GSFC JPSS CMO May 30, 2013 Released

Joint Polar Satellite System (JPSS) Ground Project Code 474 474-00084

Joint Polar Satellite System (JPSS) Operational Algorithm Description (OAD)

Document for VIIRS Cloud Base Height Intermediate Product (IP) Software

For Public Release

The information provided herein does not contain technical data as defined in the International Traffic in Arms Regulations (ITAR) 22 CFC 120.10. This document has been approved For Public Release to the NOAA Comprehensive Large Array-data Stewardship System (CLASS).

Goddard Space Flight Center Greenbelt, Maryland

National Aeronautics and Space Administration

Joint Polar Satellite System (JPSS) Operational Algorithm Description (OAD) Document for VIIRS Cloud Base Height Intermediate Product (IP) Software JPSS Electronic Signature Page

Prepared By:

Neal Baker JPSS Data Products and Algorithms, Senior Engineering Advisor (Electronic Approvals available online at (https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

Approved By:

Heather Kilcoyne DPA Manager (Electronic Approvals available online at (https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

> Goddard Space Flight Center Greenbelt, Maryland

Preface

This document is under JPSS Ground Algorithm ERB configuration control. Once this document is approved, JPSS approved changes are handled in accordance with Class I and Class II change control requirements as described in the JPSS Configuration Management Procedures, and changes to this document shall be made by complete revision.

Any questions should be addressed to:

JPSS Configuration Management Office NASA/GSFC Code 474 Greenbelt, MD 20771

Revision	Effective Date	Description of Changes (Reference the CCR & CCB/ERB Approve Date)
Original	12/02/2011	474-CCR-11-0099: This version baselines D39589, Rev B2 dated 27 Sep 2011. This is the version that was approved for NPP launch. Per NPOESS CDFCB - External, Volume V – Metadata, doc number D34862-05, this has been approved for Public Release into CLASS.
Revision A	01/18/2012	474-CCR-11-0276: This version baselines 474-00084, Joint Polar Satellite System (JPSS) Operational Algorithm Description (OAD) Document for VIIRS Cloud Base Height Intermediate Product (IP) Software, for the Mx 6 IDPS release. This CCR was approved by the JPSS Algorithm ERB on January 18, 2012.
Revision B	05/14/2013	474-CCR-13-0948: This version authorizes 474-00084, JPSS OAD Document for VIIRS CBH IP Software, for the Mx 7.0 IDPS release. Includes Raytheon PCR032720; 474-CCR-13-0916/ECR-ALG-0037: Update applicable OAD filenames/template/Rev/etc. for Mx7 Release.

474-00084 Effective Date: May 14, 2013 Revision B

NATIONAL POLAR-ORBITING OPERATIONAL ENVIRONMENTAL SATELLITE SYSTEM (NPOESS)

OPERATIONAL ALGORITHM DESCRIPTION DOCUMENT FOR VIIRS CLOUD BASE HEIGHT (CBH)

SDRL No. S141 SYSTEM SPECIFICATION SS22-0096

RAYTHEON COMPANY INTELLIGENCE AND INFORMATION SYSTEMS (IIS) NPOESS PROGRAM OMAHA, NEBRASKA

Copyright © 2005-2010 Raytheon Company Unpublished Work ALL RIGHTS RESERVED

Portions of this work are the copyrighted work of Raytheon. However, other entities may own copyrights in this work. Therefore, the recipient should not imply that Raytheon is the only copyright owner in this work.

This data was developed pursuant to Contract Number F04701-02-C-0502 with the US Government under subcontract number 7600002744. The US Government's rights in and to this copyrighted data are as specified in DFAR 252.227-7013, which was made part of the above contract.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

IAW DFAR 252.227-7036, Raytheon hereby declares that, to the best of its knowledge and belief, the technical data delivered under Subcontract No. 7600002744 is complete, accurate, and complies with all requirements of the Subcontract.

TITLE: NATIONAL POLAR-ORBITING OPERATIONAL ENVIRONMENTAL SATELLITE SYSTEM (NPOESS) OPERATIONAL ALGORITHM DESCRIPTION DOCUMENT FOR VIIRS CLOUD BASE HEIGHT (CBH)

APPROVAL SIGNATURES:

Stephen E. Ellefson ING/PRO Lead

Date

Gabriela A. Ostler Quality Assurance Date

i

Northrop Grumman Space & Mission Systems Corp. **Space Technology** One Space Park Redondo Beach, CA 90278

NORTHROP GRUMMAN Raytheon

Engineering & Manufacturing Development (EMD) Phase Acquisitions & Operations Contract

CAGE NO. 11982

Operational Algorithm Description Document for the VIIRS Cloud Base Height (CBH) Software					
Document Date: Sep 27, 2011		Document Number: D39 Revision: B2	589		
PREPARED BY:					
Eric Wong AM & S Algorithm Lead	Date	Paul D. Siebels IDPS PRO SW Manager	Date		
ELECTRONIC APPROVAL SIGNATU	RES:				
Roy Tsugawa A&DP Lead & ACCB Chair	Date	Stephen E. Ellefson IDPS Processing SI Lead	Date		
Bob Hughes A&DP Deputy & ARB Chair	Date				
Prepared by Northrop Grumman Space Technology One Space Park Redondo Beach, CA 90278		Prepared for Department of the Air Force NPOESS Integrated Program Office C/O SMC/CIK 2420 Vela Way, Suite 1467-A8 Los Angeles AFB, CA 90245-4659			
Under Contract No. F04701-02-C-0502 This document has been identified per th	he NPOESS	Common Data Format Control Book – Exte	ernal Volume 5		

This document has been identified per the NPOESS Common Data Format Control Book – External Volume 5 Metadata, D34862-05, Appendix B as a document to be provided to the NOAA Comprehensive Large Array-data Stewardship System (CLASS) via the delivery of NPOESS Document Release Packages to CLASS.

ii

Northrop Grumman Space & Mission Systems Corp. Space Technology
One Space Park
Redondo Beach, CA 90278

NORTHROP GRUMMAN

Revision/Change Record			Document Number	D39589	
Revision	Document Date	Revision/Change Description		Pages Affected	
	1-21-05	Initial PCIM Release, ECR A046		All	
A1	9-21-05	Reflects Raytheon-Omaha's initia Operational (Sci2Ops) Code Cor Raytheon coversheet, title/signat	All		
A2	2-23-07	Update per EH DQ OPT GD desi	ign peer review.	15,17	
A3	3-4-07	Update per EH DQ OPT GD des	ign peer review.	All	
A4	3-10-07	Update per EH DQ OPT GD CU	Update per EH DQ OPT GD CUT CC peer review.		
A5	3-26-07	Convert OAD to new template.		All	
A6	4-27-07	Reflects updates pertaining to Tech Memo NP- EMD.2005.510.0080. Delivered to NGST.		All	
A7	8-9-07	TM EMD.2007.510.0038 is implemented in B1.5.		All	
A8	10-24-07	Minor update to Figure 1 per NGST. Delivered to NGST.		All	
A9	7-23-08	Prepared for delivery to ACCB. Updated Acronym list and references. Implemented new cover sheet from NGST.		All	
A	9-2-08	ECR A-166. Incorporated interim changes and addressed TIM comments.		M All	
B1	10-11-10	Updated due to document convergence including TM 2010.510.0014		All	
B2	09-27-11	Updated OAD for PCR026627.		2, 6	

Table of Contents

1.0	INTE	RODUC	CTION	1
1.1	1 C	Objectiv	'e	1
1.2	2 S	cope		1
1.3	3 F	Referen	ces	1
	1.3.1	Docu	ment References	1
	1.3.2	Sourc	ce Code References	3
2.0	ALG	ORITH	IM OVERVIEW	4
2.2	1 V	IIRS C	loud Module Description	4
	2.1.1	Interf	aces	5
	2.1	1.1.1	Inputs	7
	2.1	1.1.2	Outputs	9
	2.1.2	Algor	ithm Processing	9
	2.1	1.2.1	Main Module – CBH_main()	10
	2.1	1.2.2	Submodule CalculateCbh()	10
	2.1	1.2.3	Submodule CalculateWaterCbh()	12
	2.1	1.2.4	Submodule CalculateMixedCbh()	14
	2.1.3	Grace	eful Degradation	16
	2.1.4	Exce	ption Handling	16
	2.1.5	Data	Quality Monitoring	17
	2.1.6	Com	putational Precision Requirements	17
	2.1.7	Algor	ithm Support Considerations	17
	2.1.8	Assu	mptions and Limitations	17
3.0	GLC)SSAR	Y/ACRONYM LIST	18
3.1	1 G	Blossary	у	18
3.2	2 A	cronym	ns	20
4.0	OPE	EN ISSI	UES	22

List of Figures

Figure 1. CBH Algorithm Overview	4
Figure 2. Cloud Module Data Flow	5
Figure 3. Cloud Base Height Overall Flow Diagram	6
Figure 4. CalculateCbh() Logic Flow	12
Figure 5. CalculateWaterCbh() Logic Flow	14
Figure 6. CalculateMixedCbh() Logic Flow	16

List of Tables

Table 1. Reference Documents	1
Table 2. Source Code References	3
Table 3. Fill Values	6
Table 4. CBH Input: VIIRS Parallax Corrected Cloud Mask IP	7
Table 5. CBH Input: VIIRS Parallax Corrected Cloud Optical Properties IP	7
Table 6. CBH Input: VIIRS Parallax Corrected Cloud Top Parameters IP	8
Table 7. CBH Input: VIIRS Cloud Cover IP	8
Table 8. CBH Input: VIIRS SDR Moderate Resolution GEO Data	8
Table 9. VIIRS Granulated Ancillary Terrain Height Data Ancillary Data Inputs	8
Table 10. VIIRS CBH Liquid Water Content LUT	8
Table 11. CBH Tunable Parameters and Processing Coefficients	9
Table 12. CBH Output: VIIRS Cloud Base Height IP	9
Table 13. Glossary	. 18
Table 14. Acronyms	. 20
Table 15. TBXs	. 22

1.0 INTRODUCTION

1.1 Objective

The purpose of the Operational Algorithm Description Document (OAD) is to express, in computer-science terms, the remote sensing algorithms that produce the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) end-user data products. These products are individually known as Raw Data Records (RDRs), Temperature Data Records (TDRs), Sensor Data Records (SDRs) and Environmental Data Records (EDRs). In addition, any Intermediate Products (IPs) produced in the process are also described in the OAD.

The science basis of an algorithm is described in a corresponding Algorithm Theoretical Basis Document (ATBD). The OAD provides a software description of that science as implemented in the operational ground system -- the Data Processing Element (DPE).

The purpose of an OAD is two-fold:

- 1. Provide initial implementation design guidance to the operational software developer.
- 2. Capture the "as-built" operational implementation of the algorithm reflecting any changes needed to meet operational performance/design requirements.

An individual OAD document describes one or more algorithms used in the production of one or more data products. There is a general, but not strict, one-to-one correspondence between OAD and ATDB documents.

1.2 Scope

The scope of this document is limited to the description of the core operational algorithm(s) required to create the VIIRS CBH IP. The theoretical basis for these algorithms is described in Section 3.3 of the VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD), 474-00045.

1.3 References

1.3.1 Document References

The science and system engineering documents relevant to the algorithms described in this OAD are listed in Table 1.

Document Title	Document Number/Revision	Revision Date
VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD)	474-00045	Latest
JPSS Environmental Data Record (EDR) Production Report (PR) for NPP	474-00012	Latest
JPSS Environmental Data Record (EDR) Interdependency Report (IR) for NPP	474-00007	Latest
NPP Mission Data Format Control Book and App A (MDFCB)	429-05-02-42_MDFCB	Latest

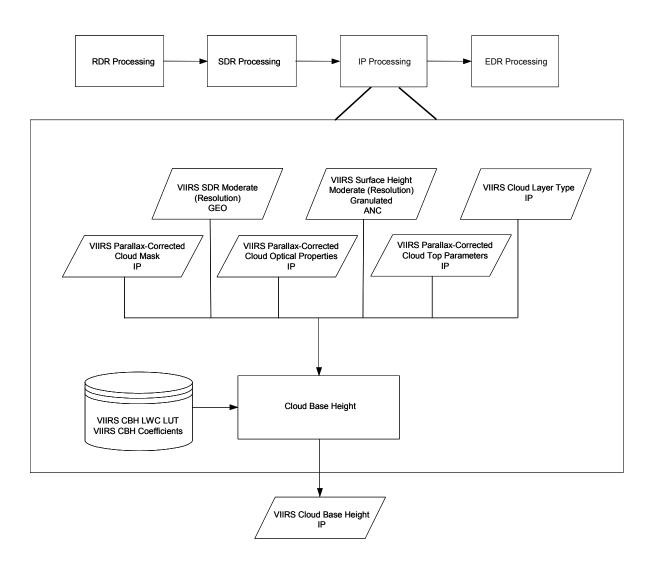
Table 1. Reference Documents

Document Title	Document Number/Revision	Revision Date	
JPSS Data Format Control Book - Internal	474-00020-03-B0123 IDFCB Vol III	Latest	
Volume III – Retained Intermediate Product Formats (IDFCB) – Block 1.2.3			
	474-00001-01-B0122 CDFCB-X Vol I		
	474-00001-02-B0122 CDFCB-X Vol II		
	474-00001-03-B0122 CDFCB-X Vol III		
	474-00001-04-01-B0122 CDFCB-X Vol IV Part 1		
JPSS Common Data Format Control Book - External - –	474-00001-04-02-B0122 CDFCB-X Vol IV Part 2	Latest	
Block 1.2.2 (All Volumes)	474-00001-04-03-B0122 CDFCB-X Vol IV Part 3	Latoot	
	474-00001-04-04-B0122 CDFCB-X Vol IV Part 4		
	474-00001-05-B0122 CDFCB-X Vol V		
	474-00001-06-B0122 CDFCB-X Vol VI		
	474-00001-08-B0122 CDFCB-X Vol VIII		
	474-00001-01-B0123 CDFCB-X Vol I		
	474-00001-02-B0123 CDFCB-X Vol II		
	474-00001-03-B0123 CDFCB-X Vol III		
	474-00001-04-01-B0123 CDFCB-X Vol IV Part 1		
JPSS Common Data Format Control Book - External -	474-00001-04-02-B0123 CDFCB-X Vol IV Part 2	l staat	
Block 1.2.3 (All Volumes)	474-00001-04-03-B0123 CDFCB-X Vol IV Part 3	Latest	
	474-00001-04-04-B0123 CDFCB-X Vol IV Part 4		
	474-00001-05-B0123 CDFCB-X Vol V		
	474-00001-06-B0123 CDFCB-X Vol VI		
	474-00001-08-B0123 CDFCB-X Vol VIII		
NPP Command and Telemetry (C&T) Handbook	D568423 Rev. C	30 Sep 2008	
VIIRS Cloud Base Height Unit Level Detailed Design	Y2495-VIIRS-CBH-SW-DDD-028 Ver. 5 Rev. 7	Jan 2005	
NPOESS System Specification	SY15-0007 Ver. E	01 Aug 2002	
JPSS CGS Data Processor Inter-subsystem Interface Control Document (DPIS ICD) Vol I – IV	IC60917-IDP-002	Latest	
IDPS Processing SI Common IO Design Document	DD60822-IDP-011 Rev. A	21 Jun 2007	
JPSS Program Lexicon	474-00175	Latest	
VIIRS Cloud Module-Level Software Architecture	Y2472 Ver. 5 Rev. 12	Jan 2005	
VIIRS Cloud Module Level Interface Control Document	Y3278 Ver. 5 Rev. 9	Oct 2004	

Document Title	Document Number/Revision	Revision Date
VIIRS Cloud Module Data Dictionary	Y0010871 Ver. 5 Rev. 11	Jan 2005
Operational Algorithm Description Document for VIIRS Cloud Optical Properties (COP) Software	474-00074	Latest
Operational Algorithm Description Document for VIIRS Cloud Top Parameters (CTP) Environmental Data Record (EDR)	474-00083	Latest
Operational Algorithm Description Document for VIIRS Cloud Mask Intermediate Product (VCM IP)	474-00062	Latest
Operational Algorithm Description Document for VIIRS Geolocation (GEO) Sensor Data Record (SDR) and Calibration (CAL) SDR	474-00090	Latest
Operational Algorithm Description Document for VIIRS Cloud Cover/Layers (CCL) and Generate Cloud EDR (GCE) Software	474-00085	Latest
Operational Algorithm Description Document for VIIRS Perform Parallax Correction (PPC) Software	474-00088	Latest
NGST/SE technical memo – MS Engineering Memo_CBH OAD Update	NP-EMD.2006.510.0080	07 Jul 2005
NGST/SE technical memo – NPP_VIIRS_CBH_bug_fixes_RevA	NP-EMD.2007.510.0038 Rev. A	08 Jun 2007
NGST/SE technical memo – VIIRS Cloud Mask (VCM) OAD Update	NP-EMD.2004.510.0050	03 Dec 2004
NGST/SE technical memo – PC_Format_Corrections	NPOESS GJM-2010.510.0014	22 Sep 2010
Joint Polar Satellite System (JPSS) Common Ground System (CGS) IDPS PRO Software User's Manual Part 2	UG60917-IDP-026 Rev-	18 Jul 2011

1.3.2 Source Code References

The science and operational code and associated documentation relevant to the algorithms described in this OAD are listed in Table 2.


Table 2	2. Soi	urce C	ode Re	eferences
---------	--------	--------	--------	-----------

Reference Title	Reference Tag/Revision	Revision Date		
VIIRS Cloud Base Height science grade software	20050812_ISTN_VIIRS_NGST_3.5	12 Aug 2005		
VIIRS Cloud Base Height operational software	/PRO/EDR/VIIRS/clouds/cbh/ B1.5, Vers. D.1.1.6	06 Apr 2007		
ACCB	OAD Rev A	02 Sep 2008		
Convergence update (No code updates)	(OAD Rev B1)	11 Oct-2010		
PCR06627 (OAD update for ADL)	(OAD Rev B2)	27 Sep-2011		
OAD transitioned to JPSS Program – this table is no longer updated.				

2.0 ALGORITHM OVERVIEW

For this section, the definition of an algorithm is a logical grouping of operational algorithm modules for which there is a single Input-Processing-Output (I-P-O) architecture with a single defined set of external inputs and outputs (e.g., IPs or xDRs).

The Cloud Base Height (CBH) algorithm is executed during IP/EDR processing and requires SDR, IP, Ancillary (ANC), and Look-Up Table (LUT) inputs to produce an IP output. A top-level diagram for the CBH algorithm is shown in Figure 1.

2.1 VIIRS Cloud Module Description

A dataflow diagram for the VIIRS Clouds Module, of which the CBH Module is a member, is shown in Figure 2. Each circle represents a stand-alone unit of the VIIRS Cloud Module.

Processing order is indicated by the number in each circle. The CBH algorithm produces the CBH IP which is used by the GCE algorithm to produce the CBH EDR.

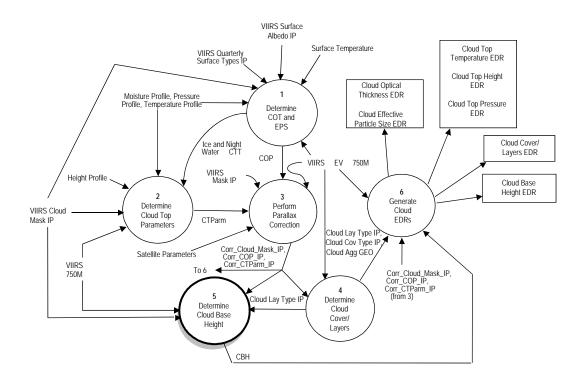
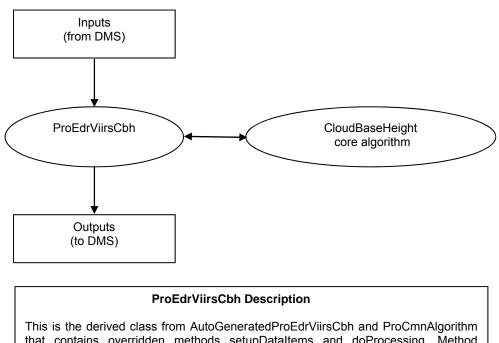



Figure 2. Cloud Module Data Flow

2.1.1 Interfaces

CBH consists of derived and core algorithm modules. The derived algorithm module ProEdrViirsCbh functions as a wrapper for the core algorithm module and handles the I-O stages in the I-P-O architecture. ProEdrViirsCbh initiates the core algorithm module Cloud Base Height which makes up the P stage.

The main flow of the operational CBH algorithm is shown in Figure 3 below. The CBH algorithm gets all required input data from the Data Management System (DMS). When all input data needed for processing is available, the core algorithm CloudBaseHeight is called to determine cloud base height. All inputs from and outputs to DMS are in binary format.

that contains overridden methods setupDataItems and doProcessing. Method setupDataItems, in conjunction with other auto-generated methods, instantiates input and output data items representing data buffers to be used by the algorithm. doProcessing is the method where algorithm processing of input data and generation of the output data is performed. For more information see the IDPS PRO Software Users' Manual, Part 2, UG60917-IDP-026.

Figure 3. Cloud Base Height Overall Flow Diagram

The CBH Module requires VIIRS Moderate Geolocation (GEO), VIIRS Moderate Surface Height Granulated ANC, VIIRS Parallax Corrected Cloud Mask (CM) IP, VIIRS Parallax Corrected Cloud Optical Properties (COP) IP, VIIRS Cloud Layer Type IP, VIIRS CBH Liquid Water Content (LWC) LUT, and VIIRS CBH IP Algorithm Coefficients as inputs to produce the VIIRS CBH IP. A detailed itemization of the inputs and outputs for the CBH Module is provided below.

Note: For Sections 2.1.1.1 and 2.1.1.2 below, the following applies:

- Fill values corresponding to the individual pixels in each product that do not contain valid data are dictated by the datatype (see Table 3). Exception: bitwise flags (i.e. cloud mask data, quality flags) are filled with zeros.
- For detailed descriptions of the quality flags in the tables below, refer to the applicable I-P-O algorithm OAD (CM, COP, or CTP).
- M_VIIRS_SDR_ROWS = NUMBER of SCANS PER GRANULE X NUMBER of MODERATE DETECTORS
- M_VIIRS_SDR_COLS = 3200

Input	Туре	Description	Units/Valid Range
NA_FLOAT32_FILL	Float32	Float32 not applicable fill value	Unitless / -999.9
MISS_FLOAT32_FILL	Float32	Float32 missing fill value	Unitless / -999.8
ONBOARD_PT_FLOAT32_FILL	Float32	Float32 onboard pixel trim fill value	Unitless / -999.7

Table 3. Fill Values

Input	Туре	Description	Units/Valid Range
ONGROUND_PT_FLOAT32_FILL	Float32	Float32 on ground pixel trim fill value	Unitless / -999.6
ERR_FLOAT32_FILL	Float32	Float32 error fill value	Unitless / -999.5
NA_UINT8_FILL	UInt8	UInt8 not applicable fill value	Unitless / 255
MISS_UINT8_FILL	UInt8	UInt8 missing fill value	Unitless / 254
ONBOARD_PT_UINT8_FILL	UInt8	UInt8 onboard pixel trim fill value	Unitless / 253
ONGROUND_PT_UINT8_FILL	UInt8	UInt8 on ground pixel trim fill value	Unitless / 252
ERR_UINT8_FILL	UInt8	UInt8 error fill value	Unitless/ 251

2.1.1.1 Inputs

Tables 4 through 11 describe CBH algorithm inputs. Note that none of the inputs are scaled and that all input files must be spatially and temporally consistent with each other.

Input	Туре	Description	Units/Valid Range
Pixel-Level Data Ite	ms		
Cloud confidence	2-bit unsigned field	Cloud Detection Result & Confidence Indicator	 0 - Confidently clear 1 - Probably clear 2 - Probably cloudy 3 - Confidently cloudy
Sun glint	2-bit unsigned field	Sun glint	0 - No sun glint 1 - Geometry Based 2 - Wind Speed Based 3 - Geometry & Wind
Cloud phase	3-bit unsigned field	Cloud phase	0 - Not Executed 1 - Clear 2 - Partly Cloudy 3 - Water 4 - Mixed 5 - Opaque Ice 6 - Cirrus 7 - Overlap

Table 4. CBH Input: VIIRS Parallax Corrected Cloud Mask IP

Table 5. CBH Input: VIIRS Parallax Corrected Cloud Optical Properties IP

Input	Туре	Description	Units/Valid Range
Pixel-Level Data Iter	ms		
Cot	Float32[M_VIIRS_ SDR_ROW][M_VII RS_SDR_COLS]	Unscaled cloud optical thickness	Unitless / 0.1 to 64
Eps	Float32[M_VIIRS_ SDR_ROW][M_VII RS_SDR_COLS]	Unscaled cloud effective particle radius	Microns / 1 to 50

Table 6. CBH Input:	VIIRS Parallax	Corrected Cloud	d Tor	Parameters IP
		001100104 01044		

Input	Туре	Description	Units/Valid Range
Pixel-Level Data Ite	ms		
Ctt	Float32[M_VIIRS_ SDR_ROW][M_VII RS_SDR_COLS]	Unscaled Cloud Top Temperature	Kelvin / 175 to 310
Cth	Float32[M_VIIRS_ SDR_ROW][M_VII RS_SDR_COLS]	Unscaled Cloud Top Height	Kilometers / 0 to 20

Table 7. CBH Input: VIIRS Cloud Cover IP

Input	Туре	Description	Units/Valid Range
Pixel-Level Data Iter	ms		
Cloud_Layer	UInt8[M_VIIRS_S DR_ROWS][M_VII RS_SDR_COLS]	Pixel-level cloud layer identification (up to 4 layers)	Unitless / 0 to 3
Cloud_Type	UInt8[M_VIIRS_S DR_ROWS][M_VII RS_SDR_COLS]	Pixel-level cloud type identification	Unitless / 1 to 5 1-Stratus 2-Alto Cumulus 3-Cumulus 4-Cirrus 5-CirrusCumulus

Table 8. CBH Input: VIIRS SDR Moderate Resolution GEO Data

Input	Туре	Description	Units/Valid Range
Granule-Level Data	ltems		
Actual scans	Int32	Actual number of sdr scans in a granule	Unitless / 1 to VIIRS_RDR_SCANS

Table 9. VIIRS Granulated Ancillary Terrain Height Data Ancillary Data Inputs

Input	Туре	Description	Units/Valid Range
Pixel-Level Data Iter	ns		
Terrain height	UInt16[M_VIIRS_ SDR_ROWS][M_ VIIRS_SDR_COL S]	Terrain Height with respect to mean sea level (msl)	Meters / -1000 to 9000

Table 10. VIIRS CBH Liquid Water Content LUT

Input	Туре	Description	Units/Valid Range
Lwc	Float32[MAX_VII RS_CBH_LWC]	Cloud liquid water concentration (LWC) lookup table values for cloud type	g/m ³ / 0.000: no cloud 0.293: stratus 0.455: altocumulus or altostratus 0.580 : cumulus 0.010 : cirrus 0.010 : cirrocumulus

Input	Туре	Description	Units/Valid Range
minCbh	Float32	Minimum cloud base height	Kilometers / 0
maxCbh	Float32	Maximum cloud base height	Kilometers / 20
C 0	Float32	Ice water path (IWP) constants in equation IWP = Cot / [c0 + (c1 / 2reff)]	m²/g / – 0.006656
C ₁	Float32	Ice water path (IWP) constant in equation IWP = Cot / [c0 + (c1 / 2reff)]	m ² μm/g / 3.686
C ₂	Float32	Ice water concentration (IWC) constant	Celsius / 20.0
C 3	Float32	Ice water concentration (IWC) constant	Unitless / 2.455
C4	Float32	Ice water concentration (IWC) constant	Unitless / – 0.2443
C 5	Float32	Ice water concentration (IWC) constant	Unitless / 0.001
C ₆	Float32	Ice water concentration (IWC) constant	Unitless / – 7.6
C ₇	Float32	Ice water concentration (IWC) constant	Unitless / 4.0
d ₀	Float32	Cloud liquid water path (LWP) constant in equation LWP = (d0 * Cot * reff) / d3	gm/m ² / 2.0
d ₃	Float32	Cloud liquid water path (LWP) constants in equation LWP = (d0 * Cot * reff) / d3	Microns / 3.0
minCtt	Float32	Minimum cloud top temperature	Celcius / -60.0
maxCtt	Float32	Maximum cloud top temperature	Celcius / -20.0

Table 11. CBH Tunable Parameters and Processing Coefficients

2.1.1.2 Outputs

Table 12 describes CBH algorithm outputs.

Input	Туре		Description		Units/Valid Range
Pixel-Level Data Iter	ns				
cbh	Float32 [M_VIIRS_SDR_R OWS][M_VIIRS_S DR_COLS]	Cloud base	height		Kilometers / 0 to 20
		Bitwise clou	d base height quality flags		
	UInt8 [M_VIIRS_SDR_R OWS][M_VIIRS_S DR_COLS]	0	Out of Range	0-Not	
				1-Out of ra	nge
cbhQf		1	Cloud Confidence	0-Not	
				1-Prob/Cor	nf clear
		2	Sun glint	0-None	
				1-Sun glint	
		3-7	Spare		

Table 12. CBH Output: VIIRS Cloud Base Height IP

2.1.2 Algorithm Processing

The purpose of the CBH IP algorithm is to retrieve cloud base heights for each confidently cloudy pixel in a VIIRS moderate resolution (750 m) granule. CBH, defined as the height above sea level where cloud bases occur, is calculated by determining the cloud thickness and subtracting it from cloud top height (CTH). Since CTH is obtained from a parallax-corrected version of the CTH IP, the processing focuses on the calculation of the cloud thickness. Briefly, cloud thickness is calculated by dividing the liquid (or ice) water path with liquid (or ice) water content. Both liquid water path and ice water path are determined based on a correlation equation in terms of cloud optical depth and effective particle size (EPS). Ice water content is

also determined from a parameterization equation in terms of cloud top temperature (CTT). For liquid water content, however, constant values are used for each water cloud type.

Cloud thickness must be calculated and is dependent on cloud-phase. The CBH retrieval is performed by one of two algorithms:

- 1) a liquid-water algorithm for water-phase clouds,
- 2) a mixed-phase algorithm for opaque ice-phase, cirrus-phase, mixed-phase, or overlapphase clouds.

The retrieval is performed for confidently cloudy pixels only.

Quality assessment flags for each pixel are stored in the CBH Quality Flag (QF) output.

2.1.2.1 Main Module – CBH_main()

The CBH_main() module performs four main tasks: 1) initialize output buffers, 2) associate pointers returned from DMS with local variables, 3) perform basic error handling, and 4) call CalculateCbh().

The CBH algorithm outputs two pieces of data: cloud base height and quality flags. CBH is initialized to ONGROUND_PT_FLOAT32_FILL and quality flags are initialized to zero.

Pointers to CBH inputs retrieved from DMS in ProEdrViirsCbh() are assigned to a class variable (a structure) that is passed throughout the CBH algorithm.

A small amount of error handling is performed in CBH_main() at the granule level to ensure there are valid scans to process and that selected coefficients (used later as divisors) do not cause divide-by-0 errors.

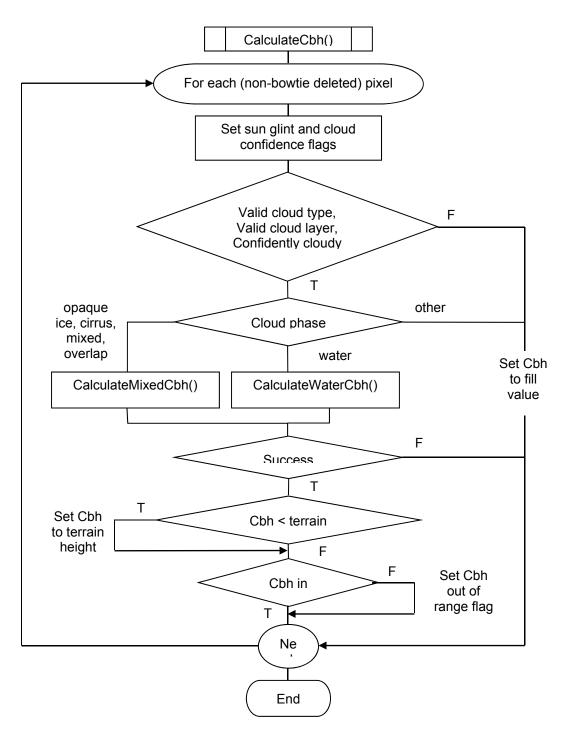
CBH_main() calls CalculateCbh() which in turn calculates CBH and quality flags for the entire granule.

2.1.2.2 Submodule CalculateCbh()

The logic flow of the CBH IP retrieval algorithm is provided in Figures 4 through 6. Duties of the module CalculateCbh() are: 1) establish whether or not a pixel should be processed, 2) determine the retrieval quality, 3) determine the retrieval algorithm for pixels that are processed, and 4) adjust for terrain height if necessary.

CBH is not retrieved if any of the following conditions occur:

- The pixel is not confidently cloudy (as specified by the VIIRS CM).
- Cloud phase is specified as something other than water-phase, opaque-ice-phase, cirrus-phase, mixed-phase, or overlap-phase.
- Cloud type is outside the CBH definition range of stratus, altocumulus/altostratus, cumulus, cirrus, or cirrocumulus.
- Cloud layer is outside a defined range.
- The pixel is determined to be in an area affected by the VIIRS "bow tie" effect.
- COT, EPS, or CTH contains Fill values.


Further retrieval restrictions apply for ice-phase (opaque-ice, cirrus), mixed-phase, or overlapphase clouds:

• CTT contains Fill values.

For pixels that are processed, CBH is retrieved by either a water-phase algorithm for waterphase clouds or by a mixed-phase algorithm for ice-phase, mixed-phase, or overlap-phase clouds. A false retrieval occurs if cloud base height for a given pixel is greater than the pixel's CTH. In this scenario, the CBH is filled with ERR_FLOAT32_FILL.

For valid CBH retrievals where CBH is less than the terrain height, CBH is adjusted to terrain height.

CBH retrieval quality is checked and flagged for sun glint, cloud confidence of probably or confidently clear, and out-of range values.

Figure 4. CalculateCbh() Logic Flow

2.1.2.3 Submodule CalculateWaterCbh()

For water-phase clouds, CBH is calculated according to the following algorithm (see Figure 5 for logic flow):

Calculate Liquid Water Path (LWP).

$$LWP = \frac{d_0 \cdot Cot \cdot r_{eff}}{d_3}$$

where

LWP is in g/m^2 , d_0 and d_3 are cloud LWP constants, Cot is the unitless COT, and r_{eff} is the effective particle radius in m, (also denoted by variable Eps).

Calculate CBH, Cbh in m and convert to km.

$$Cbh = Cth - cloud \ thickness = Cth - \left(\frac{LWP}{LWC_{Ct}}\right) \cdot METERS_TO_KM$$

where

Cth is the CTH in km, LWC_{Ct} is the liquid water concentration lookup value in g/m³ for a specified cloud type, Ct, and METERS_TO_KM is the conversion from m to km.

Note that all calculations are carried out in floating point arithmetic. The theoretical basis of this algorithm is presented in Section 3.3.2 of the VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD), 474-00045.

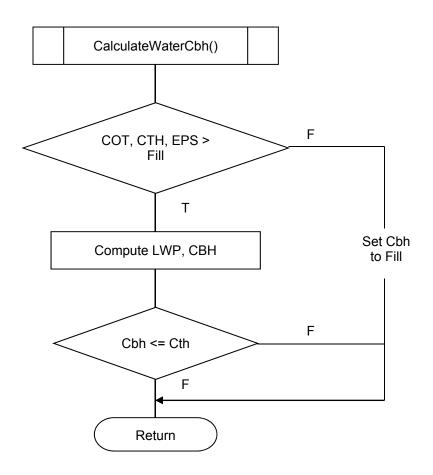


Figure 5. CalculateWaterCbh() Logic Flow

2.1.2.4 Submodule CalculateMixedCbh()

For ice-phase and mixed-phase clouds, CBH is calculated according to the following algorithm (see Figure 6 for logic flow):

Calculate Ice Water Path (IWP).

$$IWP = \frac{Cot}{c_0 + \frac{c_1}{2r_{eff}}}$$

where

 $\begin{array}{ll} \text{IWP is in g/m}^2, \\ c_0 \text{ and } c_1 \text{ are cloud IWP constants,} \\ \text{Cot is the unitless COT, and} \\ r_{\text{eff}} \text{ is the effective particle radius in} & \text{m, (also denoted by variable Eps).} \end{array}$

Calculate Cloud Mean Temperature (CMT), from CTT, Ctt

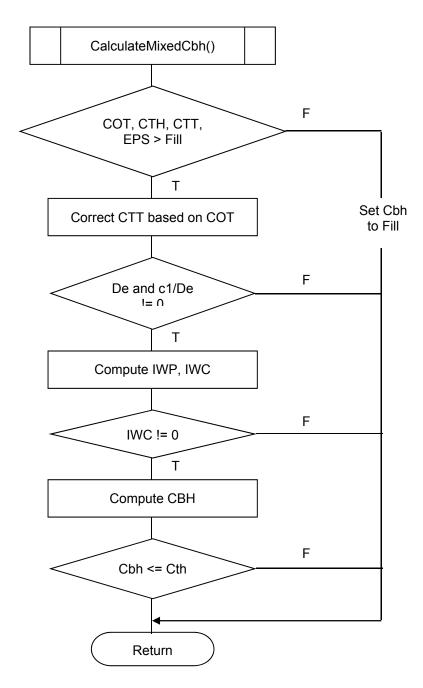
• Convert CTT, Ctt from Kelvin to Centigrade Ctt = Ctt - 273.15

Reset temperature to -60° C if it is below -60° C.
 Add delta temperature correction (Cot * 20.0/6.0).
 Reset temperature to -20°C if it is warmer than -20°C
 CMT = min((max(-60, Ctt) + (20.0/6.0) * Cot), -20).

Calculate Ice Water Path, IWC.

- Since IWP equation is valid for |CMT| > 20 ° C, ensure that this condition is met. absCMT = max(|CMT |, 20.000001)
- Use absCMT to calculate IWC.

 $\ln(IWC) = c_6 + c_7 \cdot e^{term}$ $term = c_4 \cdot c_5 \cdot (absCMT - c_2)^{c_3}$ where


IWC is the Ice Water Path in g/m³, and c_2 to c_7 are the IWC constants. Calculate CBH, Cbh in m and convert to km.

$$Cbh = Cth - cloud \ thickness = Cth - \left(\frac{IWP}{IWC}\right) \cdot METERS _TO _KM$$

where

Cth is the CTH in km, and METERS_TO_KM is the conversion from m to km.

Note that all calculations are carried out in floating point arithmetic. The theoretical basis of this algorithm is presented in Section 3.3.2 of the VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD), 474-00045.

2.1.3 Graceful Degradation

None.

2.1.4 Exception Handling

A mechanism for external termination of the algorithm, called a stop callback, has been implemented. If a stop callback is issued, processing is terminated and no outputs are produced.

Error-handling in the Input (I) and Output (O) stages of the I-P-O algorithm addresses errors associated with reading/writing of databases. If an error occurs, the error is reported, the process is terminated and no outputs are produced.

Error-handling in the Processing (P) stage involves granule level and pixel level errors. For granule level errors, i.e. bad LUT values or an invalid number of scans, the error is reported, the process is terminated and no outputs are produced.

At initialization, cbh outputs are set to ONGROUND_PT_FLOAT32_FILL (i.e. pixel-trim fill) so they are already set for bow tie deletion and quality flag outputs are set to zero. Only pixels that are not in the bow-tie deletion region are processed. During processing, pixel level errors (i.e. divide by zero, cbh > cth), are reported, the pixels are filled with ERR_FLOAT32_FILL, and processing continues with the next pixel. Pixels not applicable for cloud base height processing (i.e. invalid cloud layer or type; not water, ice, mixed, or overlap phase; filled COT, CTH, CTT, or EPS) are filled with NA_FLOAT32_FILL and processing continues with the next pixel.

2.1.5 Data Quality Monitoring

CBH quality assessments consist of quality flags for sun glint, cloud confidence (confidently/probably clear), and out-of-range (see Table 12) in the output IP.

Any Data Quality Threshold Tables (DQTTs) or Data Quality Notifications (DQNs) relevant to CBH are handled downstream during EDR processing by the Generate Cloud EDRs (GCE) module.

2.1.6 Computational Precision Requirements

Floating-point calculations are carried out in single-precision and double-precision arithmetic.

2.1.7 Algorithm Support Considerations

Sufficient research observations have been made to characterize cloud optical properties (e.g., LWC and IWC), and these values are relatively constant over global conditions.

2.1.8 Assumptions and Limitations

Assumptions and limitations based on theory are contained in the VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD), 474-00045.

3.0 GLOSSARY/ACRONYM LIST

3.1 Glossary

Table 13 contains terms most applicable for this OAD.

Table 13. Glossary

Term	Description
Algorithm	 A formula or set of steps for solving a particular problem. Algorithms can be expressed in any language, from natural languages like English to mathematical expressions to programming languages like FORTRAN. On NPOESS, an algorithm consists of: A theoretical description (i.e., science/mathematical basis) A computer implementation description (i.e., method of solution) A computer implementation (i.e., code)
Algorithm Configuration Control Board (ACCB)	Interdisciplinary team of scientific and engineering personnel responsible for the approval and disposition of algorithm acceptance, verification, development and testing transitions. Chaired by the Algorithm Implementation Process Lead, members include representatives from IWPTB, Systems Engineering & Integration IPT, System Test IPT, and IDPS IPT.
Algorithm Verification	Science-grade software delivered by an algorithm provider is verified for compliance with data quality and timeliness requirements by Algorithm Team science personnel. This activity is nominally performed at the IWPTB facility. Delivered code is executed on compatible IWPTB computing platforms. Minor hosting modifications may be made to allow code execution. Optionally, verification may be performed at the Algorithm Provider's facility if warranted due to technical, schedule or cost considerations.
Ancillary Data	Any data which is not produced by the NPOESS System, but which is acquired from external providers and used by the NPOESS system in the production of NPOESS data products.
Auxiliary Data	Auxiliary Data is defined as data, other than data included in the sensor application packets, which is produced internally by the NPOESS system, and used to produce the NPOESS deliverable data products.
EDR Algorithm	Scientific description and corresponding software and test data necessary to produce one or more environmental data records. The scientific computational basis for the production of each data record is described in an ATBD. At a minimum, implemented software is science-grade and includes test data demonstrating data quality compliance.
Environmental Data Record (EDR)	[IORD Definition] Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to geophysical parameters (including ancillary parameters, e.g., cloud clear radiation, etc.). [Supplementary Definition] An Environmental Data Record (EDR) represents the state of the environment, and the related information needed to access and understand the record. Specifically, it is a set of related data items that describe one or more related estimated environmental parameters over a limited time-space range. The parameters are located by time and Earth coordinates. EDRs may have been resampled if they are created from multiple data sources with different sampling patterns. An EDR is created from one or more NPOESS SDRs or EDRs, plus ancillary environmental data provided by others. EDR metadata contains references to its processing history, spatial and temporal coverage, and quality.
Operational Code	Verified science-grade software, delivered by an algorithm provider and verified by IWPTB, is developed into operational-grade code by the IDPS IPT.
Operational-Grade Software	Code that produces data records compliant with the System Specification requirements for data quality and IDPS timeliness and operational infrastructure. The software is modular relative to the IDPS infrastructure and compliant with IDPS application programming interfaces (APIs) as specified for TDR/SDR or EDR code.

Term	Description
Raw Data Record	[IORD Definition]
(RDR)	Full resolution digital sensor data, time referenced and earth located, with absolute radiometric and geometric calibration coefficients appended, but not applied, to the data. Aggregates (sums or weighted averages) of detector samples are considered to be full resolution data if the aggregation is normally performed to meet resolution and other requirements. Sensor data shall be unprocessed with the following exceptions: time delay and integration (TDI), detector array non-uniformity correction (i.e., offset and responsivity equalization), and data compression are allowed. Lossy data compression is allowed only if the total measurement error is dominated by error sources other than the data compression algorithm. All calibration data will be retained and communicated to the ground without lossy compression. [Supplementary Definition] A Raw Data Record (RDR) is a logical grouping of raw data output by a sensor, and related information needed to process the record into an SDR or TDR. Specifically, it is a set of unmodified raw data (mission and housekeeping) produced by a sensor suite, one sensor, or a reasonable subset of a sensor (e.g., channel or channel group), over a specified, limited time range. Along with the sensor data, the RDR includes auxiliary data from other portions of NPOESS (space or ground) needed to recreate the sensor measurement, to correct the measurement for known distortions, and to locate the measurement in time and space, through subsequent processing. Metadata is associated with the sensor and auxiliary data to permit its effective use.
Retrieval Algorithm	A science-based algorithm used to 'retrieve' a set of environmental/geophysical parameters (EDR) from calibrated and geolocated sensor data (SDR). Synonym for EDR processing.
Science Algorithm	The theoretical description and a corresponding software implementation needed to produce an NPP/NPOESS data product (TDR, SDR or EDR). The former is described in an ATBD. The latter is typically developed for a research setting and characterized as "science-grade".
Science Algorithm Provider	Organization responsible for development and/or delivery of TDR/SDR or EDR algorithms associated with a given sensor.
Science-Grade Software	Code that produces data records in accordance with the science algorithm data quality requirements. This code, typically, has no software requirements for implementation language, targeted operating system, modularity, input and output data format or any other design discipline or assumed infrastructure.
SDR/TDR Algorithm	Scientific description and corresponding software and test data necessary to produce a Temperature Data Record and/or Sensor Data Record given a sensor's Raw Data Record. The scientific computational basis for the production of each data record is described in an Algorithm Theoretical Basis Document (ATBD). At a minimum, implemented software is science-grade and includes test data demonstrating data quality compliance.
Sensor Data Record (SDR)	[IORD Definition] Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to calibrated brightness temperatures with associated ephemeris data. The existence of the SDRs provides reversible data tracking back from the EDRs to the Raw data. [Supplementary Definition] A Sensor Data Record (SDR) is the recreated input to a sensor, and the related information needed to access and understand the record. Specifically, it is a set of incident flux estimates made by a sensor, over a limited time interval, with annotations that permit its effective use. The environmental flux estimates at the sensor aperture are corrected for sensor effects. The estimates are reported in physically meaningful units, usually in terms of an angular or spatial and temporal distribution at the sensor location, as a function of spectrum, polarization, or delay, and always at full resolution. When meaningful, the flux is also associated with the point on the Earth geoid from which it apparently originated. Also, when meaningful, the sensor flux is converted to an equivalent top-of-atmosphere (TOA) brightness. The associated metadata includes a record of the processing and sources from which the SDR was created, and other information needed to understand the data.

Term	Description
Temperature Data Record (TDR)	<i>[IORD Definition]</i> Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant calibration data counts and ephemeris data to revert from T-sub-a into counts. <i>[Supplementary Definition]</i> A Temperature Data Record (TDR) is the brightness temperature value measured by a microwave sensor, and the related information needed to access and understand the record. Specifically, it is a set of the corrected radiometric measurements made by an imaging microwave sensor, over a limited time range, with annotation that permits its effective use. A TDR is a partially-processed variant of an SDR. Instead of reporting the estimated microwave flux from a specified direction, it reports the observed antenna brightness temperature in that direction.
Model Validation	The process of determining the degree to which a model is an accurate representation of the real-world from the perspective of the intended uses of the model. [Ref.: DoDD 5000.59-DoD Modeling and Simulation Management]
Model Verification	The process of determining that a model implementation accurately represents the developer's conceptual description and specifications. [Ref.: DoDD 5000.59-DoD Modeling and Simulation Management]

3.2 Acronyms

Table 14 contains terms most applicable for this OAD.

Table 14. Acronym	າຣ
-------------------	----

Acronym	Description
ACO	Atmospheric Correction over Ocean
ADCS	Advanced Data Collection System
AFM	Airborne Fluxes and Meteorology Group
AOS	Acquisition of Signal
СВН	Cloud Base Height
CCL	Cloud Cover\Layers
CDA	Command and Data Acquisition
CDR	Climate Data Records
CI	Configured Item
СМ	Cloud Mask
CMT	Cloud Mean Temperature
COMSAT	Communications Satellite
COP	Cloud Optical Properties
COT	Cloud Optical Thickness
CTH	Cloud Top Height
CTP	Cloud Top Parameters
CTT	Cloud Top Temperature
DES	Digital Encryption System
DHN	Data Handling Node
DPIS ICD	Data Processor Inter-subsystem Interface Control Document
EOS	Earth Observing System
EPS	Effective Particle Size
ERBS	Earth Radiation Budget Suite
ESD	Electrostatic Discharge
EUMETSAT	European Organization for the Exploitation of Meteorological Satellites
FMH	Federal Meteorological Handbook

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

GPS Global Positioning System GSE Ground Support Equipment HRD High Rate Data IGS International GPS Service IJPS Initial Joint Polar System ICC Initial Operational Capability IP Intermediate Product IWP Ice Water Path LEO&A Launch, Early Orbit, & Anomaly Resolution LSS Loss of Signal LT Locak Solar Time LT Locak Laward Nathority NA Non-Applicable			
GSE Ground Support Equipment HRD High Rate Data IGS International GPS Service IJPS Initial Joint Polar System IOC Initial Operational Capability IP International Capability IP Icoal Solar Time LUT Local Solar Time UT Local Solar Time UT Local Solar Time NM Non-Applicable NA Non-Applicable NA Non-Applicable NCA National Command Authority NDT Nitrate-Depletion Temperature OC/C Ocean Color/Chlorophyll PIP Program Implementation	Acronym	Description	
HRD High Rate Data IGS International GPS Service IJPS Initial Joint Polar System IOC Initial Operational Capability IP Intermediate Product IWP Ice Water Path LEO&A Launch, Early Orbit, & Anomaly Resolution LOS Loss of Signal LRD Low Rate Data LUT Look-Up Table or Local User Terminal LWP Liquid Water Path Metop Meteorological Operational Program MSS Mission System Simulator NA Non-Applicable NAT National Command Authority NDT Nitrate-Depletion Temperature OC/C Ocean Color/Chiorphyll PIP Program Implementation Plan PMT Portable Mission Terminal POD Precise Oxith Determination OF Quality Flag RSR Remote Sensing Reflectance S&R Search and Rescue SOL Soleice Data Encryption SDP Solfware Development Plan			
IGS International GPS Service IJPS Initial Joint Polar System IOC Initial Joint Polar System IP Intermediate Product IWP Ice Water Path LEO&A Launch, Early Orbit, & Anomaly Resolution LOC Loss of Signal LRD Low Rate Data LST Local Solar Time LUT Lok-Up Table or Local User Terminal LWP Liquid Water Path Metop Meteorological Operational Program MSS Mission System Simulator NA Non-Applicable NCA National Command Authority NDT Nitrate-Depletion Temperature OC/C Ocean Color/Chlorophyll PIP Program Implementation Plan PMT Portable Mission Terminal POD Precise Orbit Determination OF Quality Flag RSR Search and Rescue SSA Satellite Control Authority SDE Selective Data Encryption SDP Software Development Plan SDP Software Development Plan SDF Selective Data Encryption SDF Software Development Plan SDF Software Development Plan SDF			
IJPS Initial Joint Polar System IOC Initial Operational Capability IP Intermediate Product IWP lee Water Path LE0&A Launch, Early Orbit, & Anomaly Resolution LOS Loss of Signal LRD Low Rate Data LST Local Solar Time LUT Look-Up Table or Local User Terminal LWP Liquid Water Path Metop Meteorological Operational Program MSS Mission System Simulator NA Non-Applicable NCA National Command Authority NDT Nitrate-Depletion Temperature OC/C Ocean Color/Chiorophyll PIP Porgram Implementation Plan PMT Portable Mission Terminal POD Precise Orbit Determination QF Quilty Flag RSR Remote Sensing Reflectance S&R Search and Rescue SCA Stellite Control Authority SDE Selective Data Encryption SDR Sensor Requirement Plan <tr< td=""><td></td><td></td></tr<>			
IOC Initial Operational Capability IP Intermediate Product IWP Ice Water Path LEO&A Launch, Early Orbit, & Anomaly Resolution LOS Loss of Signal LRD Low Rate Data LST Local Solar Time LUT Look-Up Table or Local User Terminal LWP Liquid Water Path Metop Metorological Operational Program MSS Mission System Simulator NA Non-Applicable NCA Nation-Applicable NCA Non-Applicable NCA Nation-Cohnorophyll PIP Porgram Implementation Plan PMT Portable Mission Terminal POD Precise Orbit Determination OF Quality Flag RSR Remote Sensing Reflectance S&R Seerch and Rescue SOF Software Development Plan SDF Software Development Plan SDR Sensor Data Records SDR Sensor Data Records SDS Sclicon			
IP Intermediate Product IWP Ice Water Path LEO&A Launch, Early Orbit, & Anomaly Resolution LOS Loss of Signal LRD Low Rate Data LST Local Solar Time LUT Lock-Up Table or Local User Terminal LWP Liquid Water Path Metoor Metoorological Operational Program MSS Mission System Simulator NA Non-Applicable NCA National Command Authority NDT Nitrate-Depletion Temperature OC/C Ocean Color/Chlorophyll PIP Program Implementation Plan PMT Portable Mission Terminal POD Precise Orbit Determination OF Quality Flag RSR Remote Sensing Reflectance S&R Search and Rescue SCA Stellite Control Authority SDE Selective Data Encryption SDR Science Data Encryption SDR Science Data Segment SDR Scinon Graphics, Inc.			
IWPIce Water PathLEO&ALaunch, Early Orbit, & Anomaly ResolutionLOSLoss of SignalLRDLow Rate DataLSTLocal Solar TimeLUTLook-Up Table or Local User TerminalLWPLiquid Water PathMetopMeteorological Operational ProgramMSSMission System SimulatorNANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChiorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSOASatellite Control AuthoritySDESelective Data EncryptionSDFScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSilicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSpace SegmentSSTSea Sufface TemperatureTBDTo Be DeterminedTBRTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
LEO&ALaunch, Early Orbit, & Anomaly ResolutionLOSLoss of SignalLRDLow Rate DataLSTLocal Solar TimeLUTLook-Up Table or Local User TerminalLWPLiquid Water PathMetopMeteorological Operational ProgramMSSMission System SimulatorNANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSateritic Control AuthoritySDESelective Data EncryptionSDFSolicine Data RecordsSDRScience Data SegmentSGI®Silicino Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Data RecordsSSTSea Surface TemperatureSTSea Surface TemperatureSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	IP	Intermediate Product	
LOSLoss of SignalLRDLow Rate DataLSTLocal Solar TimeLUTLock-Up Table or Local User TerminalLWPLiquid Water PathMetopMetoorological Operational ProgramMSSMission System SimulatorNANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQGFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDPSoftware Development PlanSDPSoftware Development PlanSDRSelency Data RecordsSDSScience Data RecordsSDRSelency Data RecordsSDRScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSpace SegmentSSTSea Surface TemperatureTBDTo Be ResolvedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band		Ice Water Path	
LRDLow Rate DataLSTLocal Solar TimeLUTLook-Up Table or Local User TerminalLWPLiquid Water PathMetopMeteorological Operational ProgramMSSMission System SimulatorNANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationOFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSQI*Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	LEO&A	Launch, Early Orbit, & Anomaly Resolution	
LSTLocal Solar TimeLUTLook-Up Table or Local User TerminalLWPLiquid Water PathMetopMeteorological Operational ProgramMSSMission System SimulatorNANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDRSensor Data RecordsSDRSelective Data EncryptionSDRSelectore Data RecordsSDRSelectore Data RecordsSDRSelectore Data RecordsSSRSpace NetworkSOCSatellie Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	LOS	Loss of Signal	
LUTLook-Up Table or Local User TerminalLWPLiquid Water PathMetopMeteorological Operational ProgramMSSMission System SimulatorNANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDRSensor Data RecordsSSNScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Sea Space TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	LRD	Low Rate Data	
LWPLiquid Water PathMetopMeteorological Operational ProgramMSSMission System SimulatorNANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSaterita Control AuthoritySDESelective Data EncryptionSDFSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI*Silicon Graphics, Inc.SIInternations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	LST	Local Solar Time	
Metop Meteorological Operational Program MSS Mission System Simulator NA Non-Applicable NCA National Command Authority NDT Nitrate-Depletion Temperature OC/C Ocean Color/Chlorophyll PIP Program Implementation Plan PMT Portable Mission Terminal POD Precise Orbit Determination QF Quality Flag RSR Remote Sensing Reflectance S&R Search and Rescue SCA Satellite Control Authority SDE Selective Data Encryption SDF Selective Data Records SDR Sensor Data Records SDS Science Data Segment SGI [®] Silicon Graphics, Inc. SI International System of Units SN NASA Space Network SOC Satellite Operations Center SRD Sensor Requirements Documents SS Space Segment SST Space Segment SST Space Segment SST	LUT	Look-Up Table or Local User Terminal	
MSSMission System SimulatorNANon-ApplicableNAANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDFScience Data SegmentSQI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRSensor Requirements DocumentsSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	LWP	Liquid Water Path	
NANon-ApplicableNCANational Command AuthorityNDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDFSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Slilcon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be DeterminedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	Metop	Meteorological Operational Program	
NCA National Command Authority NDT Nitrate-Depletion Temperature OC/C Ocean Color/Chlorophyll PIP Program Implementation Plan PMT Portable Mission Terminal POD Precise Orbit Determination QF Quality Flag RSR Remote Sensing Reflectance S&R Search and Rescue SCA Satellite Control Authority SDE Selective Data Encryption SDF Software Development Plan SDR Sensor Data Records SDS Science Data Records SDS Science Data Records SDS Science Data Segment SGI® Silicon Graphics, Inc. SI International System of Units SN NASA Space Network SOC Satellite Operations Center SRD Sensor Requirements Documents SS Space Segment SST Sea Surface Temperature TBD To Be Determined TBR To Be Resolved TBS	MSS	Mission System Simulator	
NDTNitrate-Depletion TemperatureOC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDFSoftware Development PlanSDRSensor Data RescurdsSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	NA	Non-Applicable	
OC/COcean Color/ChlorophyllPIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	NCA	National Command Authority	
PIPProgram Implementation PlanPMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDFSoftware Development PlanSDRSecince Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be SensoredTO Be NetworkSTOSurface TemperatureTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	NDT	Nitrate-Depletion Temperature	
PMTPortable Mission TerminalPODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDPSoftware Development PlanSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	OC/C	Ocean Color/Chlorophyll	
PODPrecise Orbit DeterminationQFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	PIP	Program Implementation Plan	
QFQuality FlagRSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSTSpace SegmentSSTSpace SegmentTBDTo Be DeterminedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	PMT	Portable Mission Terminal	
RSRRemote Sensing ReflectanceS&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	POD	Precise Orbit Determination	
S&RSearch and RescueSCASatellite Control AuthoritySDESelective Data EncryptionSDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	QF	Quality Flag	
SCASatellite Control AuthoritySDESelective Data EncryptionSDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	RSR	Remote Sensing Reflectance	
SDESelective Data EncryptionSDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	S&R	Search and Rescue	
SDPSoftware Development PlanSDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	SCA	Satellite Control Authority	
SDRSensor Data RecordsSDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	SDE	Selective Data Encryption	
SDSScience Data SegmentSGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	SDP	Software Development Plan	
SGI®Silicon Graphics, Inc.SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	SDR	Sensor Data Records	
SIInternational System of UnitsSNNASA Space NetworkSOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	SDS	Science Data Segment	
SN NASA Space Network SOC Satellite Operations Center SRD Sensor Requirements Documents SS Space Segment SST Sea Surface Temperature TBD To Be Determined TBR To Be Resolved TBS To Be Supplied TEMPEST Telecommunications Electronics Material Protected from Emanating Spurious Transmissions TOA Top of the Atmosphere USB Unified S-band	SGI [®]	Silicon Graphics, Inc.	
SOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	SI	International System of Units	
SOCSatellite Operations CenterSRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band	SN	NASA Space Network	
SRDSensor Requirements DocumentsSSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
SSSpace SegmentSSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
SSTSea Surface TemperatureTBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
TBDTo Be DeterminedTBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
TBRTo Be ResolvedTBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
TBSTo Be SuppliedTEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
TEMPESTTelecommunications Electronics Material Protected from Emanating Spurious TransmissionsTOATop of the AtmosphereUSBUnified S-band			
TOA Top of the Atmosphere USB Unified S-band			
USB Unified S-band			
UTC I Universal Time Coordinated	UTC	Universal Time Coordinated	

4.0 OPEN ISSUES

Table 15. TBXs

TBX ID	Title/Description	Resolution Date
None		