conditions / 'utility' issues
- Value of North Slope Natural Gas at well head = \$0 until 2020. From 2020-2035 =\$6 per mscf.
- The size and scope of the electrification project
- Facility costs, both for the new and for the retrofit \$2,500/KW construction of new power plant, \$1,500/KW replace gas turbines with electric motors
- 25% Capital contingency (expected permitting delays, cross unit lease issues, logistical complexity of very large project, production losses during construction...)

	Policy Option *	Aggregat e GHG Reductio ns		Reduc MtCO2		Net Presen t Value (million 2009\$)	Cost Effecti venes s (2009\$	Confidenc e
		(MMtCO2 e)	2015	2020	2025	2010 to 2025	2010 / to tCO2e)	
OG 4	Improved Efficiency Upgrades for Oil and Gas Fuel Burning Equipment	19.7	0.5	2.1	2.1	1,600. 1	81	

Key Sensitivities/Uncertainties

- Regulatory environment
- Value of North Slope Natural Gas at well head = \$0 until 2020. From 2020-2035 =\$6 per mscf.
- \$1,500/KW to upgrade turbines.
- Discount Rate (5%) and amortization date (2035)
- 50% capital contingency (likely permitting delays, huge unknowns in upgrading 163 different turbines, space issues, and production losses during construction)

	Policy Option *	Aggregat e GHG Reductio ns (MMtCO2		Reduc MtCO2		Net Presen t Value (million 2009\$) 2010	Cost Effecti venes s (2009\$	Confidenc e
		• • • •	2015	2020	2025		/ tCO2e)	
OG 5	Renewable Energy Sources in Oil and Gas Operations at a Centralized Power Facility	8.0	0.7	0.7	0.7	2,603. 4	327	

Key Sensitivities/Uncertainties

- The size and scope of the electrification project needed so that the electrical power generated by the renewable can be utilized
- Regulatory environment
- Value of North Slope Natural Gas at well head = \$0 until 2020. From 2020-2035 =\$6 per mscf.
- 25% Capital Contingency (first of it's kind on NS project, permitting risk, unknowns such as potential impact on migrating birds...)

		Aggregat e GHG		Reduo MtCO	ctions 2e)	Presen t Value	Cost Effecti venes	Confidenc e
	Policy Option *	Reductio ns				(million 2009\$) 2010	s (2009\$	
OG 6	Carbon Capture (from North Slope High CO2 fuel gas) and Geologic Sequestration with Enhanced Oil Recovery	7.8	-	0.9	0.9	1,368. 8	176	

Key Sensitivities/Uncertainties

- Value of EOR
- Cost of New and Facilities upgrades to capture, transport, and inject CO2
- Value of North Slope Natural Gas at well head = \$0 until 2020.
 From 2020-2035 = \$6 per mscf.
- Regulations for CCS currently under development (permitting, long term monitoring...)
- Cross unit operations issues
- 25% Capital contingency (NOx increases due to burning leaner gas, triggering EPA regs, likely decrease in field life with higher cost structure.)

			GHG	Reduc	tions	Net	Cost	Confidenc
	Policy Option *	Aggregat e GHG Reductio ns	(M	MtCO2	,	Presen t Value (million 2009\$)	Effecti venes s (2009\$	e
		(MMtCO2 e)	2015	2020	2025	2010 to 2025	/ tCO2e)	
0G 7	Carbon Capture (from exhaust gas at a centralized facility) and Geologic Sequestration with Enhanced Oil Recovery	19.7	1.8	1.8	1.8	3,094. 1	157	

Key Sensitivities/Uncertainties

- Value of EOR (and can we use all the CO2?)
- Cost of Facilities upgrades
- Value of North Slope Natural Gas at well head = \$0 until 2020. From 2020-2035 = \$6 per mscf.
- Regulations for CCS currently under development (permitting, long term monitoring...), Cross unit operations issues
- **50%** Capital contingency (likely decrease in field life with higher cost structure, additional technical risk of capture from exhaust gases)

				Reduc		Net Presen	Cost Effecti	Confidenc
		Aggregat e GHG	(17	MtCO	2e)	t Value (million	venes	e
	Policy Option *	Reductio ns				2009\$)	s (2009\$	
		(MMtCO2				2010	1	
		e)	2015	2020	2025	to	tCO2e)	
	Carbon Capture (from exhaust gas) and					7.937.		
OG 8	Geologic Sequestration away from Known Geologic Traps	8.0	0.7	0.7	0.7	,	994	
Key	Sensitivities/Uncertainties							
•	Pipeline length vs Exploration	on prog	gran	า				
•	Cost of Facilities upgrades							
•	Regulations for CCS currently	under	deve	elopr	nent	– cor	nmero	cial

- project could not presently be permitted.
- Regulatory environment (permitting, long term monitoring...)
- Public acceptance
- 25% Capital Contingency (Technical Uncertainty capturing CO2 from exhaust gases, high risk and complicated logistics of very large and complex project.)

Cost-Effectiveness Summary Notes

•Due to the analysis methodology, 'Cost Effectiveness' is likely lower than the break even cost of carbon needed to make a project economic.

•These specific Cost Effectiveness Values do not apply in Cook Inlet due to vastly different production life, geographic distribution and physical constraints.

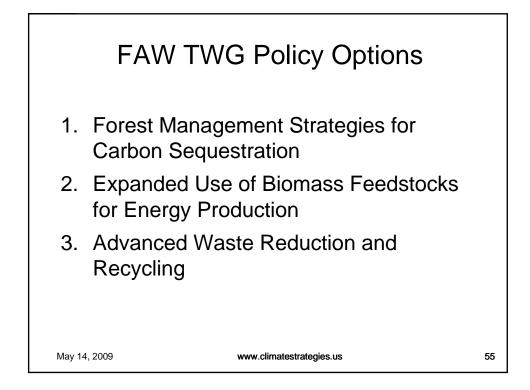
•None of these analyses considered the impacts on short term production losses to implement the option (Options 2-7)

•All these Options are potential technical opportunities for reducing Greenhouse Gas emissions that require further evaluation.

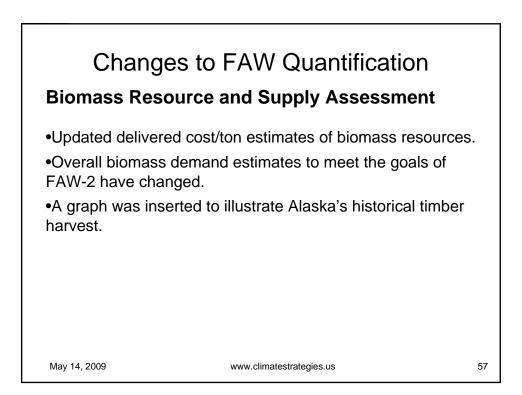
Overarching Considerations/Recommendations

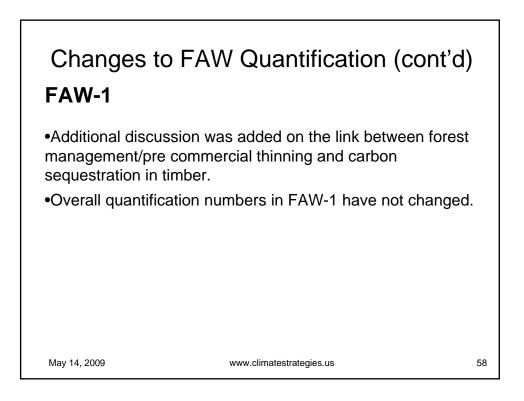
•Evaluate how possible Federal GHG regulation program (cap-and-trade, carbon tax, command and control) could impact the O&G industry in Alaska

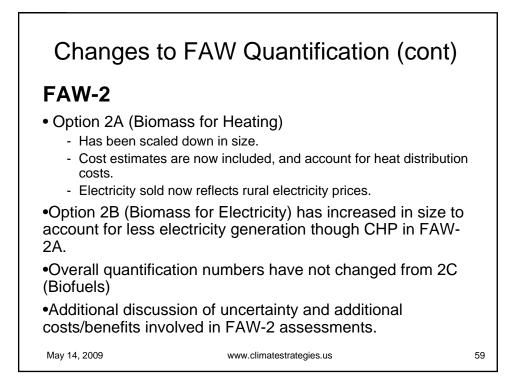
•The State should work with the federal government to ensure the economic vitality of Alaska (including new capital investments) by engaging in the national debate on GHGs and rule making to support the Cook Inlet and North Slope O&G industry;

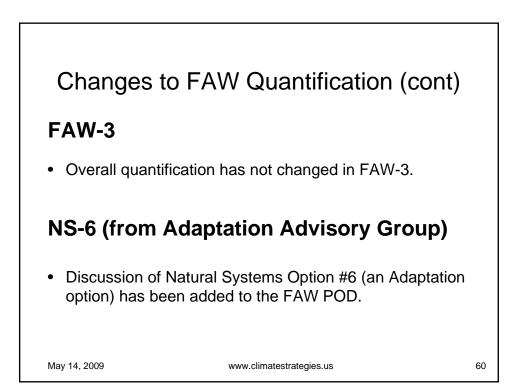

•Any emissions reductions in the Alaska O&G sector should be creditable toward a federal program;

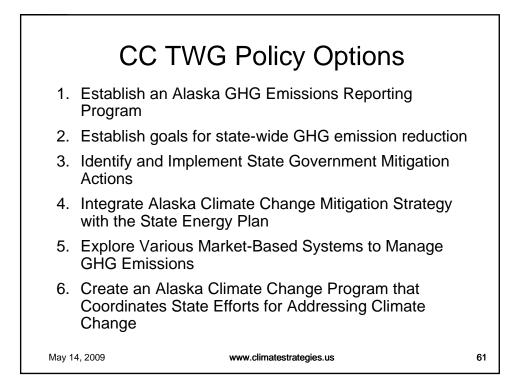
•Alaska should not preempt the federal legislation and rule making by creating potential conflicting state regulations;


•Assure up front planning for budget, staffing, etc... in State agencies;

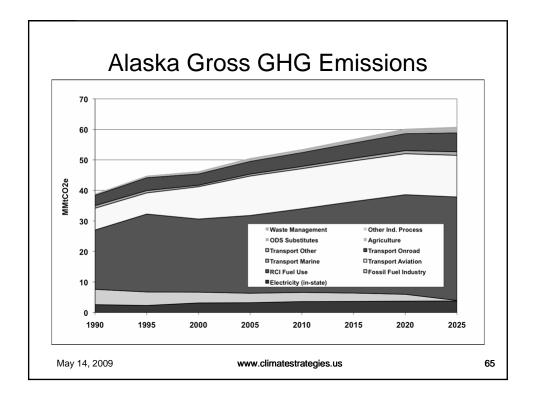

•Consider streamlined permitting that allows permits for projects that offer GHG emissions reductions to be expedited;

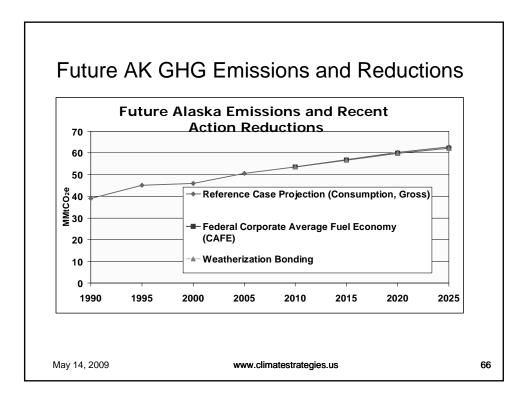

Thank You

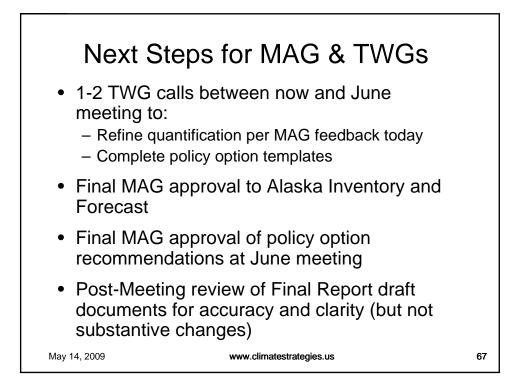


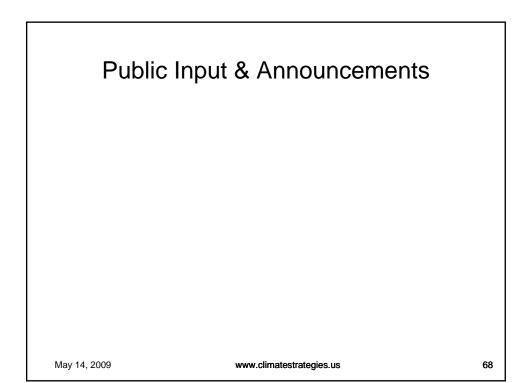

Option No.	W – Initial C		GHG Rec (MMtC			Net Present Value 2010-	Cost-	Level of
	Policy Option	2015	2020	2025	Total 2010– 2025	2025 (Million 2005\$)	Effective -ness (\$/tCO ₂ e)	Support
	Forest Management Strategies for Carbon Sequestration							
FAW-1	A. Coastal Management Pre-Commercial Thinning	Included under FAW-2, along with all options using biomass in other sectors						
FAVV-1	B. Boreal Forest Mechanical Fuels Treatment	Included under FAW-2						
	C. Community Wildfire Protection Plans	Included under FAW-2						Pending
	D. Boreal Forest Reforestation	0.09	0.12	0.15	1.6	\$150	\$92	Pending
	Expanded Use of Biomass Feedstocks for Energy Production							
FAW-2	A. Biomass Feedstocks to Offset Heating Oil Use	0.01	0.03	0.04	0.3	\$17	\$55	Pending
	B. Biomass Feedstocks for Electricity Use	0.07	0.12	0.18	1.5	\$59	\$38	Pending
	C. Biomass Feedstocks to Offset Fossil Transportation Fuels	0.03	0.06	0.09	0.8	\$41	\$52	Pending
FAW-3	Advanced Waste Reduction and Recycling	0.27	0.45	0.65	5.3	-\$43	-\$8	Pending

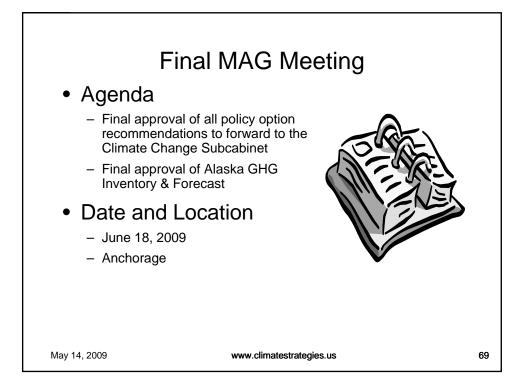
		GHG Reductions (MMtCO ₂ e)	Net Present	Cost- Effective- ness (\$/tCO ₂ e)	
Option No.	Policy Option	2012 2020 Total 2020 2007- 2020			Status of Option
CC-1	Establish an Alaska Greenhouse Gas Emission Reporting Program	Not	Pending		
CC-2	Establish Goals for Statewide GHG Emission Reduction	Not	Pending		
CC-3	Identify and Implement State Government Mitigation Actions	Not	Quantified		Pending
CC-4	Integrate Alaska's Climate Change Mitigation Strategy with the Alaska Energy Plan	Not	Quantified		Pending
CC-5	Explore Various Market-Based Systems to Manage GHG Emissions	Not	Pending		
CC-6	Create an Alaska Climate Change Program that Coordinates State Efforts for Addressing Climate Change	Not	Pending		


TLU TWG Policy Options


- 1. Transit, ridesharing, and commuter choice programs
- 2. Heavy-duty vehicle idling regulations and/or alternatives
- 3. Transportation system management
- 4. Promote efficient development patterns (Smart Growth)
- 5. Promotion of alternative fuel vehicles
- 6. VMT and GHG reduction goals in planning
- 7. On-road heavy-duty vehicle efficiency improvements
- 8. Marine vessel efficiency improvements
- 9. Aviation emission reductions
- 10. Alternative fuels R&D


May 14, 2009


www.climatestrategies.us


	1			anti					
Option				GHG Re (MMt	ductions CO ₂ e)		Net Present Value	Cost- Effective-	Level of
No.	Draft Policy Option		2015	2020	2025	Total 2008- 2025	2008-2025 (Million \$)	ness (\$/tCO ₂ e)	Support
TLU-1	Transit, Ridesharing, and Programs	l Commuter Choice	0.002	0.003	0.005	0.046	29.9	651	Pending
TLU-2	Heavy-Duty Vehicle Idling Regulations and/or Alternatives		0.004	0.009	0.009	0.095	24.3	255	Pending
TLU-3	Transportation System M	lanagement	0.006	0.006	0.006	0.092	-10.8	-117	Pending
TLU-4	Promote Efficient Development Patterns (Smart Growth)		0.019	0.043	0.066	0.501	Net Savings	NQ	Pending
TLU-5	Promotion of Alternative Fuel Vehicles		0.026 - 0.084	0.054 - 0.173	0.09 - 0.288	0.669 - 2.139	207.3 - 350.4	135 - 524	Pending
TLU-6	VMT and GHG Reduction	on Goals in Planning	0.019	0.043	0.066	0.501	NQ	NQ	Pending
	On-Road Heavy-Duty	a. SmartWay	0.050	0.075	0.084	0.930	-52.3	-56	
TLU-7	Vehicle Efficiency	b. Phase Out	0.025	0.012	0.000	0.198	2.1	11	Pending
	Improvements	c. Public Fleets	0.016	0.033	0.037	0.364	NQ	NQ	
TLU-8	Marine Vessel Efficiency	Improvements	0.012	0.022	0.032	0.269	20.4	76	Pending
TLU-9	Aviation Emission Redu	ctions	NQ	NQ	NQ	NQ	NQ	NQ	Pending
TLU-10	Alternative Fuels R&D		NQ	NQ	NQ	NQ	NQ	NQ	Pending
	Sector Total Before Ad	ljusting for Overlaps	0.21	0.36	0.50	4.44	296	67	
	Sector Total After Ad	justing for Overlaps	0.19	0.31	0.42	3.85	296*	77*	
	Reductions From Recen	t Actions (CAFE stds)	0.23	0.53	0.73	6.00	NQ	NQ	
	Sector Total Plus	Becont Actions	0.41	0.84	1.15	9.84	NQ	NQ	

