GSFC JPSS CMO November 8, 2013 Released

Joint Polar Satellite System (JPSS) Ground Project Code 474 474-00070

Joint Polar Satellite System (JPSS) Operational Algorithm Description (OAD)

Document for VIIRS Land Surface Temperature (LST) Environmental Data Records (EDR) Software

For Public Release

The information provided herein does not contain technical data as defined in the International Traffic in Arms Regulations (ITAR) 22 CFC 120.10. This document has been approved For Public Release to the NOAA Comprehensive Large Array-data Stewardship System (CLASS).

Goddard Space Flight Center Greenbelt, Maryland

National Aeronautics and Space Administration

Joint Polar Satellite System (JPSS) Operational Algorithm Description (OAD) Document for VIIRS Land Surface Temperature (LST) Environmental Data Records (EDR) Software JPSS Electronic Signature Page

Prepared By:

Bonnie Reed JPSS Data Products and Algorithms EDR Lead (Electronic Approvals available online at (https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

Approved By:

Eric GottshallDPA Manager (Electronic Approvals available online at (https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

> Goddard Space Flight Center Greenbelt, Maryland

i

Preface

This document is under JPSS Ground Algorithm ERB configuration control. Once this document is approved, JPSS approved changes are handled in accordance with Class I and Class II change control requirements as described in the JPSS Configuration Management Procedures, and changes to this document shall be made by complete revision.

Any questions should be addressed to:

JPSS Configuration Management Office NASA/GSFC Code 474 Greenbelt, MD 20771

Change History Log

Destates	Effe effere Dete	Description of Changes	
Revision	Effective Date	(Reference the CCR & CCB/ERB Approve Date)	
Original	06/03/2011	This version incorporates 474-CCR-11-0113 which converts D38714, NPOESS Operational Algorithm Description Document for VIIRS Land Surface Temperature (LST) EDR, Rev B, dated 05/19/2010 to a JPSS document, Rev This was approved by the JPSS Ground Algorithm ERB on June 3, 2011.	
Revision A	01/18/2012	 Ground Algorithm ERB on June 3, 2011. 474-CCR-11-0260: This version baselines 474-00070, Joint Polar Satellite System (JPSS) Operational Algorithm Description (OAD) Document for VIIRS Land Surface Temperature (LST) Environmental Data Records (EDR) Software, for the Mx 6 IDPS release. This CCR was approved by the JPSS Algorithm ERB on January 18, 2012. 	
Revision B	10/09/2012	474-CCR-12-0627: This version authorizes 474-00070, Joint Polar Satellite System (JPSS) Operational Algorithm Description (OAD) Document for VIIRS Land Surface Temperature (LST) Environmental Data Records (EDR) Software, for the Mx 6.1 - 6.3 IDPS releases. Includes: ECR-ALG-0035 which contains Raytheon PCR029764; LST EDR OAD needs to be updated for QF description updated on pages 15-16. Raytheon PCR031222, OAD: Implement 474-CCR-12-0355 (Correction to LST Binary LUT File & Update to Tunable Parameter XML File) (ADR 4608), Updated Tables 3 & 9 and pages 11-12, 14-16.	
Revision C	05/14/2013	474-CCR-13-0948: This version authorizes 474-00070, JPSS OAD Document for VIIRS LST EDR Software, for the Mx 7.0 IDPS release. Includes Raytheon PCR032720; 474-CCR-13-0916/ECR-ALG-0037: Update applicable OAD filenames/template/Rev/etc. for Mx7 Release.	
Revision D	11/06/2013	474-CCR-13-1288: This version authorizes 474-00070, JPSS OAD Document for VIIRS LST EDR Software, for Mx 8.0 IDPS release. Includes administrative changes authorized by interoffice memo and Raytheon PCR034406; OAD: PRO: 474-CCR-13-1056: Error in LST OAD (DR7203), in section 2.1.4.	

474-00070 Effective Date: November 06, 2013 Revision D

NATIONAL POLAR-ORBITING OPERATIONAL ENVIRONMENTAL SATELLITE SYSTEM (NPOESS)

OPERATIONAL ALGORITHM DESCRIPTION DOCUMENT FOR VIIRS LAND SURFACE TEMPERATURE (LST) EDR

SDRL No. S141 SYSTEM SPECIFICATION SS22-0096

RAYTHEON COMPANY INTELLIGENCE AND INFORMATION SYSTEMS (IIS) NPOESS PROGRAM OMAHA, NEBRASKA

> Copyright © 2004-2011 Raytheon Company Unpublished Work ALL RIGHTS RESERVED

Portions of this work are the copyrighted work of Raytheon. However, other entities may own copyrights in this work. Therefore, the recipient should not imply that Raytheon is the only copyright owner in this work.

This data was developed pursuant to Contract Number F04701-02-C-0502 with the US Government under subcontract number 7600002744. The US Government's right in and to this copyrighted data are as specified in DFAR 252.227-7013, which was made part of the above contract.

IAW DFAR 252.227-7036, Raytheon hereby declares that, to the best of its knowledge and belief, the technical data delivered under Subcontract No. 7600002744 is complete, accurate, and complies with all requirements of the Subcontract.

TITLE: NATIONAL POLAR-ORBITING OPERATIONAL ENVIRONMENTAL SATELLITE SYSTEM (NPOESS) OPERATIONAL ALGORITHM DESCRIPTION DOCUMENT FOR VIIRS LAND SURFACE TEMPERATURE

APPROVAL SIGNATURES:

Stephen E. Ellefson ING/PRO Lead

Date

Gabriela A. Ostler Date Mission Assurance and Enterprise Effectiveness (MAEE)

Raytheon

Northrop Grumman Space & Mission Systems Corp. **Space Technology** One Space Park Redondo Beach, CA 90278

NORTHROP GRUMMAN

lorthrop Grummar Raytheon NASA

Engineering & Manufacturing Development (EMD) Phase Acquisition & Operations Contract

CAGE NO. 11982

Operational Algorithm Description VIIRS Land Surface Temperature (LST) EDR				
Document Date: Sep 19), 2011	Document Number: D3871 Revision: C4	4	
PREPARED BY:				
Justin Ip AM&S LST EDR Lead	Date	Paul D. Siebels IDPS PRO SW Manager	Date	
ELECTRONIC APPROVAL SIGNAT	URES:			
Roy Tsugawa A&DP Lead & ACCB Chair	Date	Stephen E. Ellefson IDPS Processing SI Lead	Date	
Bob Hughes A&DP Deputy & ARB Chair	Date			
Prepared by Northrop Grumman Space Technology One Space Park Redondo Beach, CA 90278		Prepared for Department of the Air Force NPOESS Integrated Program Office C/O SMC/CIK 2420 Vela Way, Suite 1467-A8 Los Angeles AFB, CA 90245-4659		
Under				

Contract No. F04701-02-C-0502

This document has been identified per the NPOESS Common Data Format Control Book – External Volume 5 Metadata, D34862-05, Appendix B as a document to be provided to the NOAA Comprehensive Large Array-data Stewardship System (CLASS) via the delivery of NPOESS Document Release Packages to CLASS.

Northrop Grumman Space & Mission Systems Corp. **Space Technology** One Space Park Redondo Beach, CA 90278

Raytheon

Revision/Change Record D38714 **Document Number** Document Pages Revision Date **Revision/Change Description** Affected 3-30-04 Initial Release. All A1 2-22-05 Reflects Science To Operational Code Conversion. Pg 2 A2 8-31-05 Minor Edits On-Going. Implemented TM NP-EMD.2004.510.0047 All in B1.3. 7-27-07 A3 All Updated to match ops code. A4 8-2-07 TMs NP-EMD-2006.510.0081, NP-EMD.2005.510.0132, NP-All EMD.2005.510.0133, and NP-EMD.2006.510.0010 have been implemented in B1.5. Delivered to NGST. A5 12-10-07 ECR A-103, EDRPR 1.8 CP 3 updates -Format changes for All CDFCB-X compliance - Remove LST Granule Level QF Output and Description. A6 9-12-08 Reformatted document to implement template D41851 format. All Modified graceful degradation and data quality notification sections. New cover sheet, update references, acronym list, prepare for peer review. Delivered to NGST. 9-15-08 A7 Implemented TM NP-EMD-2008.510.0021 8, 12, 13 A8 12-9-08 Addressed NGST comments from last delivery. All A9 2-18-09 Added Thin Cirrus quality flag to Quality Byte 0 (PCR019663) Tables 6. 8. & 9 All Updated for TIM А 3-18-09 Incorporated TIM comments and final preparation for ARB/ACCB. All B1 11-04-09 Incorporated RFA No. 376 and updated for SDRL All 3-3-10 **B2** NP-EMD.2009.510.0077_LST_v4.15.1_OAD_Updates-RevB.DOC All В 5-19-10 Prepared for TIM/ARB/ACCB All C1 8-18-10 Table 1 & Updated Table 1 & 2 due to omission of TM 2010.510.0005.Rev-C 2 C2 8-27-10 ECR1061/PCR024068 update output range values Table 7 C3 10-14-10 All Updated due to document convergence, to include tech memo 2010.510.0013 Updated for PCRs 025898, 026163 and 027081 C4 9-19-11 5, 7, 11-12, 14 18

Table of Contents

1.0	INTR	ODUCT	ΓΙΟΝ	1
1.	1 O	bjective.		1
1.	2 So	соре		1
1.	3 R	eference	es	1
	1.3.1	Docum	nent References	1
	1.3.2	Source	e Code References	4
2.0	ALG	ORITHM	I OVERVIEW	5
2.	1 La	and Surf	face Temperature EDR Description	5
	2.1.1	Interfac	ces	6
	2.1	1.1	Inputs	7
	2.1	1.2	Outputs	9
	2.1.2	Algorit	hm Processing	12
	2.1	.2.1	Main Module – RetrieveLst	12
	2.1	.2.2	LST Retrieval Logic	12
	2.1	2.3	LST Quality Flag Logic	15
	2.1	2.4	LST LUT Coefficient Selection	17
	2.1.3	Gracef	ul Degradation	18
	2.1	.3.1	Graceful Degradation Inputs	18
	2.1	.3.2	Graceful Degradation Processing	19
	2.1.	.3.3	Graceful Degradation Outputs	19
	2.1.4	Except	tion Handling	19
	2.1.5	Data Q	Quality Monitoring	19
	2.1.6		utational Precision Requirements	
	2.1.7	Algorith	hm Support Considerations	20
	2.1.8	Assum	ptions and Limitations	20
	2.1	.8.1	Assumptions	20
	2.1	.8.2	Limitations	20
3.0	GLO	SSARY	ACRONYM LIST	21
3.	1 G	lossary .		21
3.	2 Ao	cronyms	3	24
4.0	OPE	N ISSUI	ES	25

List of Figures

Figure 1.	LST Processing Chain	5
Figure 2.	IPO Model Interface to INF and DMS	6
Figure 3.	LST Retrieval Logic Flow1	3

List of Tables

Table 1. Reference Documents	1
Table 2. Source Code References	4
Table 3. LST Main Inputs	7
Table 4. LST EDR Auxiliary / Ancillary Data Inputs	9
Table 5. Output LST EDR Content	10
Table 6. LST Pixel Level QF Output Bits and Descriptions	10
Table 7. List of Configurable Algorithm Parameters	14
Table 8. LST QF Logic	15
Table 9. LST QF/Quality Bit Field Logic Table (Retrieval Cases Only)	16
Table 10. LST Core Equations	
Table 11. LST Graceful Degradation	19
Table 12. Glossary	21
Table 13. Acronyms	24
Table 14. TBXs	

1.0 INTRODUCTION

1.1 Objective

The purpose of the Operational Algorithm Description (OAD) document is to express, in computer-science terms, the remote sensing algorithms that produce the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) end-user data products. These products are individually known as Raw Data Records (RDRs), Temperature Data Records (TDRs), Sensor Data Records (SDRs) and Environmental Data Records (EDRs). In addition, any Intermediate Products (IPs) produced in the process are also described in the OAD.

The science basis of an algorithm is described in a corresponding Algorithm Theoretical Basis Document (ATBD). The OAD provides a software description of that science as implemented in the operational ground system -- the Data Processing Element (DPE).

The purpose of an OAD is two-fold:

- 1. Provide initial implementation design guidance to the operational software developer.
- 2. Capture the "as-built" operational implementation of the algorithm reflecting any changes needed to meet operational performance/design requirements.

An individual OAD document describes one or more algorithms used in the production of one or more data products. There is a general, but not strict, one-to-one correspondence between OAD and ATBD documents.

1.2 Scope

The scope of this document is limited to the description of the core operational algorithm required to create the VIIRS Land Surface Temperature (LST) EDR. The theoretical basis for this algorithm is described in Section 3.3 of VIIRS Land Surface Temperature Algorithm Theoretical Basis Document ATBD, 474-00051.

1.3 References

1.3.1 Document References

The science and system engineering documents relevant to the algorithms described in this OAD are listed in Table 1.

Document Title	Document Number/Revision	Revision Date
VIIRS Land Surface Temperature Algorithm Theoretical Basis Document ATBD	474-00051	Latest
VIIRS Radiometric Calibration Algorithm Theoretical Basis Document ATBD	474-00027	Latest
VIIRS Surface Temperature Module Level Software Architecture	Y2473 Ver. 5 Rev. 12	30 Jul 2004
VIIRS Surface Temperature Module-Level Interface Control	Y3281 Ver. 5 Rev. 4	Dec 2003

Table 1. Reference Documents

Document Title	Document Number/Revision	Revision Date
Document	Number/Kevision	
VIIRS Surface Temperature Module Level Data Dictionary	Y0011652 Ver. 5 Rev. 3	Dec 2003
VIIRS Land Surface Temperature Unit Level Detailed Design	Y2502 Ver. 5.1 Rev. 5	25 Jun 2004
VIIRS Radiometric Calibration Unit Level Detailed Design	Y2490 Ver. 5 Rev. 4	30 Sep 2004
Operational Algorithm Description Document for VIIRS Cloud Mask Intermediate Product (VCM IP)	474-00062	Latest
Operational Algorithm Description Document for VIIRS Aerosol Products (AOT, APSP & SM) Intermediate Product (IP)/Environmental Data Records (EDR)	474-00073	Latest
Operational Algorithm Description Document for Common Geolocation	474-00091	Latest
Operational Algorithm Description Document for VIIRS Geolocation (GEO) Sensor Data Record (SDR) and Calibration (CAL) SDR	474-00090	Latest
Operational Algorithm Description Document for VIIRS Surface Type (STYP) Environmental Data Records (EDR)	474-00068	Latest
JPSS Environmental Data Record (EDR) Production Report (PR) for NPP	474-00012	Latest
JPSS Environmental Data Record (EDR) Interdependency Report (IR) for NPP	474-00007	Latest
NPP Mission Data Format Control Book and App A (MDFCB)	429-05-02-42_MDFCB	Latest
JPSS Common Data Format Control Book - External - – Block 1.2.2 (All Volumes)	474-00001-01-B0122 CDFCB-X Vol I 474-00001-02-B0122 CDFCB-X Vol II 474-00001-03-B0122 CDFCB-X Vol III 474-00001-04-01-B0122 CDFCB-X Vol IV Part 1 474-00001-04-02-B0122 CDFCB-X Vol IV Part 2 474-00001-04-03-B0122 CDFCB-X Vol IV Part 3 474-00001-04-04-B0122 CDFCB-X Vol IV Part 4 474-00001-05-B0122 CDFCB-X Vol V 474-00001-06-B0122 CDFCB-X Vol VI 474-00001-08-B0122 CDFCB-X Vol VI 474-00001-08-B0122 CDFCB-X Vol VII	Latest
JPSS Common Data Format Control Book - External - Block 1.2.3 (All Volumes)	474-00001-01-B0123 CDFCB-X Vol I 474-00001-02-B0123 CDFCB-X Vol II 474-00001-03-B0123 CDFCB-X Vol III 474-00001-04-01-B0123 CDFCB-X Vol IV Part 1 474-00001-04-02-B0123	Latest

Document Title	Document	Revision Date
booument mile	Number/Revision	Revision Date
	CDFCB-X Vol IV Part 2	
	474-00001-04-03-B0123	
	CDFCB-X Vol IV Part 3 474-00001-04-04-B0123	
	CDFCB-X Vol IV Part 4	
	474-00001-05-B0123	
	CDFCB-X Vol V	
	474-00001-06-B0123 CDFCB-X Vol VI	
	474-00001-08-B0123	
	CDFCB-X Vol VIII	
NPP Command and Telemetry (C&T) Handbook	D568423 Rev. C	30 Sep 2008
JPSS CGS Data Processor Inter-subsystem Interface Control Document (DPIS ICD) Vol I – IV	IC60917-IDP-002	Latest
IDPS Processing SI Common IO Design Document	DD60822-IDP-011 Rev. A	21 Jun 2007
Joint Polar Satellite System (JPSS) Program Lexicon	470-00041	Latest
NGST/SE technical memo – LST OAD Update	NP-EMD.2004.510.0047	19 Nov 2004
NGST/SE technical memo – NPP_VIIRS_IST_LST_STIP_BugsFix	NP-EMD-2006.510.0081	31 Oct 2006
NGST/SE technical memo – LST OAD Update_Drop2.5.2	NP-EMD.2005.510.0132	21 Oct 2005
NGST/SE technical memo – LST_Drop2.5.2_UT	NP-EMD.2005.510.0133	21 Oct 2005
NGST/SE technical memo – NPP_VIIRS_LST_QFFillValues_SPCR_ALG979	NP-EMD.2006.510.0010	30 Jan 2006
NGST/SE technical memo – VIIRS IST EDR and LST EDR AOT Exclusion Implementation	NP-EMD-2006.510.0097, RevB	07 Feb 2007
NGST/SE technical memo – VIIRS LST Quality Flags Update	NP-EMD.2008.510.0021	15 Apr 2008
JPSS Data Format Control Book – Internal Volume III – Retained Intermediate Product Formats (IDFCB) – Block 1.2.3	474-00020-03-B0123 IDFCB Vol III	Latest
NGST/SE technical memo – NPP_LST_DegradQF&SurfTypeDefUpdate	NP- EMD.2008.510.0053_RevB	29 May 2009
NGAS/A&DP technical memo – LST_v4.15.1_Code_Updates-RevA	NP-EMD.2009.510.0076	15 Dec 2009
NGAS/A&DP technical memo –	NP-EMD.2009.510.0077	23 Dec 2009
LST_v4.15.1_OAD_Updates-RevB		
NGST/SE technical memo –	NP.EMD.2010.510.0005.Rev-	02 Mar 2010
Granule-Level Summary Exclusion Flag Definition Rev. C	C	
NGST/SE technical memos:		
PC_OAD_Last_Drop_Corrections	NPOESS GJM- 2010.510.0013	22 Sep 2010
NGST/SE technical memo –	NP.EMD.2010.510.0098	22 Dec 2010
LST Baseline Algorithm Mode Switch Setting Instructions		
NGST/SE technical memo –	NP.EMD.2010.510.0099	22 Dec 2010
LST OAD Update for baseline algorithm mode switch setting		

1.3.2 Source Code References

The science and operational code and associated documentation relevant to the algorithms described in this OAD are listed in Table 2.

Document Title	Reference Tag/Revision	Revision Date
VIIRS LST Science-grade Software	2.01	Jan 2006
VIIRS LST Operational Software	B1.5 (OAD Rev A4)	Jul 2007
NGST/SE technical memo – NPP_VIIRS_IST_LST_STIP_BugsFix	NP-EMD-2006.510.0081	31 Oct 2006
NGST/SE technical memo – LST_Drop2.5.2_UT	NP-EMD.2005.510.0133	21 Oct 2005
NGST/SE technical memo – NPP_VIIRS_LST_QFFillValues_SPCR_ALG979	NP-EMD.2006.510.0010	30 Jan 2006
NGST/SE technical memo – VIIRS LST Quality Flags Update	NP-EMD.2008.510.0021	15 Apr 2008
VIIRS LST Operational Software	Build 1.5.x.1-L (PCR019663) (OAD Rev A9)	18 Feb 2009
VIIRS LST Science-grade Software Includes TM: NP- EMD.2008.510.0021_NPP_LST_QualityFlagsUpdate	ISTN_VIIRS_NGST_2.5.5_DA TA (ECR A-145)	21 May 2008
VIIRS LST Science-grade Software	ISTN_VIIRS_NGST_2.5.6_DA TA	16 Apr 2009
VIIRS LST Science-grade Software	ISTN_VIIRS_NGST_4.15	27 May 2009
ACCB (no code update)	OAD Rev A	18 Mar 2009
SDRL (no code update)	OAD Rev B1	04 Nov 2009
VIIRS LST Science-grade Software Includes NGAS/A&DP technical memos – LST_v4.15.1_Code_Updates-RevA.DOC NP-EMD.2009.510.0076 (PCR 022280) LST_v4.15.1_OAD_Updates-RevB.DOC NP-EMD.2009.510.0077 (PCR 022281)	ISTN_VIIRS_NGST_4.15.1 (ECR A-264)	11 Jan 2010
VIIRS LST Operational Software Includes PCRs 22280 & 22281	Sensor Characterization (Build SC-8) (OAD Rev B2)	02 Mar 2010
PCR 21488 [TM 2010.510.0005.Rev-C] (No OAD update required)	Build Sensor Characterization SC-09	05 Apr 2010
ACCB	OAD Rev B	19 May 2010
ECR1061/PCR024068 update output range values	(OAD Rev C2)	27 Aug 2010
Convergence Updates (No code updates)	(OAD Rev C3)	14 Oct 2010
VIIRS LST Science-grade Software Includes NGAS/A&DP technical memos – LST Baseline Algorithm Mode Switch Setting Instructions) LST OAD Update for Baseline Algorithm Mode Switch Setting	ISTN_VIIRS_NGST_4.15.2 (ECR Alg-0004)	13 Jan 2011
Instructions VIIRS LST Operational Software PCR025898 (TM 2010.510.0098)	Build Maintenance Release 1.05.06-F	02 Aug 2011
PCRs 026163 (TM 2010.510.0099) and 027081 (x-ref PCR025632)	(OAD Rev C4)	19 Sep 2011
OAD transitioned to JPSS Program – this table is no longer updated	•	

Table 2. Source Code References

2.0 ALGORITHM OVERVIEW

The purpose of the LST Module is to retrieve the LST for each cloud-free land pixel at VIIRS moderate-resolution. Brightness temperature data from the VIIRS SDR, VIIRS Aerosol Optical Thickness (AOT) Intermediate Product (IP), VIIRS Cloud Mask (VCM) IP, and VIIRS Surface Type (STYP) EDR are used to decide whether the pixel is processed. A 2-band single split-window algorithm is the operational baseline algorithm and a 4-band dual split-window algorithm is available as an optional algorithm. LST is retrieved using a regression equation with separate coefficients for each of the 17 International Geosphere-Biosphere Program (IGBP) land cover types. Moderate resolution pixel level LST in Kelvin and the associated 3-byte LST quality information are written to the VIIRS LST EDR. The LST Processing Chain is shown in Figure 1.

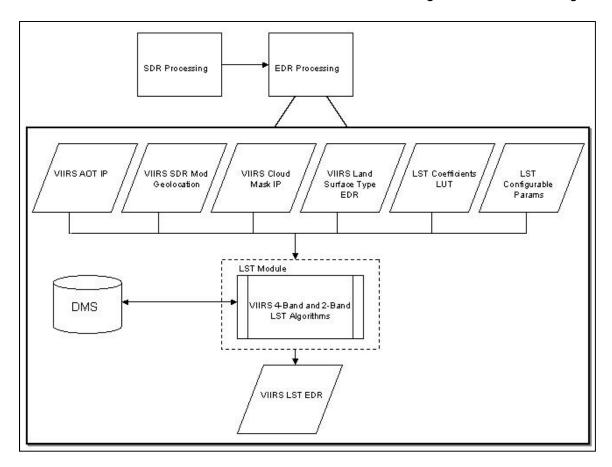


Figure 1. LST Processing Chain

2.1 Land Surface Temperature EDR Description

The VIIRS Land Surface Temperature Algorithm Theoretical Basis Document ATBD, 474-00051, describes in detail the VIIRS LST retrieval algorithm.

2.1.1 Interfaces

To begin data processing, the Infrastructure (INF) Subsystem Software Item (SI) initiates the LST algorithm. The INF SI provides tasking information to the algorithm indicating which granule to process. The Data Management Subsystem (DMS) SI provides data storage and retrieval capability. A library of C++ classes implements the SI interfaces, depicted in Figure 2.

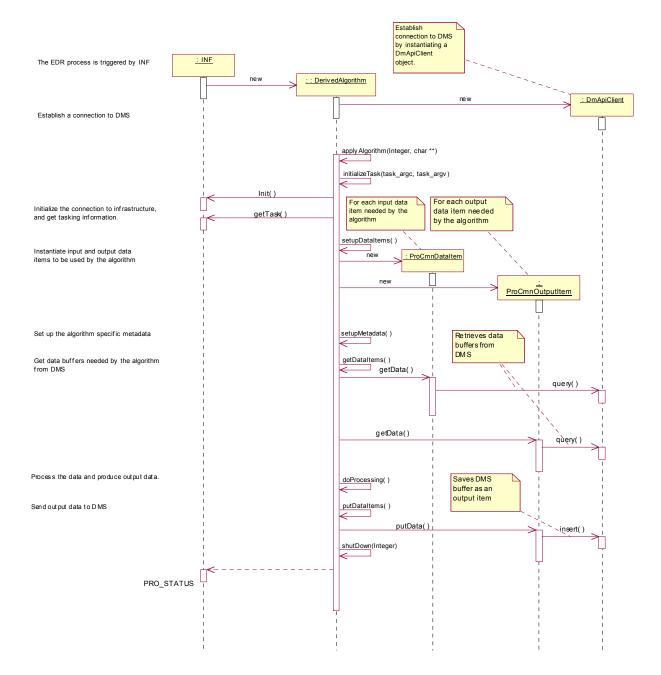


Figure 2. IPO Model Interface to INF and DMS

2.1.1.1 Inputs

Refer to the CDFCB-X, 474-00001, for a detailed description of the inputs. For the AOT parameter format, refer directly to Volume III of the IDFCB, 474-00020. All temperatures are expressed in Kelvin (K) units. Table 3 shows the LST main inputs and Table 4 shows the LST EDR Auxiliary / Ancillary data inputs.

Input	Туре	Description	Units/Valid Range
BT_M12	Float32	Brightness Temperature of Band M12	K / Please refer to VIIRS Radiometric Calibration ATBD, 474-00027
BT_M13	Float32	Brightness Temperature of Band M13	K / Please refer to VIIRS Radiometric Calibration ATBD, 474-00027
BT_M15	Float32	Brightness Temperature of Band M15	K / Please refer to VIIRS Radiometric Calibration ATBD, 474-00027
BT_M16	Float32	Brightness Temperature of Band M16	K / Please refer to VIIRS Radiometric Calibration ATBD, 474-00027
VIIRS SDR MOD geolocation Data	Float32	Float32 VIIRS SDR MOD geolocation structure / -Sensor Zenith Angle -Solar Zenith Angle	Sensor Zenith Angle degree / 0° ≤ SenZenAngle ≤ 71.62°
			Solar Zenith Angle degree / $0^{\circ} \leq SolZenAngle \leq 180^{\circ}$
			Latitude degree/ Used to determine ellipsoid fill
VIIRS Cloud Mask IP	Uint8	VIIRS_CLOUD_MASK_IP_TYP E	
		Land/Water Background Flag	Unitless / 000 = Land & Desert 001 = Land no Desert 010 = Inland Water 011 = Sea Water 101 = Coastal
		Day/Night Flag	Unitless / 0 = Night 1 = Day
		Confidence Indicator	Unitless / 11 = Confident Cloudy 10 = Probably Cloudy 01 = Probably Clear 00 = Confident Clear

Table 3. LST Main Inputs

Input	Туре	Description	Units/Valid Range
mpar	1960	Sun Glint Flag	Unitless /
		Suri Gillit Flag	00 = None
			01 = Geometry Based
			10 = Wind Speed Based
			11 = Geometry & Wind
		Thin Cirrus	Unitless /
			0 = No
			1 = Yes
VIIRS Land	Uint8		
Surface Type	Onto	VIIRS_Surface_Type_EDR_Typ	
EDR		e	Unitless /
		Surface Type Flag	Valid Range: 1 to 17,
			0 = Invalid
			1 = Evergreen Needleleaf
			Forests
			2 = Evergreen Broadleaf
			Forests
			3 = Deciduous Needleleaf
			Forests
			4 = Deciduous Broadleaf
			Forests
			5 = Mixed Forests
			6 = Closed Shrublands
			7 = Open Shrublands
			8 = Woody Savannas 9 = Savannas
			10 = Grasslands
			11 = Permanent Wetlands
			12 = Croplands
			13 = Urban and Built-Up Lands
			14 = Cropland/Natural
			Vegetation Mosaics
			15 = Snow and Ice
			16 = Barren
			17 = Water Bodies
			18-31 = Invalid
		Fire Flag	Unitless /
			0 = No Fire
			1 = Active Fire
		Snow Cover Flag	Unitless /
		, J	0 = No Snow
			1 = Snow Cover
VIIRS Aerosol	Float32	VIIRS_AOT_IP_TYPE	
Optical		Aerosol Optical Thickness	Unitless
Thickness		at 550 nm (slant path)	AOT ≥ 0
	Float64	viirs_Lst_Coeffs_LUT	Term
VIIRS_LST_L		term: dual window[9], split -	Unitless
UT		window[5]	
		Indices representing coefficients	
		a0 a8	
		daynight[2] Key to LUT daynight	Unitless /
		dimension	0 = night
			1 = day

Input	Туре	Description	Units/Valid Range
		surfacetype[17] IGBP Surface Types Land Surface Type EDR	Unitless / 0 to 16
		algorithm[2] Key to LUT algorithm dimension	Unitless / 0 = "dual" 1 = "split"
		regime[1] This is a placeholder only (not used)	Unitless / regime = 0
VIIRS_LST_C OEFFICIENTS	Float32	Structure containing all configurable parameters for LST	
		min_Bt_M12_M13	180 K
		max_Bt_M12_M13	350 K
		min_Bt_M15	180 K
		max_Bt_M15	350 K
		min_Bt_M16	180 K
		max_Bt_M16	350 K
		day_Sol_Zen_Ang_Lim	1.4835 Radians
		min_Sens_Zen_Lim	0.0 Radians
		Max_Sens_Zen_Lim	0.8779 Radians
		min_Term_Lim	1.4835 Radians
		max_Term_Lim	1.7453 Radians
		IstMinTemp	183.5 K
		IstMaxTemp	348 K
		max_Sens_Zen_Lim	0.6981 Radians
LST Data Quality Notification	Structure	Reports erroneous pixels through a DQN	-999.71 to –999.69 Check for
			–999.7 is needed

Table 4. LST EDR Auxiliary / Ancillary Data Inputs

Input	Туре	Description/Source	Units/Valid Range
Solar Zenith Angle	Float32	VIIRS SDR MOD	Radians / 0 to π
Sensor Zenith Angle	Float32	VIIRS SDR MOD	Radians / 0 to 1.25

2.1.1.2 Outputs

Primary outputs of the LST algorithm, as shown in Table 5, are a temperature value and a 3byte LST quality flag (QF) for each moderate resolution pixel. For a description of the file metadata please reference Volume V of the CDFCB-X, 474-00001. Refer to the CDFBC-X, 474-00001, Vol. VI, Part 3, for a detailed description of the outputs.

The LST field in the EDR is scaled to fit into a Uint16 from calculated Float32 value.

Table 5. Output LST EDR Content

Output	Data Type/Size	Description	Units / Valid Range
Land Surface Temperature	Uint16	LST is determined for each pixel in the granule. The output is to be scaled so it will fit into a Uint16.	Scaled Kelvin / 0 to 65527 (Unscaled range: 183.2 K to 350.0 K)
Land Surface Temperature Quality Byte 0	Uint8	Two-dimensional array of M_VIIRS_SDR_ROWS by M_VIIRS_SDR_COLS of Quality. Assurance bitmap with test information for each pixel in the granule. (See Table 6.)	Unitless / None
Land Surface Temperature Quality Byte 1	Uint8	Two-dimensional array of M_VIIRS_SDR_ROWS by M_VIIRS_SDR_COLS of Quality. Assurance bitmap with test information for each pixel in the granule. (See Table 6.)	Unitless / None
Land Surface Temperature Quality Byte 2	Uint8	Two-dimensional array of M_VIIRS_SDR_ROWS by M_VIIRS_SDR_COLS of Quality. Assurance bitmap with test information for each pixel in the granule. (See Table 6.)	Unitless / None
IstScale	Float32	The scale value for the Land Surface Temperature. This can be found by subtracting the minimum acceptable temperature of 183.2 K from the maximum of 350.0 K and dividing this result by 65527. The maximum and minimum temperatures are configurable.	Unitless / None
lstOffset	Float32	The offset value is the minimum acceptable temperature of the LST. The minimum temperature is 183.2 K and it is configurable.	Unitless / None

Table 6. LST Pixel Level QF Output Bits and Descriptions

Byte	Bit	Flag Description Key	Result
0	0-1	LST Quality	Bit 0
			0 0 = High
			0 1 = Medium
			1 0 = Low
			1 1 = No Retrieval
	2	Algorithm	0 = 4-band dual-split window
			1 = 2-band split-window
	3	Day/Night	0 = Night
			1 = Day, $(0^{\circ} \le \text{Solar Zenith Angle} \le 85^{\circ})$
	4	SWIR (M12 and M13) Brightness Temperatures	0 = both available
		availabilities	1 = at least one not available
	5	LWIR (M15 and M16) Brightness Temperatures	0 = both available
		availabilities	1 = at least one not available
	6	Active Fire	0 = no active fire
			1 = active fire
	7	Exclusion – Thin Cirrus	0 = no thin cirrus
			1 = thin cirrus
1	0	Clear Measurement Precision Degradation-	0 = no degradation
			1 = degradation

Byte	Bit	Flag Description Key	Result
	1	Retrieved LST out of expected reporting range	0 = within range, (213 K ≤ <i>LST</i> ≤ 343 K) 1 = out of range
	2-3	Cloud Confidence Indicator	Bit 0
			0 0 = Confidently Clear
			0 1 = Probably Clear
			1 0 = Probably Cloudy
			1 1 = Confidently Cloudy
	4	AOT Condition	0 = within range, (AOT ≤ 1.0) 1 = outside range
	5	Horizontal Reporting Interval	0 = within Horizontal Cell Size, Nadir to 1.3 km
			$(0^{\circ} \le \text{Sensor Zenith Angle} \le 53^{\circ})$
			1 = out of range
	6	Sun Glint	0 = None
	-		1 = Present
	7	Terminator	0 = Beyond Terminator
			1 = Inside Terminator,
			$(85^{\circ} < \text{Solar Zenith Angle} \le 100^{\circ})$
	0-2	Land/Water Background	Bit 0 Bit 1
			0 0 0 = Land and Desert
			0 0 1 = Land / No Desert
			0 1 0 = Inland Water
			0 1 1 = Sea Water
			1 0 1 = Coastal
	3-7	Surface Type	
	-		00001 = Evergreen Needleleaf Forests
			00010 = Evergreen Broadleaf Forests
			00011 = Deciduous Needleleaf Forests
			00100 = Deciduous Broadleaf Forests
			00101 = Mixed Forests
			00110 = Closed Shrublands
			00111 = Open Shrublands
			01000 = Woody Savannahs
			01001 = Savannahs
			01010 = Grasslands
			01011 = Permanent Wetlands
			01100 = Croplands
			01101 = Urban Built-Up
			01110 = Croplands/Natural Vegetation
			Mosiacs 01111 = Snow Ice
			10000 = Barren 10001 = Water Bodies
			11111 = Invalid IGBP Surface Type
			111111 = 10/910 1(3RD SUM200 1/00)

2.1.2 Algorithm Processing

The objective of the LST algorithm is to calculate LST at each pixel in a moderate resolution (750 m) granule with all available input. Two similar regression algorithms are used to perform this retrieval:

1) The operational baseline algorithm is the 2-band split-window algorithm where only the LWIR band pair M15 and M16 are used. The 2-band split-window algorithm is set as the baseline operatonal algorithm by a run time switch.

2) A 4-band dual-split window algorithm is available as an optional algorithm that uses brightness temperatures from two pair of VIIRS wavebands—one pair in the Medium-Wavelength Infrared (MWIR) atmospheric window (Bands M12 and M13) and the other pair in the Long-Wavelength Infrared (LWIR) atmospheric window (Bands M15 and M16), and Quality assessment flags for each pixel are stored in the LST Flag output.

2.1.2.1 Main Module – RetrieveLst

2.1.2.2 LST Retrieval Logic

The logic flow of the LST retrieval algorithm is provided in Figure 3. The core logic occurs in two functions, setLstQualFlags() and calculateLst(). In the current implementation, LST QFs additionally serve as decision flags. Their values are used in the decision of whether LST can be retrieved and, if so, which algorithm to use.

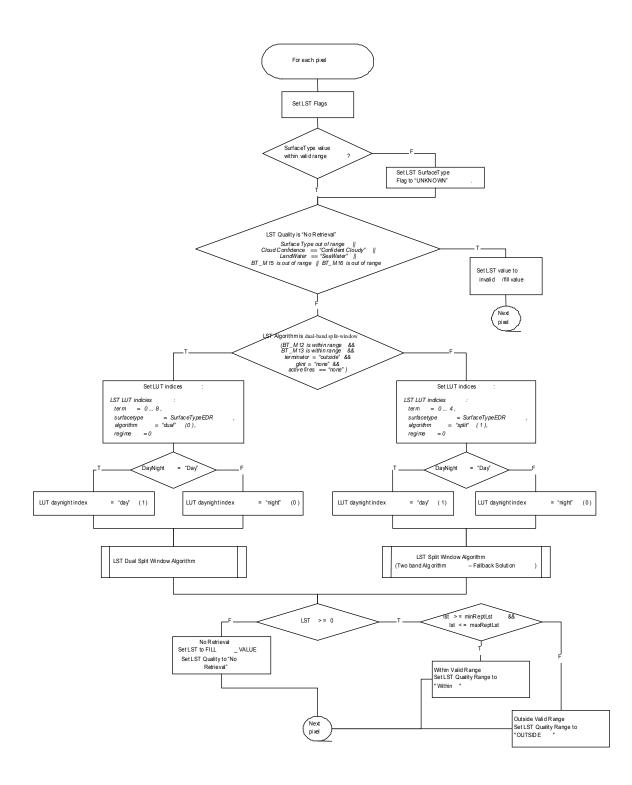


Figure 3. LST Retrieval Logic Flow

LST is not retrieved if any of the following conditions occur:

- The pixel is cloudy (i.e., Cloud Confidence Flag is "Confidently Cloudy"), or
- The pixel is an ocean pixel (i.e., LandWater Flag is "SeaWater"), or
- Band M15 brightness temperature is outside the LST defined range, or
- Band M16 brightness temperature is outside the LST defined range, or
- Land STYP is outside the LST defined range.

These pixels are marked with an LST QF of "No Retrieval" and are output with fill values.

For pixels that are processed, LST is retrieved by either the 2-band, split-window algorithm or an optional 4-band dual split window algorithm. The 2-band split-window algorithm is used as the operational baseline algorithm. The optional 4-band, dual split-window algorithm is available but may be used only under optimal conditions: no solar glint, no active fires, outside the terminator, and "in-range" brightness temperatures for the M12 and M13 bands. If the 4-band dual split-window algorithm is optionally invoked the algorithm will automatically revert to the split-window algorithm for non-optimal conditions. See Table 9, Section 2.1.2.3, for the logic to algorithm is used. The 2-band, split window algorithm is set as the operational baseline algorithm by a run time algorithm mode switch (algmode). A switch value of "1" specifies that the 2-band split window algorithm will be used as the baseline operational algorithm. A switch value of "0" specifies that the optional dual split-window algorithm is to be used. The run time algorithm mode switch should be set to 1 as the default run mode for initial operations at IDPS. corresponding to use of the 2-band split-window algorithm as the baseline algorithm. Determination of whether the 2-band split-window LST algorithm should remain as the baseline algorithm will be made during calibration/validation of the LST algorithm. If it is determined as a result of performance evaluated during calibration/validation that the 2-band split window algorithm should no longer be the baseline algorithm then the algorithm mode switch should be set to 0 resulting in the 4-band, dual split-window algorithm being used.

Core equations for the dual-band split-window and split-window fallback algorithms are specified in Table 10. The implementation is presented in calculateLst(). The daytime dual-band split-window algorithm varies slightly from its nighttime counterpart in that a solar zenith angle correction is made for the daytime retrieval.

For an off-nominal condition where a negative LST is retrieved, the LST field is filled and the LST quality bit field is set to "No Retrieval".

Table 7 contains the list of configurable algorithm parameters.

Algorithm Parameter	Description	Assigned Values
LST_MIN_M12_M13_BT	Minimum brightness temperatures for M12 and M13	180 K
LST_MAX_M12_M13_BT	Maximum brightness temperatures for M12 and M13	350 K
LST_MIN_M15_BT	Minimum brightness temperature for M15	180 K
LST_MAX_M15_BT	Maximum brightness temperature for M15	350 K
LST_MIN_M16_BT	Minimum brightness temperature for M16	180 K
LST_MAX_M16_BT	Maximum brightness temperature for M16	350 K

Table 7. List of Configurable Algorithm Parameters

Algorithm Parameter	Description	Assigned Values
LST_DAYNIGHT_SOL_ZEN_LIMIT	Solar zenith angle defining day/night boundary	1.4835 Radians
LST_MIN_HCS_SENS_ZEN_LIMIT	Sensor zenith angle at Nadir * PI/180	0.0 Radians
LST_MAX_HCS_SENS_ZEN_LIMIT	Sensor zenith angle at the edge of scan	0.8779 Radians
LST_MIN_TERMINATOR_LIMIT	Minimum solar zenith angle defines the terminator region	1.4835 Radians
LST_MAX_TERMINATOR_LIMIT	Maximum solar zenith angle defines the terminator region	1.7453 Radians
IstMinTemp	Minimum reported temperature	183.20K
IstMaxTemp	Maximum reported temperature	350K
Algmode	0 equals dual mode, 1 equals splt mode	0

2.1.2.3 LST Quality Flag Logic

The LST Flags consist of three 8-bit words and are shown in Table 8. The logic to set these flags is performed in function setLstQualFlags() and provided in Table 8 and Table 9.

Overall LST pixel quality is represented by the quality bit field. Pixel quality is flagged as "No Retrieval" and the corresponding LST will be filled:

(BT_M15 is outside range) or (BT_M16 is outside range) or (Cloud Confidence is "Confidently Cloudy") or (STYP is outside range) or (LandWater Flag is "SeaWater")

LST < 0 (determined after attempt is made to retrieve LST).

Note regarding the Sfc Type QF: The Sfc Type EDR has an array of surface types granulated from the IGBP Sfc Type tiles. However, when that array is copied into the LST EDR Sfc Type qf it is further modified by the Sfc Type EDR snow/ice qf to be snow/ice if that qf was triggered. That Sfc Type EDR snow/ice qf is triggered if the binary snow map EDR input is available (binary snow map is day only, not conf cloudy, sza<85 deg) and greater than a threshold (0.5). If that qf is not triggered, then the surface type in the LST EDR sfc type qf will remain the same as given in the Sfc Type EDR.

The logic to set the bit field under various retrieval conditions is shown in Table 9.

LST Flag	Input Source	Flag Setting
Band M12 Brightness Temperature Quality	viirs_mod_SDR_bt_type	if (180 K < BT_{M12} < 350 K) set to "within range" otherwise set to "out of range" end if
Band M13 Brightness Temperature Quality	viirs_mod_SDR_bt_type	if (180 K < BT_{M13} < 350 K) set to "within range" otherwise set to "out of range" end if
Band M15 Brightness Temperature Quality	viirs_mod_SDR_bt_type	if (180 K < BT_{M15} < 350 K) set to "within range" otherwise set to "out of range" end if

Table 8. LST QF Logic

LST Flag	Input Source	Flag Setting
Band M16 Brightness	viirs_mod_SDR_bt_type	if (180 K < BT_{M16} < 350 K) set to "within range"
Temperature Quality		otherwise set to "out of range" end if
AOT Condition	VIIRS_AOT_IP	if (AOT > 1.0) set to "out of range" otherwise
		set to "within range" end if
Day/Night	VIIRS_CLOUD_MASK_IP_TYPE	if (0 deg <= Solar Zenith Angle <= 85 deg) set to "Day" otherwise set to "Night" end if
Terminator	VIIRS_CLOUD_MASK_IP_TYPE	if (85 deg < Solar Zenith Angle <= 100 deg) set to "Inside Terminator" otherwise set to "Beyond Terminator" end if
Horizontal Reporting Interval	VIIRS_CLOUD_MASK_IP_TYPE	if (0 deg <= Sensor Zenith Angle <= 50.3 deg) set to "within range" otherwise set to "out of range" end if
Sun Glint	VIIRS_CLOUD_MASK_IP_TYPE	if (VCM Glint Flag == "No Glint") set to "None" otherwise set to "Present" end if
Active Fire	VIIRS Surface Type EDR	LST Active Fire Flag = SurfaceType EDR Active Fire Flag
Cloud Confidence Indicator	VIIRS_CLOUD_MASK_IP_TYPE	LST Cloud Confidence Indicator = VCM Cloud Confidence Indicator
Land/Water	VIIRS_CLOUD_MASK_IP_TYPE	LST LandWater = VCM LandWater flag
Exclusion – Thin Cirrus	VIIRS_CLOUD_MASK_IP_TYPE	LST Thin Cirrus = VCM Thin Cirrus flag
SurfaceType	VIIRS Surface Type EDR	LST SurfaceType = SurfaceType EDR Surface Type (See note above in Section 2.1.2.3)
Algorithm	Logical combination of LST Flags	if $(BT_{M12}$ is "within range") and $(BT_{M13}$ is "within range") and (Terminator is "Beyond Terminator") and (Glint is "No Glint") and (Active Fire is "No Active Fire") and (algmode is not set ot "Split") set to "Dual" otherwise set to "Split" end if
Degraded – Sensor Zenith Angle > 40	viirs_mod_SDR_bt_type	If (Sensor Zenith Angle > 40) set to LST_ZSEN_DEGRAD
Quality	Logical combination of LST Flags	See Table 9

Table 9. LST QF/Quality Bit Field Logic Table (Retrieval Cases Only)

Degra Sensoi Angli LST M15 ; Avai		AOT Hori Int Activ Ang		Thin	Cloud	Confidence Indicator				
Land	l5 & M16 vailable	>= 0	aded – r Zenith e > 40	'e Fire	Horizontal Reporting Interval	Range	Cirrus	Confident Clear	Probably Clear	Probably Cloudy
F	Т	Т	Х	x	x	x	yes	Low	Low	Low
F	Т	Т	x	x	x	out	X	Low	Low	Low
F	Т	Т	X	x	out	x	x	Low	Low	Low
F	Т	Т	х	fire	x	x	X	Low	Low	Low
F	Т	Т	out	no	in	in	no	Medium	Medium	Low
F	Т	Т	in	no	in	in	no	High	Medium	Low
т	F	F	x	x	x	x	x	No Retrieval	No Retrieval	No Retrieval

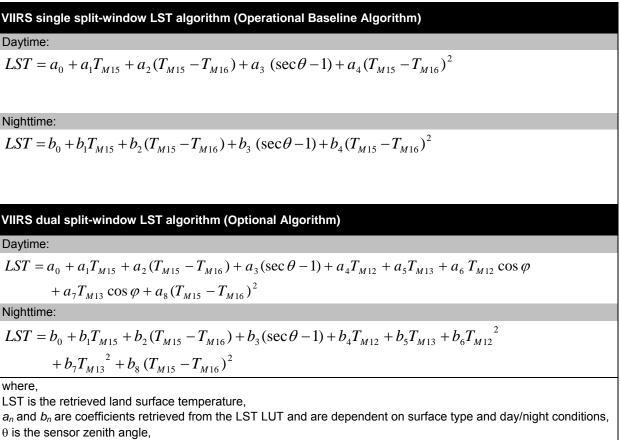
LST >= 0: T = True; F = False

Degraded – Sensor Zenith > 40: out = Outside Range, in = Within Range Active Fire: no = no active fire; fire = active fire

Horizontal Reporting Interval: out = Outside Range, in = Within Range

AOT Range: out = Outside Range, in = Within Range Thin Cirrus: yes = Thin Cirrus, no = No Thin Cirrus x = "Indifferent"

Refer to Table 8 to obtain the algorithm determination logic.


2.1.2.4 LST LUT Coefficient Selection

A unique set of regression coefficients is derived offline for each land type. Each LST core equation (Table 10) uses a different set of coefficients for a given land STYP and day/night condition. Access to the coefficients is achieved by setting the values of the indices based on the given pixel viewing conditions and indicating the algorithm approach to be used. Once indices are specified, coefficients are retrieved for the desired LST algorithm by indexing on the "term" index. Currently, the "regime" index is set to "0" and has only one value. It is a placeholder for possible future improvement by further stratification of atmospheric conditions or geolocations. For the dual split-window algorithm, there are nine coefficients. For the split-window fallback algorithm, there are five coefficients. For the latter, four additional zero-valued coefficients are present as "fillers" in the LUT file.

Example:

LUTCoeffs[n][1][14][0][0], where n is indexed from 0 to 8, corresponds to the coefficients a_0 to a_8 of the dual split algorithm under daytime viewing conditions with no solar glint or active fire and with a pixel viewing surface type 14.

Table 10. LST Core Equations

 ϕ is the solar zenith angle,

 T_{λ} is the brightness temperature at $_{\lambda}$ = VIIRS Band M15, M16, M12 or M13.

The equations above correspond to the LST ATBD, 474-00051, Section 3.3.2, Equations (14), (15) and (16) with minor modifications (i.e., in order to simplify the software; coefficients for the daytime and nighttime equations for the baseline algorithm are equal).

2.1.3 Graceful Degradation

2.1.3.1 Graceful Degradation Inputs

There are two cases where input graceful degradation is indicated in the Land Surface Temperature EDR.

- 1. The primary input denoted in the algorithm configuration guide cannot be successfully retrieved but an alternate input can be retrieved.
- 2. An input retrieved for the algorithm had its N_Graceful_Degradation metadata field set to YES (propagation).

Table 11 details the instances of these two cases for LST. Note that the shaded cells indicate that the graceful degradation was done upstream at product production.

Input Data Description	Satellite	Baseline Data Source	Primary Backup Data Source	Secondary Backup Data Source	Tertiary Backup Data Source	Graceful Degradation Done Upstream
Surface Type EDR	NPP, PM1, TR1	VIIRS_LN_04.4.1 VIIRS	VIIRS_GD_08.4.3 VIIRS Quarterly Surface Type IP	N/A	N/A	No
Aerosol Optical Thickness	NPP, PM1, TR1	VIIRS_GD_15.4.1 VIIRS AOT IP	VIIRS_GD_25.4.1 NAAPS	VIIRS_GD_15.4.1 Climatology	N/A	Yes, backup only.

Table 11. LST Graceful Degradation

2.1.3.2 Graceful Degradation Processing

None.

2.1.3.3 Graceful Degradation Outputs

None.

2.1.4 Exception Handling

When LST cannot be retrieved due to conditions such as invalid SDR data, cloud-contaminated pixel, invalid STYP, or sea-water pixel classification from the VCM IP Land/Water Flag, LST pixel values are set to NA_FLOAT32_FILL.

In addition to this, code is added to check the bounds of the input into the LST EDR. Table 3 contains all inputs for LST EDR and the valid ranges of these inputs. Table 7 contains input values to LST that are configurable and can be changed without having to recompile. The "assigned values" field lists the current value of this input. These inputs are put into a global file.

Very few operations in the algorithm (beyond address references) have the potential to cause exceptions. There are no divide operations in any routine that could be a division by zero.

2.1.5 Data Quality Monitoring

Each algorithm uses specific criteria contained in a Data Quality Threshold Table (DQTT) to determine when a Data Quality Notification (DQN) is produced. The DQTT contains the threshold used to trigger the DQN as well as the text contained in the DQN. If a threshold is met, the algorithm stores a DQN in DMS indicating the test(s) that failed and the value of the DQN attribute. For more algorithm specific detail refer to the CDFCB-X, 474-00001.

2.1.6 Computational Precision Requirements

The Land Surface Temperature is a scaled value ranging from 0 to 65527. The loss of precision from replacing this value (resolution of the scaled output versus the required accuracy and precision of the LST EDR) with a scaled 16-bit integer is acceptable. After calculation, the value is scaled by 65527 / 166.8. The loss of precision by scaling is approximately 0.00255 K.

2.1.7 Algorithm Support Considerations

INF and DMS must be running before the Land Surface Temperature algorithm is executed.

2.1.8 Assumptions and Limitations

2.1.8.1 Assumptions

The LST retrieval algorithm assumes VIIRS 750 M SDR, VIIRS AOT IP, VCM IP, and VIIRS STYP EDR are available before processing.

2.1.8.2 Limitations

The LST EDR is retrieved under clear condition with known STYP classification and valid brightness temperatures from at least the VIIRS M15 and M16 bands, and with AOT<1 to have a retrieved pixel of high quality. A pixel of low quality is retrieved if AOT is out of the acceptable bounds.

Precipitable Water (PW), atmospheric transmittance and surface emissivity corrections discussed in Section 3.3.4 of the ATBD, 474-00051, are not implemented.

3.0 GLOSSARY/ACRONYM LIST

3.1 Glossary

Table 12 contains terms most applicable for this OAD.

Term	Description
Algorithm	A formula or set of steps for solving a particular problem. Algorithms can be expressed in
Algonann	
	any language, from natural languages like English to mathematical expressions to
	programming languages like FORTRAN. On NPOESS, an algorithm consists of:
	A theoretical description (i.e., science/mathematical basis)
	A computer implementation description (i.e., method of solution)
	A computer implementation (i.e., code)
Algorithm	Interdisciplinary team of scientific and engineering personnel responsible for the approval
Configuration	and disposition of algorithm acceptance, verification, development and testing transitions.
Control Board	Chaired by the Algorithm Implementation Process Lead, members include representatives
(ACCB)	from IWPTB, Systems Engineering & Integration IPT, System Test IPT, and IDPS IPT.
Algorithm	Science-grade software delivered by an algorithm provider is verified for compliance with
Verification	data quality and timeliness requirements by Algorithm Team science personnel. This
	activity is nominally performed at the IWPTB facility. Delivered code is executed on
	compatible IWPTB computing platforms. Minor hosting modifications may be made to allow
	code execution. Optionally, verification may be performed at the Algorithm Provider's
	facility if warranted due to technical, schedule or cost considerations.
Ancillary Data	Any data which is not produced by the NPOESS System, but which is acquired from
, anomary Data	external providers and used by the NPOESS system in the production of NPOESS data
	products.
Auxiliary Data	Auxiliary Data is defined as data, other than data included in the sensor application
Auxiliary Data	packets, which is produced internally by the NPOESS system, and used to produce the
	NPOESS deliverable data products.
EDR Algorithm	Scientific description and corresponding software and test data necessary to produce one
	or more environmental data records. The scientific computational basis for the production
	of each data record is described in an ATBD. At a minimum, implemented software is
	science-grade and includes test data demonstrating data quality compliance.
Environmental Data	[IORD Definition]
Record (EDR)	Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to
	geophysical parameters (including ancillary parameters, e.g., cloud clear radiation, etc.).
	[Supplementary Definition]
	An Environmental Data Record (EDR) represents the state of the environment, and the
	related information needed to access and understand the record. Specifically, it is a set of
	related data items that describe one or more related estimated environmental parameters
	over a limited time-space range. The parameters are located by time and Earth
	coordinates. EDRs may have been resampled if they are created from multiple data
	sources with different sampling patterns. An EDR is created from one or more NPOESS
	SDRs or EDRs, plus ancillary environmental data provided by others. EDR metadata
	contains references to its processing history, spatial and temporal coverage, and quality.
Model Validation	The process of determining the degree to which a model is an accurate representation of
	the real-world from the perspective of the intended uses of the model. [Ref.: DoDD
	5000.59-DoD Modeling and Simulation Management]
Model Verification	The process of determining that a model implementation accurately represents the
	developer's conceptual description and specifications. [Ref.: DoDD 5000.59-DoD Modeling
	and Simulation Management]
Operational Code	Verified science-grade software, delivered by an algorithm provider and verified by IWPTB,
	is developed into operational-grade code by the IDPS IPT.
Operational-Grade	Code that produces data records compliant with the System Specification requirements for
Software	data quality and IDPS timeliness and operational infrastructure. The software is modular
Guilware	
	relative to the IDPS infrastructure and compliant with IDPS application programming
	interfaces (APIs) as specified for TDR/SDR or EDR code.

Torm	Description
Term Raw Data Record	Description [IORD Definition]
(RDR)	[IORD Delinition] Full resolution digital sensor data, time referenced and earth located, with absolute radiometric and geometric calibration coefficients appended, but not applied, to the data. Aggregates (sums or weighted averages) of detector samples are considered to be full resolution data if the aggregation is normally performed to meet resolution and other requirements. Sensor data shall be unprocessed with the following exceptions: time delay and integration (TDI), detector array non-uniformity correction (i.e., offset and responsivity equalization), and data compression are allowed. Lossy data compression is allowed only if the total measurement error is dominated by error sources other than the data compression algorithm. All calibration data will be retained and communicated to the ground without lossy compression. [Supplementary Definition] A Raw Data Record (RDR) is a logical grouping of raw data output by a sensor, and related information needed to process the record into an SDR or TDR. Specifically, it is a set of unmodified raw data (mission and housekeeping) produced by a sensor suite, one sensor, or a reasonable subset of a sensor (e.g., channel or channel group), over a specified, limited time range. Along with the sensor data, the RDR includes auxiliary data from other portions of NPOESS (space or ground) needed to recreate the sensor measurement, to correct the measurement for known distortions, and to locate the measurement in time and space, through subsequent processing. Metadata is associated with the sensor and auxiliary data to permit its effective use.
Retrieval Algorithm	A science-based algorithm used to 'retrieve' a set of environmental/geophysical parameters (EDR) from calibrated and geolocated sensor data (SDR). Synonym for EDR processing.
Science Algorithm	The theoretical description and a corresponding software implementation needed to produce an NPP/NPOESS data product (TDR, SDR or EDR). The former is described in an ATBD. The latter is typically developed for a research setting and characterized as "science-grade".
Science Algorithm Provider	Organization responsible for development and/or delivery of TDR/SDR or EDR algorithms associated with a given sensor.
Science-Grade Software	Code that produces data records in accordance with the science algorithm data quality requirements. This code, typically, has no software requirements for implementation language, targeted operating system, modularity, input and output data format or any other design discipline or assumed infrastructure.
SDR/TDR Algorithm	Scientific description and corresponding software and test data necessary to produce a Temperature Data Record and/or Sensor Data Record given a sensor's Raw Data Record. The scientific computational basis for the production of each data record is described in an Algorithm Theoretical Basis Document (ATBD). At a minimum, implemented software is science-grade and includes test data demonstrating data quality compliance.
Sensor Data Record (SDR)	[IORD Definition] Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to calibrated brightness temperatures with associated ephemeris data. The existence of the SDRs provides reversible data tracking back from the EDRs to the Raw data. [Supplementary Definition] A Sensor Data Record (SDR) is the recreated input to a sensor, and the related information needed to access and understand the record. Specifically, it is a set of incident flux estimates made by a sensor, over a limited time interval, with annotations that permit its effective use. The environmental flux estimates at the sensor aperture are corrected for sensor effects. The estimates are reported in physically meaningful units, usually in terms of an angular or spatial and temporal distribution at the sensor location, as a function of spectrum, polarization, or delay, and always at full resolution. When meaningful, the flux is also associated with the point on the Earth geoid from which it apparently originated. Also, when meaningful, the sensor flux is converted to an equivalent top-of-atmosphere (TOA) brightness. The associated metadata includes a record of the processing and sources from which the SDR was created, and other information needed to understand the data.
Temperature Data Record (TDR)	[IORD Definition] Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant calibration data counts and ephemeris data to revert from T-sub-a into counts. [Supplementary Definition] A Temperature Data Record (TDR) is the brightness temperature value measured by a microwave sensor, and the related information needed to access and understand the

Term	Description		
	record. Specifically, it is a set of the corrected radiometric measurements made by an imaging microwave sensor, over a limited time range, with annotation that permits its effective use. A TDR is a partially-processed variant of an SDR. Instead of reporting the estimated microwave flux from a specified direction, it reports the observed antenna brightness temperature in that direction.		

3.2 Acronyms

Table 13 contains acronyms most applicable for this OAD.

Table 13. Acronyms

Term	Expansion		
AM&S	Algorithms, Models & Simulations		
API	Application Programming Interfaces		
ARP	Application Related Product		
CDFCB-X	Common Data Format Control Book - External		
DMS	Data Management Subsystem		
DPIS ICD	Data Processor Inter-subsystem Interface Control Document		
DQTT	Data Quality Test Table		
INF	Infrastructure		
ING	Ingest		
IP	Intermediate Product		
LST	Land Surface Temperature		
LUT	Look-Up Table		
MDFCB	Mission Data Format Control Book		
PW	Precipitable Water		
QF	Quality Flag		
SDR	Sensor Data Records		
SI	Software Item or International System of Units		
SST	Sea Surface Temperature		
STYP	Surface Type		
TBD	To Be Determined		
TBR	To Be Resolved		
VCM	VIIRS Cloud Mask		

4.0 OPEN ISSUES

Table 14. TBXs

TBX ID	Title/Description	Resolution Date
None		