





Aerosol source apportionment from long term measurements at the CESAR tower Cabauw, NL

> <u>P. Schlag</u>, R. Holzinger, J. S. Henzing, F. Canonaco, and A. Kiendler-Scharr

# Effects of Atmospheric Aerosols





Direct effect on climate Indirect effect on climate Adverse health effects



#### **Atmospheric Aerosols: Composition**



26. August 2015

Jimenez et al., Science 2009

Folie 3



#### **Effects of Atmospheric Aerosols**

|                                            | Emitted<br>Compound                          | Resulting Atmospheric<br>Drivers                             | Radiativ | e Forcing by Emi | ssions and Drivers   |
|--------------------------------------------|----------------------------------------------|--------------------------------------------------------------|----------|------------------|----------------------|
| 1                                          | see CO2                                      | CO                                                           |          |                  | 1.68 [1.33 to 2.0    |
|                                            | CH4                                          | CO2 H2OST O2 CH                                              |          |                  | 0.97 [0.74 to 1.2    |
|                                            | B<br>B<br>B<br>Carbons                       | O <sub>s</sub> CFCs HCFCs                                    | 1 1      |                  | 0.18 [0.01 to 0.3    |
| Anthropogenic                              | N <sub>2</sub> O                             | N <sub>2</sub> O                                             | 1 0      |                  | 0 17 [0 13 to 0 2    |
|                                            | co                                           | CO2 CH. O                                                    | 1        | H+I I            | 0.23 (0.16 to 0.3    |
|                                            | OOAMN Aerosol                                | CO, CH, O,                                                   |          | •                | 0.10 (0.05 to 0.1    |
|                                            | ases an                                      | Nitrate CH, O;                                               |          |                  | -0.15 [-0.34 to 0.0  |
|                                            | Aerosols and<br>precursors<br>(Mineral dust, | Mineral Dust Suphals Nitrate-<br>Organic Carbon Black Carbon | t t      | -                | -0.27 [-0.77 to 0.2  |
|                                            | Organic Carbon<br>and Black Carbon)          | Cloud Adjustments due to Aerosols                            | 1 1      |                  | -0.55 [-1.33 to -0.0 |
|                                            |                                              | Albedo Change<br>due to Land Use                             | i H      | 4                | -0.15 [-0.25 to -0.0 |
| Natural                                    | Changes in<br>Solar Irradiance               |                                                              | 1 1      | +                | 0.05 [0.00 to 0.1    |
| Total Anthropogenic<br>RF relative to 1750 |                                              |                                                              | 2011     | -                | 2.29 [1.13 to 3.3    |
|                                            |                                              |                                                              | 1980     |                  | 1.25 [0.64 to 1.8    |
|                                            |                                              |                                                              | 1950     |                  | 0.57 [0.29 to 0.8    |
| _                                          |                                              |                                                              | _1       | 0 1              | 2 3                  |

Folie 4

### ACTRIS (Aerosols, Clouds, and Trace gases 🕗 JÜLICH **Research InfraStructure Network)**





- 17 ACSM (Aerosol) **Chemical Speciation** Monitor) instruments measuring ambient aerosol at monitoring sites across Europe.
- Many since summer 2012.
- > 3-week intercomparison in Nov. 2013:
  - ➤ 12 Q-ACSM
  - $\geq$  1 ToF-ACSM
  - $\geq$  1 HR-ToF-AMS
- > Crenn et al., 2015
- Fröhlich et al., 2015

## Cabauw Experimental Site for Atmospheric JÜLICH **Research (CESAR)**





#### Aerosol instruments used in this work

- <u>Aerosol Chemical Speciation Monitor (ACSM)</u>
  - > PM<sub>1</sub> Organics, Nitrate, Sulfate, Ammonium, Chloride
- <u>Multi-Angle Absorption Photometer (MAAP)</u>
  - $> PM_1$  Black Carbon
- High <u>Resolution Time-of-Flight Aerosol Mass Spectrometer</u> (HR-ToF-AMS)
  - > PM<sub>1</sub> Organics, Nitrate, Sulfate, Ammonium, Chloride
- Monitor for <u>AeRosol</u> and <u>GA</u>ses (MARGA)
  - PM<sub>1/2.5</sub> water soluble like Nitrate, Sulfate, Ammonium, Chloride
- Scanning Mobility Particle Sizer (SMPS)
  - PM<sub>1</sub> total aerosol mass concentration

#### ÜLICH **Overview ACSM/MAAP PM<sub>1</sub>** a) b) 80 -**Black Carbon** 70 -**Organics** Mass conc. [µg/m<sup>3</sup>] **Nitrate** 60 -**Sulfate** 50 -Ammonium 40 -**Chloride** 30 -20 -10 · 0. 01.09.2012 01.11.2012 01.01.2013 01.03.2013 01.05.2013 **Overlap with AMS** Date

Fractional species contribution to  $PM_1$  mass (a) and time series of species mass concentration (b); Total average mass loading: 9.5 µg/m<sup>3</sup>

#### Instrument Comparison (2012 – 2013)



|            | Correlation slopes (I       |                             |                 |
|------------|-----------------------------|-----------------------------|-----------------|
|            | MARGA                       | HR-ToF-AMS                  |                 |
|            |                             | 1.00 (R <sup>2</sup> =0.73) | Organics        |
|            | 1.23 (R <sup>2</sup> =0.96) | 1.17 (R <sup>2</sup> =0.89) | Nitrate         |
| ACEMNO     | 0.88 (R <sup>2</sup> =0.93) | 0.82 (R <sup>2</sup> =0.71) | Ammonium        |
| ACSIVI VS. | 0.63 (R <sup>2</sup> =0.86) | 0.49 (R <sup>2</sup> =0.76) | Sulfate         |
|            | 1.05 (R <sup>2</sup> =0.93) | 0.90 (R <sup>2</sup> =0.84) | Total           |
|            | (1943 data points)          | (289 data points)           | (No. of points) |

ACSM + MAAP total mass vs. <u>SMPS</u> total mass (12275 data points):

Slope: 0.84 (R<sup>2</sup> = 0.82)

# Good correlations were seen in general over the whole campaign as well as during periods with high mass loadings!

ACSM slightly overestimated nitrate by 23% and 17% and underestimated sulphate by 37% and 51% comparing to MARGA and AMS, respectively. ACSM chloride was largely below the detection limit.

### Air quality standards of the World health organization (WHO)





#### **Total ACSM+MAAP PM<sub>1</sub> mass: Daily means**





#### > 12 exceedances of WHO PM<sub>2.5</sub> daily mean limit

### **ACSM/MAAP: Diurnal Variations**





- ND<sub>3</sub>: heterogeneous conversion from NO<sub>y</sub> in the night / volatilization of semi-volatile nitrates and photolysis of gaseous precursors during the day
- SQ<sub>4</sub>: Daytime maximum due to it's photochemical formation from SO<sub>2</sub>
- Neutralization of NO<sub>3</sub> and SO<sub>4</sub> and by NH<sub>3</sub> in O NH<sub>4</sub>NO<sub>3</sub> and  $(NH_4)_2SO_4$
- BC: Direct emissions from traffic (morning and evening rush hours) and biomass burning events (domestic heating in the evenings/nights)



## Multilinear Engine 2 results from ACSM OA **JÜLICH**





- These factors were seen in most seasons investigated by AMS and ACSM
- Red bars: site specific reference mass spectra from Crippa et al., ACP 2014, used as  $\succ$ constraints for ME-2 (a-value in brackets)
- > HOA showed diurnal pattern from traffic rush hours, while BBOA was mainly emitted by domestic heating in the evening/night. Highly oxidized HULIS (attributed to humic like substances) showed no diurnal variation

26. August 2015

HULIS: Paglione et al., ACP 2014



No biomass burning was found in summer. High contributions of chemically formed  $\succ$ SOA (OOA and HULIS) were found where the HULIS concentration remained largely constant during the campaign, emphasizing its role as background aerosol at Cabauw 26. August 2015

HULIS: Paglione et al., ACP 2014



- Pie charts show fractional abundances averaged over two selected high mass periods.
- > Wedges highlighted in red represent secondary aerosol fractions.

26. August 2015

#### Summary



Performed 1-year PM<sub>1</sub> aerosol chemical composition measurements in Cabauw:

#### 12 exceedances of WHO PM<sub>2.5</sub> daily mean limit

- Nitrate and organics are the most dominant species
- Nitrate (mainly as NH<sub>4</sub>NO<sub>3</sub>) was the main contributor in periods with high mass loadings
  - → Reducing NO<sub>x</sub> and/or NH<sub>3</sub> emissions should have a large effect on reducing particulate matter
- PMF/ME-2 analysis of the organic fraction show high contributions of chemically formed SOA
  - > Typical for rural sites
  - The local reduction of organic aerosol mass is more challenging, especially as the HULIS fraction showed no designated source.

### Acknowledgement

- <u>FZ Jülich</u> Astrid Kiendler-Scharr (IEK-8)
- Utrecht University, NL: Rupert Holzinger, Josef Timkovsky
- <u>KNMI, NL</u>:

Marcel Brinkenberg, Jacques Warmer, Cor van Oort, Fred Bosveld, Gert-Jan van Zadelhoff, Reinout Boers

• <u>TNO, NL</u>:

Bas Henzing, Marcel Moerman

- <u>ECN, NL</u>: Alex Vermeulen, Mark Blom
- Funded by ACTRIS TNA



