

Monitoring the Planet's Climate

Deke Arndt

Chief, Climate Monitoring Branch, NOAA's National Centers for Environmental Information

12 October 2016

National Oceanic and Atmospheric Administration | NOAA Satellite and Information Service

Nat'l Centers for Environmental Information (NCEI) - Asheville

- Asheville, NC (and points beyond!) since early 1950s
- Climate Monitoring Branch established 1998
 - Mission: "monitor and assess the state of the climate"
 - -We deal in data the *observed* climate.
 - This complements, informs and draws from larger climate science (the understood climate)

Briefly ...

- Hello from the Climate Monitoring Branch
- Some Climate Monitoring and Prediction Tools
- Where does that stuff come from?

Hello from the Climate Monitoring Branch

NCEI Monitoring Branch & US Drought Portal

http://www.ncdc.noaa.gov/climate-monitoring and http://www.drought.gov

Around the world, in 80 days eight slides

Globally: Surface Temperature

http://www.ncdc.noaa.gov/sotc/global & https://www.ncdc.noaa.gov/cag/time-series/global

7

State of the Climate in 2015 http://www.ncdc.noaa.gov/bams

Special Supplement to the Bulletin of the American Meteorological Society Vol. 97, No. 8, August 2016

456 authors from 62 countries; 17 editors on 3 continents

State of the Climate in 2015

Variability Increases with Local Focus Temperatures since 1895: Globe, USA, Oklahoma

Climate at a Glance: <u>https://www.ncdc.noaa.gov/cag</u>

Summer Drought

Climate at a Glance: <u>https://www.ncdc.noaa.gov/cag</u>

Billion Dollar Disasters

U.S. 2016 Billion-Dollar Weather and Climate Disasters

This map denotes the approximate location for each of the 12 billion-dollar weather and climate disasters that have impacted the United States between January 1 and September 30, 2016.

Billion Dollar Disasters: <u>https://www.ncdc.noaa.gov/billions</u>

Big Events Matter

*as of September 2016

Relationship between weather & climate Literature Review: Stallone et al. (1976)

Extreme Weather & Climate series: BAMS

Adequacy for Detection and Understanding Causes of Changes for Classes of Extremes

- "Monitoring & Understanding Change ..." State of knowledge series (*BAMS*, 2013 & 14)
 - ... in extreme storm statistics. Kunkel, et al. 94(4), 499-514.
 - <u>http://journals.ametsoc.org/doi/full/10.117</u>
 <u>5/BAMS-D-11-00262.1</u>
 - ... in heat waves, cold waves, floods and droughts in the US. Peterson, et al. 94(6), 821-834.
 - <u>http://journals.ametsoc.org/doi/full/10.117</u>
 <u>5/BAMS-D-12-00066.1</u>
 - ... in extreme winds, waves, and extratropical storms. Vose, et al. **95**(3), 377-386.
 - <u>http://journals.ametsoc.org/doi/pdf/10.117</u>
 <u>5/BAMS-D-12-00162.1</u>
 - ... in CMIP5 Climate Model Analyses. Wuebbles, et. al., 95(4), 571-583.
 - <u>http://journals.ametsoc.org/doi/pdf/10</u> .1175/BAMS-D-12-00172.1

15

Where does that stuff come from?

Where does that come from?

Where do the observations come from?

Daily Data Period of Record (Any Variable) [GHCN-Daily Version 3.02]

National Centers for Environmental Information

Globe derived from Grid boxes

Grid box derived from stations, buoys, ships

X X

Normal monthly average temperature at station "X" Observed monthly average temperature at station "X" "Anomaly" (departure from normal)

It's more complicated than that ...

- Ships and (most) buoys move; weather stations and (some) buoys don't
- Account for changes in station distribution/location and station environment by quantifying changes in relationship with neighbors
- Some grid cells drop off of maps upon switching from 1961-90 "normals" to 1981-2010 base period for mapping
- They aren't lost to the global calc, but show up as "missing"

NORA

The Drought Decade Palmer Hydrologic Drought Index: OKCD2

Thank you for your time.

Deke Arndt Derek.Arndt@noaa.gov https://www.ncdc.noaa.gov/climate-monitoring

Technical Slides

- Station Siting
- Corrections
- In situ vs. Satellite-derived temperatures
- Precision
- Dealing with dropouts
- Where do I find this stuff?

First, good news

- The surface temperature record has been extensively scrutinized this past decade
- This led to improvements in network and station metadata, algorithms which detect and correct disruptions in time-series, and ultimately, a more robust and understood US and Global temperature time series.

Major Known Causes of Station Shifts

- Time of observation changes
- Changes in instrumentation
- Changes in station environment
- All of these can be documented or undocumented

Observation of Time of Observation over Time

- We have become a nation of morning observers.
- This introduced a cool bias over time.
- TOB is a statistical correction for this effect.

Literature: Vose, R. S., C. N. Williams Jr., T. C. Peterson, T. R. Karl, and D. R. Easterling (2003), An evaluation of the time of observation bias adjustment in the U.S. Historical Climatology Network, *Geophys. Res. Lett.*, **30**, 2046, doi: <u>10.1029/2003GL018111</u>, 20.

Changes in instrumentation and siting

- 1980s: Much of the network shifted from traditional shelters and liquid in glass to MMTS package
- Closer to structures, but much cooler instrument package

Literature: Menne, M.J., C.N. Williams Jr., and R.S. Vose, 2009: The United States Historical Climatology Network monthly temperature data– Version 2. *Bulletin of the American Meteorological Society*, 90, 993-1007.

Urbanization and Ruralization

Urban signal associated with 14%-21% of the rise in *unadjusted* T_{min} since 1895 and 6%-9% since 1960. Homogenization *effectively removes this urban signal from individual and aggregate station records such that it becomes insignificant* during the last 50–80 years.

Z. Hausfather, M.J. Menne, C.N. Williams, T. Masters, R. Broberg, and D. Jones, "Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records", *J. Geophys. Res. Atmos.*, vol. 118, pp. 481-494, 2013. <u>http://dx.doi.org/10.1029/2012JD018509</u>

Effects of these issues on CONUS

- Changes in observation practice had different effect on T_{max} vs T_{min} trends
- Before any sort of homogenizaton:
- T_{max} ... widespread shifts artificially cooled the true rate of change
 - Artificial cooling since 1950: changing time of observation
 - Artificial cooling (primarily mid-1980s): liquid-in-glass thermometers → MMTS electronic resistance thermistors
- T_{min} ... these shifts work in opposition to each other.
 - Artificial cooling since 1950: changing time of observation
 - Some artificial cooling from 1930-50: station moves to somewhat cooler micro-climates (ruralization)
 - Artificial warming since the mid-1980s: associated with installation of MMTS.
 - Conclusion: raw T_{min} data likely underestimate overall trend since 1950 (when time of obs shifts dominate) and
 overestimate overall trend since 1979 (when shifts associated with MMTS installation dominate).

Literature: Menne, M. J., C. N. Williams, Jr., and M. A. Palecki, 2010: On the reliability of the U.S. surface temperature record. Journal of Geophysical Research, 115, D11108, doi:10.1029/2009JD013094.

How do we know corrections work?

- NCDC uses homogenization algorithm designed to account for shifts and reduce the error in trend calculations
- Benchmarking experiments broadly affirmed the approach
- Comparison with hourly reanalyses also indicate corrections are in correct direction
- Vose, R.S., S. Applequist, M.J. Menne, C.N. Williams Jr., and P. Thorne (2012), An intercomparison of temperature trends in the U.S. Historical Climatology Network and recent atmospheric reanalyses, *Geophys. Res. Lett.*, **39**, L10703, doi:10.1029/2012GL051387
- Williams, C.N., M.J. Menne, and P.W. Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. *Journal of Geophysical Research- Atmospheres*, **117**, D5, doi:10.1029/2011JD016761.
- Zhang, J., W. Zheng, and M.J. Menne, 2012: A Bayes factor model for detecting artificial discontinuities via pairwise comparisons. *Journal of Climate*, 25, 8462-8474, doi: 10.1175/JCLI-D-12-00052.1.

Why adjust the past?

- Rationale: adjusted datasets should reflect what the data would show with today's instrumentation and practices.
- Keep unadjusted data available for people who wish to use unadjusted data or develop their own routines.

Data drives the direction of corrections

- Ex.: Sea surface temperatures make up 2/3 of the global temperature average
 - Mid-century: bucket to engine
 - Resulting adjustment reduces 20th century warming trend

KENNEDY ET AL.; HADSST3 BIASES

Kennedy, J.J., N.A. Rayner, R.O. Smith, D.E. Parker, and M. Saunby (2011), Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization, *J. Geophys. Res.*, **116**, D14104, doi:10.1029/2010JD015220.

T_{sfc} vs. TLT: Related but not Equated

Surface Temperature

- Represents: meteorological surface temperature (approx. 1.5m AGL)
- Measured by thousands of insitu stations
- Common datasets: GHCN, nClimDiv, CRUTemp
- Challenges: environment drift, changing instruments

Temp of Lower Trop

- Represents: bulk temperature from sfc to about 8,000m (26,000 ft)
- Measured by: indirect; derived from radiances in microwave frequencies
- Common datasets: RSS, UAH
- Challenges: orbital drift, changing instruments,

Precision

• How do we come up with 0.1 or 0.01 values when individual stations measure in whole degrees?

Team	GP	MIN	FGM	FGA	FG%	3FGM	3FGA	3FG%	FTM	FTA	FT%	OREB	DREB
Atlanta Hawks	82	48.4	37.3	81.6	45.8%	9.4	25.8	36.3%	17.0	21.7	78.1%	8.7	31.3
Boston Celtics	82	48.1	36.5	83.9	43.5%	7.0	21.1	33.3%	16.2	20.8	77.7%	12.0	30.5
Brooklyn Nets	82	48.5	35.7	77.9	45.9%	8.6	23.4	36.9%	18.4	24.4	75.3%	8.8	29.4
Charlotte Bobcats	82	48.5	36.3	82.1	44.2%	6.3	17.9	35.1%	18.0	24.4	73.7%	9.5	33.2
Chicago Bulls	82	48.6	34.7	80.2	43.2%	6.2	17.8	34.8%	18.1	23.3	77.9%	11.4	32.7
Cleveland Cavaliers	82	48.6	37.0	84.8	43.7%	7.1	20.0	35.6%	17.0	22.7	75.1%	12.1	32.1
Dallas Mavericks	82	48.4	39.6	83.6	47.4%	8.8	22.9	38.4%	16.8	21.1	79.5%	10.2	30.7
Denver Nuggets	82	48.2	38.4	85.9	44.7%	8.6	23.9	35.8%	19.1	26.3	72.6%	12.3	33.1
Detroit Pistons	82	48.2	38.8	86.9	44.7%	6.2	19.3	32.1%	17.3	25.7	67.0%	14.6	30.8
Golden State Warriors	82	48.4	39.5	85.4	46.2%	9.4	24.8	38.0%	15.9	21.1	75.3%	10.9	34.4
Houston Rockets	82	48.4	38.0	80.5	47.2%	9.5	26.6	35.8%	22.1	31.1	71.2%	11.2	34.1
Indiana Pacers	82	48.2	36.0	80.2	44.9%	6.7	18.8	35.7%	18.1	23.3	77.9%B	A.com	34.5

Dealing with Dropouts

- Claim: The loss of stations in colder climates creates artificial warming
- Truth: Absolute temperatures are not used to calculate the global temperature
 - -Global temperature calculations are made using local departures from climatological average
 - Anomalies in colder climates are often warmer (larger positive) than in warmer climates; i.e., poleward stations actually show more warming.

Compared to Climate Reference Network

Compared to Climate Reference Network

Data Specific to this Presentation

• Global, US temperature time series:

- Climate at a Glance: <u>http://www.ncdc.noaa.gov/cag</u>
- -Also for states, climate divisions within states

• Raw and Adjusted HCN data:

- -<u>http://www1.ncdc.noaa.gov/pub/data/ghcn/v3/</u>
- "qcu" files: unadjusted (raw)
- "qca" files: adjusted
- Comparison CONUS temperature methods to CRN:
 - -<u>http://www.ncdc.noaa.gov/temp-and-precip/national-temperature-index/</u>

Thank you for your time. Good luck this week. Do your best.

Deke Arndt Derek.Arndt@noaa.gov https://www.ncdc.noaa.gov/climate-monitoring