
2012 Update of the Oklahoma Comprehensive Water Plan

Schedule

Priority & Supporting Recommendations Watershed Planning Region Reports

OWRB Meeting: August 9, 2011

Oklahoma Comprehensive Water Plan 2011 OWRB Schedule

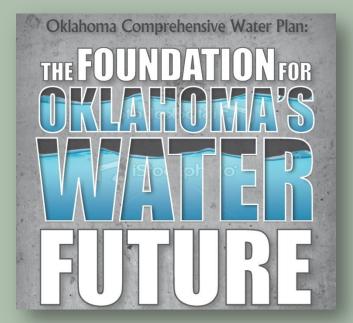
August 9 Board Meeting:

- Finalize Implementation Priorities
- Presentation of Draft Final Executive Report
- Presentation of Regional Reports

August 26:

 Final OCWP Executive Report Public Review Draft posted to OWRB website

September 13 Board Meeting:

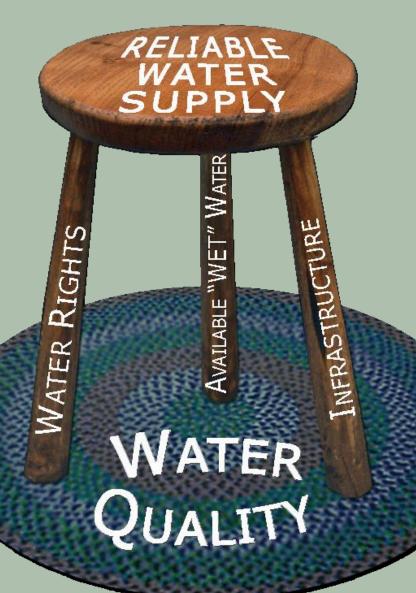

- Final Water Board review and public comment on draft OCWP
- Discussion and Possible Action by Board to Request Any Changes

October 17 Board Meeting:

 Formal Board consideration and adoption of OCWP

October 18-19:

 OCWP unveiled at Governor's Water Conference



Goals of the 2012 OCWP Update

- I. Characterize demands by water use sector.
- 2. Identify reliable supplies to meet forecasted demands.
- 3. Perform **technical studies** in support of the evaluation of emerging water management issues.
- 4. Comprehensive **stakeholder engagement** to make recommendations regarding the management of Oklahoma's water resources.
- 5. Ensure water resources management programs that **create reliability**.
- 6. Make **"implementable" recommendations** regarding the future of water management in Oklahoma based upon technical evaluations and stakeholder input.

Planning for What, Exactly?

A Plan for Reliability Means Having a Reliable Plan

- Expert Technical Evaluation
- Consistent, Defensible
 Methodologies
- Robust Public
 Participation
- Innovative and Forward-thinking

- Integrated and Coordinated
- Consistent with Emerging Federal Priorities and Initiatives

What is this Plan? "A Foundation"

- An answer to a statutory mandate.
- A driver for economic development.
- Well-vetted and scientifically sound.
- A living document.
- A picture of where we are and what we have:
 - An impressive compendium of water related information on 82 basins and 13 regions across the state.
 - A thorough and frank evaluation of Oklahoma's current and future water policies and programs.

- What the future will look like:
 - Technical information on water supplies, demands, limitations and options to prepare for the future.
 - An evaluation of both emerging issues and future opportunities.
 - A deliberation of public and stakeholder input on innovative technical analyses and diverse policy evaluations.
 - A strategy on how to get us there:
 - A tool to inform decision-making and stimulate intensive local planning.
 - Synthesized information resulting in priority water policy recommendations and other initiatives that will ensure a reliable water future for Oklahoma.

What this Plan is Not

- It is not the answer to everything.
- It is not a document that has mandatory provisions, the force and effect of law.
- It is not an inflexible mandate that precludes opportunities for additional stakeholder input.
- It does not call for sweeping, fundamental changes in water management policy and the law.
- It does not prioritize one water source or use over another.
- It does not contain predetermined recommendations that ignore science.
- It does not usurp local decision-making.
- It is not the final resolution of complex issues.

Components of the OCWP Update

- I. Executive Report:
 - Synthesis of OCWP
 Technical Studies and
 Results
 - Water PolicyRecommendations

- II. Watershed Planning Region Reports:
 - Presents results of
 OCWP technical
 analyses, including
 options to address
 identified water
 shortages

Components of the OCWP Update Executive Report

- I. Introduction
- 2. Water Resources Planning in Oklahoma:
 - History of Planning
- 3. Water Management in Oklahoma:
 - Water Law/Agencies
- 4. Statewide Summary:
 - Surface/Groundwater Resources

Components of the OCWP Update Executive Report

- 5. Statewide Water Assessment
 - a. Water Demand
 - b. Water Availability (Physical, Permit & Water Quality)
 - c. Climate Change Projections and Implications
 - d. Water Supply Limitations
 - e. Results of Excess and Surplus Water Analysis

Components of the OCWP Update Executive Report

- 6. Regional and Statewide Opportunities and Solutions
 - a. Water Supply Limitations, Options & Effectiveness
 - b. Advanced Options
 - c. Hot Spot Evaluation
 - d. Tools
 - e. Drinking Water and Wastewater Infrastructure Needs
- 7. Water Policy Recommendations & Implementation
- 8. Appendix
 - Workgroup Report/Study Summaries

REVIEW AND DISCUSSION OF DRAFT PRIORITY RECOMMENDATIONS

Agenda 4B-2.

Oklahoma Comprehensive Water Plan Draft Priority Recommendations for Implementation

Key Questions of Priority Recommendations:

- Justification What is the urgency?
- What issues identified through OCWP public input and technical study processes (i.e., water shortages, "hot spots," funding gaps, regional planning, etc.) would implementation help resolve?
- What is the estimated timeline and cost of specific programs requiring implementation?

Draft Priority Water Policy Recommendations for Implementation "The Big 8"

- Water Quality & Quantity Monitoring
- State/Tribal Water Consultation and Resolution
- Instream (Environmental) Flows
- Water Supply Reliability

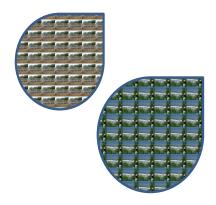
- Excess & Surplus Water
- Regional Planning Groups
- Water Project & Infrastructure Funding
- Water Efficiency & Reuse

Water Project & Infrastructure Funding Addressing Oklahoma's \$166 Billion Water and Wastewater Project Need

To address Oklahoma's considerable drinking water and wastewater infrastructure need and the inability of current programs to meet that need, a team of financial and water/wastewater infrastructure professionals, led by the OWRB, should investigate development of a more robust state funding program to meet the state's projected \$166 billion water and wastewater infrastructure need between now and 2060. Any potential program should include a specific mechanism to address the significant financing requirement of small communities in the state, as well as encourage regionalization of water/wastewater systems, where appropriate.

SUGGESTED CONSOLIDATED

RECOMMENDATION:


Financial Assessment of the OCWP

WATER RESOURCES BOARD the water agency

Addressing Oklahoma's \$166 Billion Water and Wastewater Project Need

State of Oklahoma

Executive Summary

- FirstSouthwest, utilizing projections provided by CDM, performed the following:
 - Description of OWRB's Existing Programs
 - Review of OCWP
 - Conduct Financial and Programmatic Analysis of Existing Funding Sources
 - Develop Comprehensive Model
 - Prepare Financial Scenarios
 - Quantify the Economic Impact of the Financial Investment in Oklahoma
 - Small Issuer Strategies

Emergency Grants

Income Source: FAP Bond Reserve Interest								
Since 1983 funded 562 Grants for \$33,482,977.17								
Funds Available	\$599,072.00							

Rural Economic Action Plan Grants (REAP)

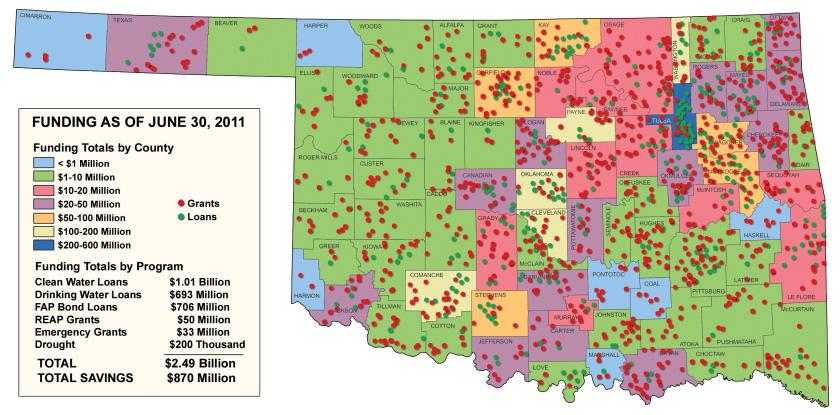
Income Source: State Appropriations of \$51,064,000.00

Since 1996 funded 563 Grants for	\$49,948,322.65
FY 2011 Carryover	\$467,425.44
2012 Appropriations	\$1,628,065.00
Total Funds Available	\$2,095,490.44

State Revenue Bond Issue Loan Program (FAP)

Reserve Fun	ds
State Funds	\$18,115,948.67
Gross Production Tax	\$1,845,000.00
AMBAC Surety Policies	<u>\$28,500,000.00</u>
TOTAL RESERVES	\$48,460,948.67
Since 1985 funded 327 Loans for:	\$704,840,000.00
Available Funds	\$0.00

Clean Water State Revolving Fund Loan Program (CWSRF)


State Match Funds	
State Funds	\$14,261,359.40
Ute Reservoir Settlement Funds	\$200,000.00
Debt Issuance	<u>\$33,708,740.60</u>
Total State Match	\$48,170,100.00
Since 1990 funded 243 Loans for	\$1,006,107,003.59
Available Funds	\$141,500,000.00
Fund Commitments	<u>\$304,000,000.00</u>
Additional Funds Needed	(\$162,500,000.00)

Drinking Water State Revolving Fund Loan Program (DWSRF)

State Match Funds		BARTLESVILLE WATER SYSTEM IMPROVEMENTS
State Funds	\$5,500,000.00	WATER TREATMENT PLANT CITY OF BARTLESVILLE BARTLESVILLE, OKLAHOMA DWSRF PROJECT P40/02040103
Gross Production Tax	\$4,800,320.00	BID Nº 2003-2004-265
Debt Issuance	<u>\$25,903,080.00</u>	BLACK & VEATCH Funded by the Oklahoma Department of Environmental Jim Duniap - State Senator
Total State Match	\$36,203,400.00	Quality Drinking Water State Revolving Fund in cooperation with the Oklahoma Water Resources Board Loan Amount \$45,500,000
Since 1997 funded 131 Loans for	\$697,064,642.40	
Available Funds	\$90,900,000.00	
Fund Commitments	<u>\$371,550,000.00</u>	
Additional Funds Needed	(\$280,640,000.00)	7

The DWSRF, CWSRF and the FAP have funded on a combined basis over \$2.49 billion in water and wastewater related projects and have saved communities over \$870 million in debt service costs

Funding Agency Coordinating Team

- Group of federal and state organizations that offer financing to eligible
 Oklahoma public entities for water and wastewater projects
- Meet quarterly with the purpose of facilitating infrastructure funding through communication and streamlined application processes

Meml	Working together to	
Oklahoma Water Resources Board	USDA Rural Development	find solutions to Oklahoma's most
Oklahoma Department of Commerce	Oklahoma Council of Governments	challenging water
Indian Health Service	Community Resource Group	and wastewater infrastructure needs
Oklahoma Department of		

Quantifying the Economic Impact

Oklahoma Advantages Assessment and Scoring for Infrastructure Solutions (OASIS) is a web based application which quantifies the social, economic and environmental benefits of infrastructure investments to communities and the state beyond regulatory compliance.

The computer program, which was developed specifically for Oklahoma, will be available on the OWRB website (<u>www.owrb.ok.gov</u>) in October 2011. Communities will be able to enter details regarding their current or pending infrastructure investments. The result will be output statements which allow community leaders to document and/or better articulate the benefits of the investment including but not limited to:

- •Impacts on economic growth
- Impacts on quality of life
- System sustainability
- •Cost of delaying improvements
- Reduced health risks from waterborne illnesses
- •Energy cost savings from efficiency upgrades
- Impacts to property values

What is the Urgency for Infrastructure Funding?

- Address health concerns
 - Cannot ensure potable water unless adequately addressing wastewater
- Aging Infrastructure
- Need clean water for economic development

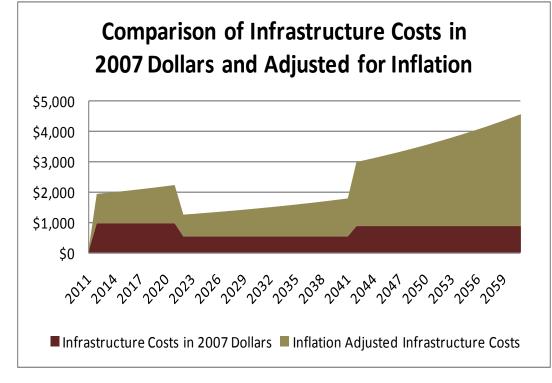
Review of the Projected Drinking Water Infrastructure Costs

For Small, Medium, & Large Providers:

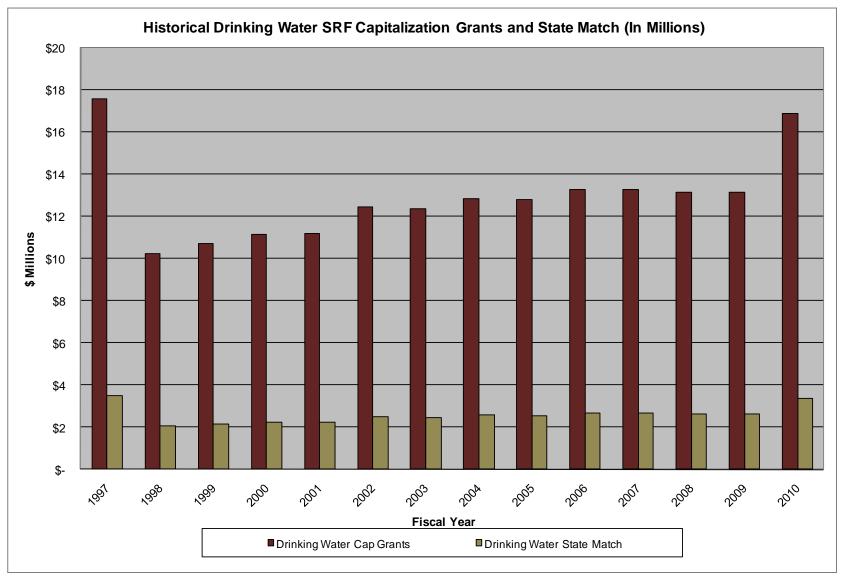
For Reservoir Projects:

Using major reservoir list by region, Select water supply provider for modeling develop rehabilitation project list Develop project list for selected provider Calculate costs for projects using cost models Calculate costs for projects using cost models or available information Sum project costs to calculate regional cost for major reservoir projects Sum project costs by infrastructure type Apply weighting equation to calculate regional cost by infrastructure type Apply summation equation to calculate regional cost

	Present - 2020 2021-2040 2041-2060 Potential Infrastructure Infrastructure Infrastructure Funding Need (millions Need (millions Need (millions)		rastructure ed (millions	Inf Ne	otal Period rastructure ed (millions	Total Period Infrastructure Need (percent	Total Period Infrastructure Need (percen				
Category ^A	Source ^B	of 20	007 dollars)	of 2	007 dollars)	of 2	007 dollars)	of 2	2007 dollars)	by category)	by population)
Small	DWSRF Eligible	\$	3,395.29	\$	5,059.79	\$	8,766.65	\$	17,221.73		
	Non-DWSRF Eligible	\$	43.97	\$	66.94	\$	66.93	\$	177.84		
Small Subtotal		\$	3,439.26	\$	5,126.72	\$	8,833.59	\$	17,399.57	45%	13%
Medium	DWSRF Eligible	\$	4,323.54	\$	4,054.95	\$	6,122.61	\$	14,501.09		
	Non-DWSRF Eligible	\$	53.42	\$	61.91	\$	61.90	\$	177.23		
Medium Subtotal		\$	4,376.96	\$	4,116.85	\$	6,184.51	\$	14,678.32	39%	51%
Large	DWSRF Eligible	\$	1,720.54	\$	1,173.15	\$	1,689.45	\$	4,583.14		
	Non-DWSRF Eligible	\$	50.48	\$	16.78	\$	16.78	\$	84.04		
Large Subtotal		\$	1,771.02	\$	1,189.93	\$	1,706.23	\$	4,667.18	12%	36%
Reservoir	DWSRF Eligible	\$	-	\$	-	\$	-	\$	-		
	Non-DWSRF Eligible	\$	95.27	\$	256.52	\$	806.61	\$	1,158.40		
Reservoir Subtotal		\$	95.27	\$	256.52	\$	806.61	\$	1,158.40	4%	0%
Total		\$	9,682.51	\$	10,690.02	\$	17,530.94	\$	37,903.46		

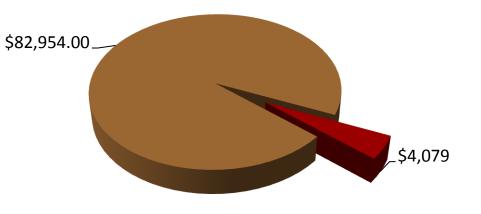

^A Large systems are those serving more than 100,000 people, medium systems are those serving between 3,301 and 100,000 people and small systems are those serving 3,300 and fewer people.

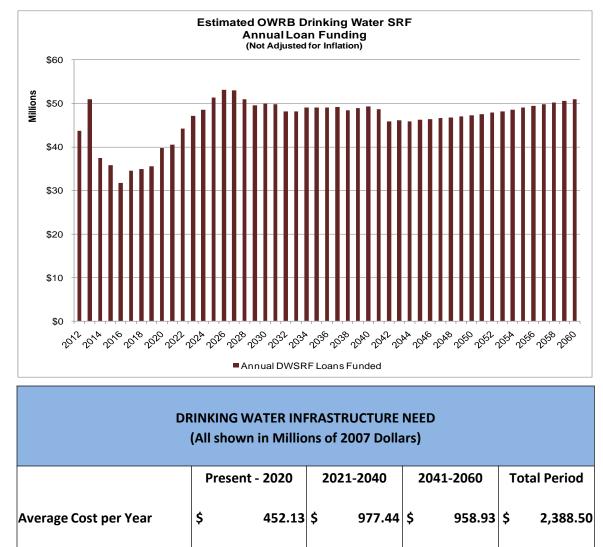
^B The "reservoir" category includes all regional reservoir rehabilitation projects. This study assumes that distributiono projects for new growth and all reservoir projects are non-DWSRF eligible. All other projects were assumed to be DWSRF eligible.


DRINKING WATER INFRASTRUCTURE NEED (All shown in Millions of 2007 Dollars)										
Present - 2020 2021-2040 2041-2060 Total Perio										
Total Period Costs	\$	9,682.51	\$	10,687.86	\$	17,530.94	\$	37,901.31		
Average Cost per Year	\$	968.25	\$	534.39	\$	876.55	\$	758.03		
Cost Inflation Adjusted	\$	11,089.69	\$	19,221.18	\$	56,722.09	\$	87,032.96		

- Infrastructure cost projections from CDM were provided in 2007 dollars
- Figures were adjusted to more accurately calculate infrastructure costs closer to time of construction
- Figures were adjusted at a rate of 2.98%, representing average U.S. CPI over the last 15 years plus 50 basis points

- While the actual CPI will be different than the assumption, this analysis provides some quantification of the compounding impact over time
- Debt is often the tool utilized to finance projects that have long useful lives like the proposed infrastructure projects


Financial & Programmatic Analysis of Existing Programs


Financial & Programmatic Analysis of Existing Programs

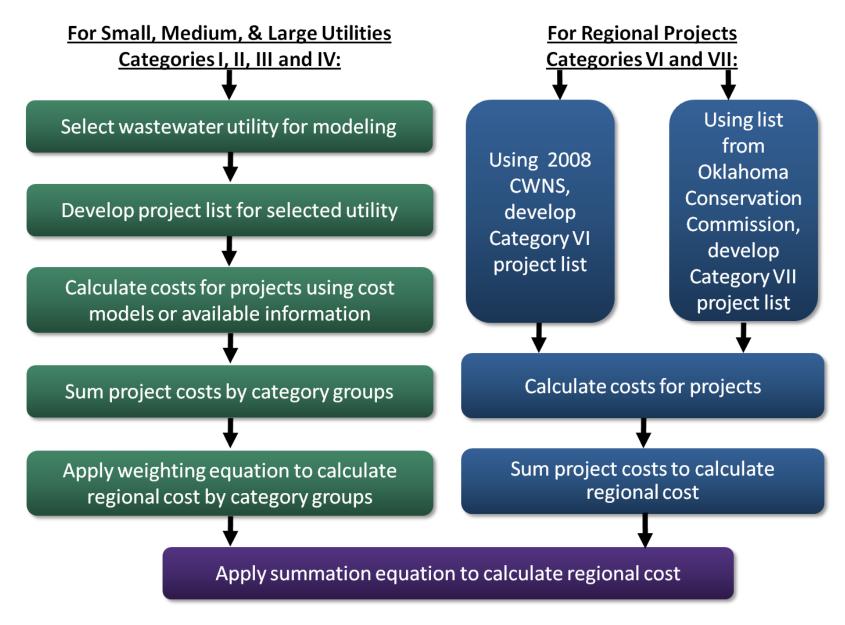
- Most, not all, projects qualify for the DWSRF funding
- The inflation adjusted allocations between DWSRF eligible and Non-DWSRF eligible are shown in the table
- Approximately 96% of the infrastructure projects qualify

DRINKING WATER INFRASTRUCTURE NEED												
(All Shown in Inflation Adjusted Dollars)												
	Pre	Present - 2020 2021-2040 2041-2060 Total Perio										
DWSRF Eligible	\$	10,811.22	\$	18,501.71	\$	53,641.08	\$	82,954.00				
Non - DWSRF Eligible	\$	278.48	\$	719.47	\$	3081.01	\$	4078.96				
Total Costs	\$	11,089.69	\$	19,221.18	\$	56,722.09	\$	87,032.96				

Financial & Programmatic Analysis of Existing Programs

9,439.37 \$

10,287.87 \$


16,578.71 \$

36,305.95

Total Funding Need

\$

Review of the Projected Wastewater Infrastructure Costs

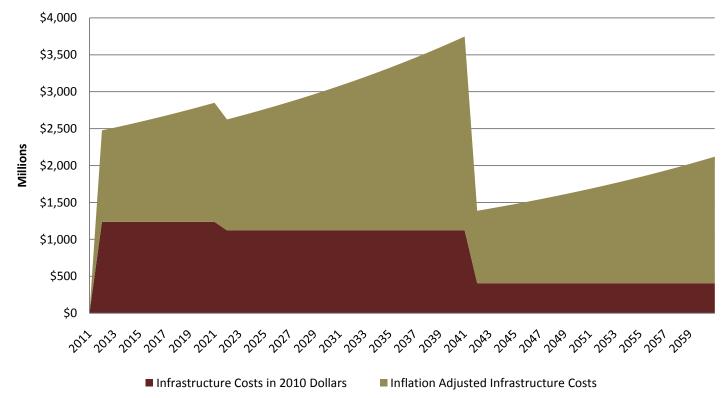
Review of OCWP

		Present - 2020	2021 - 2040	2041 - 2060	Total Period	Total Period	Total Period
		Infrastructure	Infrastructure	Infrastructure	Infrastructure	Infrastructure	Infrastructure
	Official Needs	Need (millions of	Need (millions of	Need (millions of	Need (millions of	Need (percent	Need (percent
Category ^A	Category Group ^B	2010 dollars)	2010 dollars)	2010 dollars)	2010 dollars) ^c	by category)	by population)
Small	I and II	\$ 170	\$ 1,300	\$ 530	\$ 2,000		
	III and IV	\$ 2,200		\$ 1,100	\$ 8,300		
Small Subtotal		\$ 3,370	\$ 6,300	\$ 6,630	\$ 10,300	24%	13%
Medium	I and II	\$ 1,100	\$ 4,100	\$ 1,170	\$ 6,370		
	III and IV	\$ 7,600					
Medium Subtotal		\$ 8,700	\$ 14,100	\$ 6,170	\$ 27,970	65%	51%
Large	I and II	\$ 230	\$ 690	\$ 620	\$ 1,540		
	III and IV	\$ 670	. ,				
Large Subtotal		\$ 900	\$ 1,890	\$ 1,200	\$ 3,990	9%	36%
Regional	VI	\$ 240	\$-	\$-	\$ 240		
	VII	\$ 170					
Regional Subtotal		\$ 410	\$ 130	\$ 130	\$ 640	2%	
Total		\$ 12,380	\$ 22,420	\$ 8,130	\$ 42,930		

^A Large systems are those serving more than 100,000; medium systems are those serving between 3,301 and 100,000 people; and small systems are those serving 3,300 and fewer people.

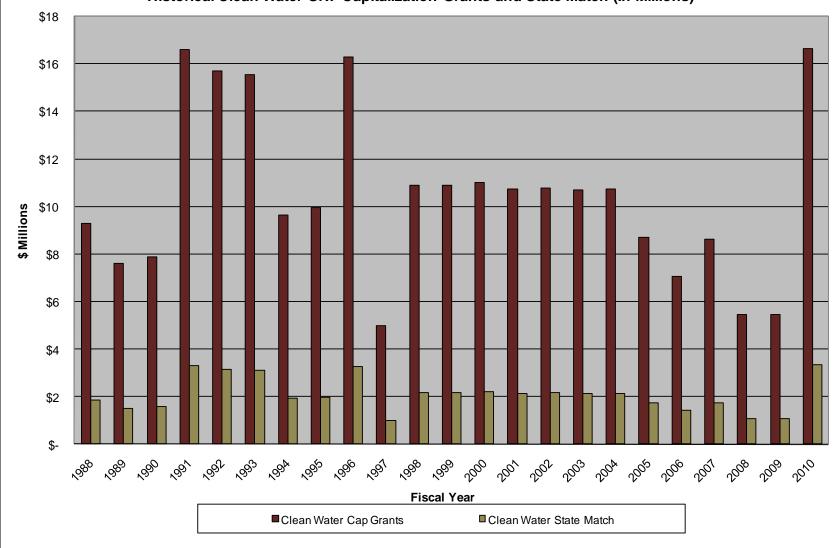
^B Official EPA needs categories where Category I includes secondary wastewater treatment, Category II includes advanced wastewater treatment, Category III is for existing collection systems, Category IV includes new collection systems, Category VI includes stormwater management, and Category VII includes nonpoint source pollution control. Costs were not developed for Category V combined sewer overflow correction (Oklahoma does not have combined sewer overflow systems,) Category X recycled water distribution (Oklahoma does not have these systems,) and Category XII decentralized wastewater systems (category not consistent with public utilities included.)

^c Small differences in values may result from rounding.

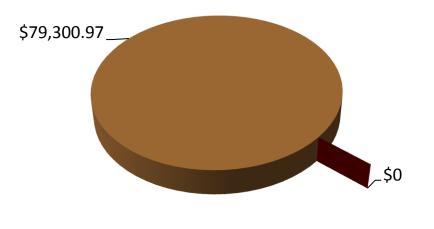

Review of OCWP

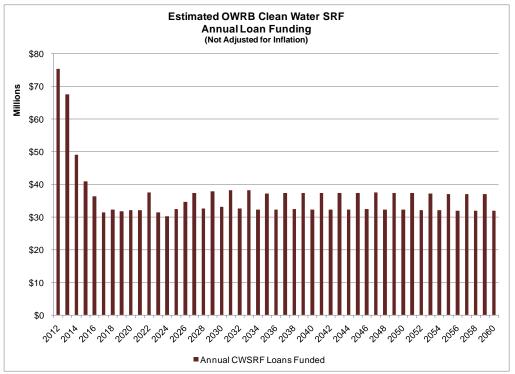
WASTEWATER INFRASTRUCTURE NEED (All shown in Millions of 2010 Dollars)									
	Present - 2020 2021-2040 2041-2060 Total Perio								
Total Period Costs	\$	12,380	\$	22,420	\$	8,130	\$	42,930	
Average Cost per Year	\$	1,238	\$	1,121	\$	407	\$	859	
Cost Inflation Adjusted \$ 14,179 \$ 38,817 \$ 26,305 \$ 79,30									

- Infrastructure cost projections from CDM were provided in 2010 dollars
- Figures were adjusted to more accurately calculate infrastructure costs closer to time of construction
- Figures were adjusted at a rate of 2.98%, representing average U.S. CPI over the last 15 years plus 50 basis points


Review of OCWP

Comparison of Infrastructure Costs in 2010 Dollars and Adjusted for Inflation


- While the actual CPI will be different than the assumption, this analysis provides some quantification of the compounding impact over time
- Debt is often the tool utilized to finance projects that have long useful lives like the proposed infrastructure projects


Financial & Programmatic Analysis of Existing Programs Historical Clean Water SRF Capitalization Grants and State Match (In Millions)

- Most, not all, projects qualify for the CWSRF funding
- The inflation adjusted allocations between CWSRF eligible and Non-CWSRF eligible are shown in the table
- Approximately 100% of the infrastructure projects qualify

WASTEWATER INFRASTRUCTURE NEED (All Shown in Inflation Adjusted Dollars)									
	Present - 2020 2021-2040 2041-2060 Total Period								
CWSRF Eligible	\$	14,179	\$	38,817	\$	26,305	\$	79,301	
Non - CWSRF Eligible	\$	-	\$	-	\$	-	\$	-	
Total Costs	\$	14,179	\$	38,817	\$	26,305	\$	79,301	

WASTEWATER INFRASTRUCTURE NEED									
	Cu	imulative Fui	ndin	g Capacity					
	(All sho	own in Millio	ns o	of 2010 Dolla	irs)				
	Pres	ent - 2020	2	021-2040	2041-2060		Total Period		
Average Cost per Year	\$	535	\$	690	\$	695	\$	1,921	
Total Funding Need \$ 12,380 \$ 22,420 \$ 8,130 \$ 42,93									

- The second program to be analyzed has only received capitalization from the State of Oklahoma
- The Financial Assistance Program (FAP) was created in 1985 and has received approximately \$20 million in funding
- Like the DWSRF and CWSRF, the FAP has been leveraged and has the highest rating of AAA
- Approximately \$705 million has funded 327 projects
- The projected capacity of the FAP is insufficient to fund the projected infrastructure needs

- Given the magnitude of the funding gap, we suggest that a new program be created or the FAP be restructured
- Utilize the same framework and statutory authority that provided for the creation of the FAP
- Will allow the maximum flexibility in creating the program guidelines, legal parameters and bond requirements

Given the AAA ratings on the DWSRF, CWSRF and FAP programs, we recommend that the borrower credit analysis, loan administration and on-going surveillance of those programs be the foundation for any new program

- A 50-year strategic planning model has been developed
- It includes the following variables:
 - Projected Program Demand
 - Underlying Borrower loans
 - Lending Rates
 - Investment of Funds
- The model has been and will continue to be a tool in analyzing various alternatives related to the funding gap

- For purposes of illustration, the analysis is based on funding projects in \$1 billion increments
- Reasonable market assumptions have been utilized in the model
- With a project funding horizon of 50 years, the related debt extends 70 years assuming a 20 year amortization

Providing interest rate subsidies can be valuable in the following ways:

- Incentivize communities financially to move forward with projects
- Encourage communities by reducing the cost to the end ratepayer
- Influence communities by creating a partnership to share the debt service costs

There are two types of funding methodologies for consideration:

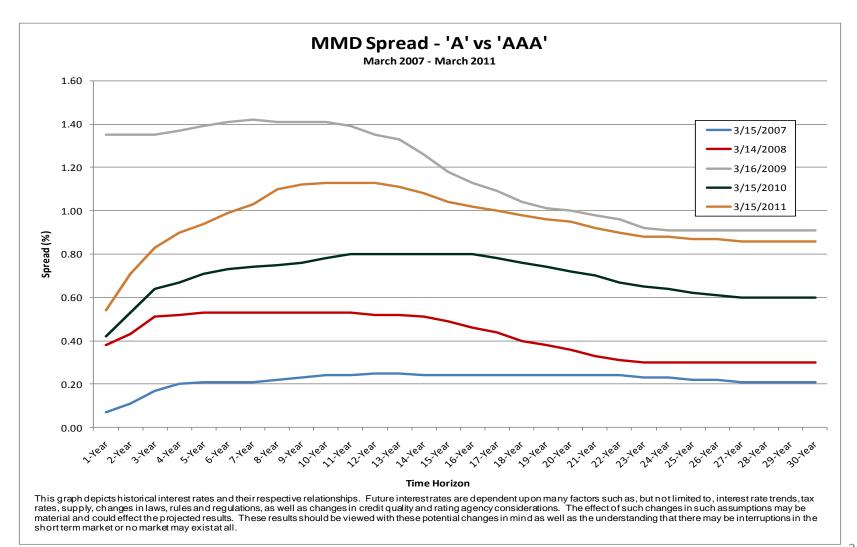
NON-PERPETUITY

- Contribute only the amount of funding needed to subsidize the debt service
- Once the funding stops, the program ceases
- Lowest cost option

PERPETUITY

- Contribute more capital than is required to subsidize debt service
- After the funding period, the accumulated equity creates a revolving fund program
- More expensive option, but provides a more sustainable funding options

Capitalization impacts with creating a Perpetuity Program

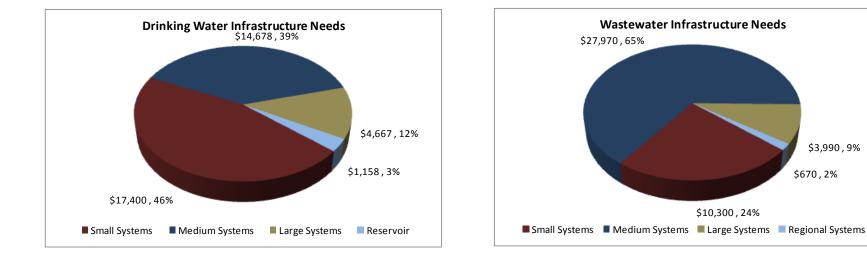

- More capitalization is required up-front in order to create a 1.40 debt service coverage factor
- Over time less Capitalization is required versus a Non-Perpetuity Program
- Additional coverage provides additional benefits from a credit perspective

- The first table on the next page shows the total loans projected to be funded over a 50 year period with a factor of 1.40 times applied
- The second table on the next page shows the amount of capitalization required to create the 1.40 times debt service coverage and creates a revolving fund with the annual capacity in the above table

\$1+ Billion Construction Funding Over 50 Year Period TOTAL LOANS FUNDED Revolving Program (Provided in \$ Millions)										
	Present to 2020 2021-2040 2041-2060 Total Loans Funded Annual Capacity									
Subsidy 0%	200.00	455.55	484.10	1,139.65	24.20					
Subsidy 10%	200.00	438.18	464.28	1,102.46	23.24					
Subsidy 20%	200.00	421.51	442.27	1,063.79	22.29					
Subsidy 30%	200.00	413.04	427.58	1,040.62	21.43					
Subsidy 40%	200.00	400.28	409.18	1,009.46	20.64					

\$1+ Billion Construction Funding Over 50 Year Period Allocation of Alternative Funding Source for Interest Subsidy by Defined Timeframes Revolving Program (Provided in \$ Millions)										
	Present to 2020 2021-2040 2041-2060 Total Equity									
Subsidy 0%	38.13	1.43	0.00	39.56						
Subsidy 10%	47.17	4.92	0.00	52.09						
Subsidy 20%	56.50	9.62	0.00	66.12						
Subsidy 30%	65.74	18.86	0.00	84.60						
Subsidy 40%	75.21	26.74	0.47	102.42						

Credit and Rating Agency Considerations



Small Issuer Strategies

- The OCWP identifies small providers have the largest overall drinking water infrastructure cost
- Comprises 46% of the State's drinking water and 24% of the wastewater needs
- A strategy should be formulated related to small providers

Some challenges in funding small systems include:

- Credit and financial implications to the program due to the inclusion of low or non-rated credits;
- Difficulties meeting financial ratios and credit thresholds in the loan evaluation process by the OWRB
- Performance considerations relative to the ongoing surveillance requirements
- Lack of audited financial statements

Small Issuer Strategies

To the extent policy considerations and program goals include funding small systems, there are ways to ensure funding while minimizing the impact of the challenges:

- Define annual funding goal to ensure funding levels
 - Fixed dollar amount
 - Percent of annual funding
- Allows capacity models to integrate information so determine if coverage goals need to be adjusted to achieve targeted Program ratings
- Create a second smaller revolving fund for direct loans to communities with weak credits and financial circumstances
 - •This non-leveraged fund would not impact the ratings of the leveraged pool
 - •Could also be a source for projects that have private activity components

Summary

 In order to meet 60% of the anticipated \$166 billion of need and provide a drinking water infrastructure subsidy of 30% and a wastewater infrastructure subsidy of 40% would require projected capital contributions to create a revolving fund of:

DRINKING WATER INFRASTRUCTURE NEED (All shown in Millions of 2007 Dollars)								
Present - 2020 2021-2040 2041-2060 Total Period								
Total Period Costs	\$ 9,683	\$ 10,688	\$ 17,531	\$ 37,901				
60% FUNDED	\$ 5,810	\$ 6,413	\$ 10,519	\$ 22,741				
Equity Needed @ 30% Subsidy	\$ 1,834	\$ 22	\$ 128	\$ 1,984				

WASTEWATER INFRASTRUCTURE NEED (All shown in Millions of 2010 Dollars)								
	Present - 2020 2021-2040 2041-2060 To							otal Period
Total Period Costs	\$	12,380	\$	22,420	\$	8,130	\$	42,930
60% FUNDED	\$	7,428	\$	13,452	\$	4,878	\$	25,758
Equity Needed @ 40% Subsidy	\$	2,611	\$	1,041	\$; -	\$	3,652

Summary

- Propose creation of new or restructured FAP Loan Program as well as a small issuer loan program:
 - Retain FAP reserve earnings
 - Maintain Gross Production Tax on oil
 - Recommend the redirection of all or a portion of REAP funds
 - Identify other state funding sources
- Explore new alternative funding sources
- Encourage maintaining or increasing federal SRF funding
- Consider necessity of subsidy reduction

Timeline

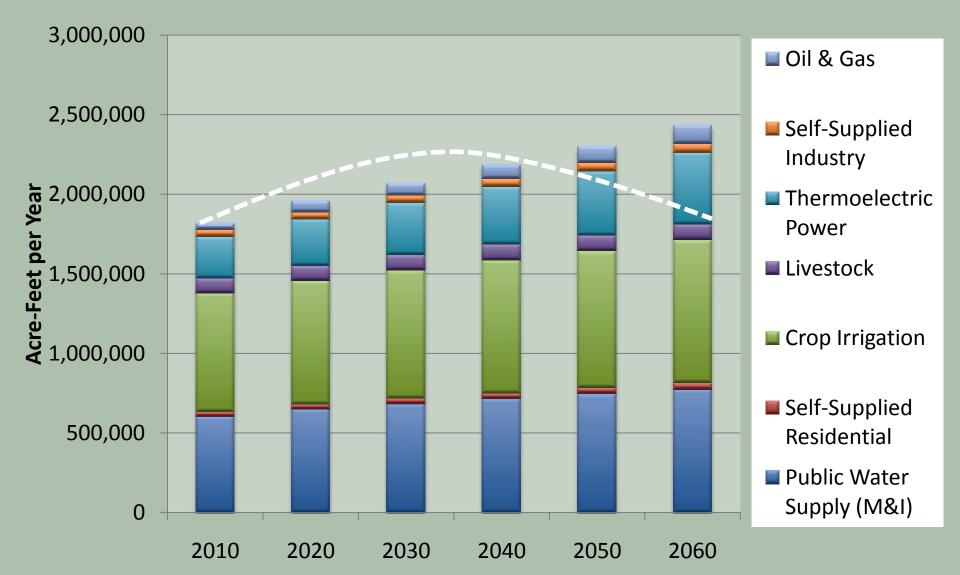
- Convene and meet with a team of financial and water/wastewater infrastructure professionals by 08/31/11
- Present recommendations to the Legislative committee on 10/19/11

Water Efficiency & Reuse Innovative Solutions to Forecasted Water Shortages

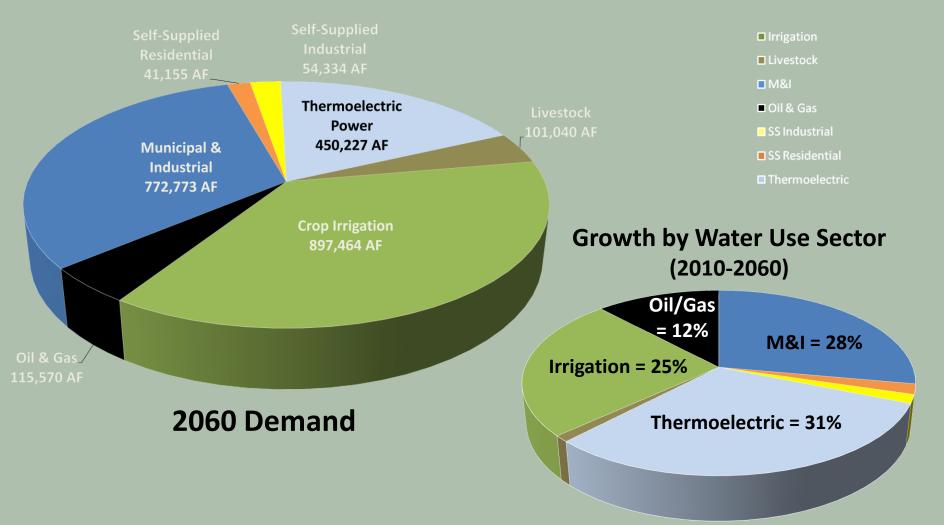
SUGGESTED CONSOLIDATED RECOMMENDATION:

To address water shortages forecasted in the 2012 Update of the OCWP, as well as avoid the costly development of new supplies, the OWRB should collaborate with various representatives of the state's water use sectors – with particular emphasis on crop irrigation, municipal/industrial, and thermoelectric power – to incentivize voluntary initiatives that would collectively achieve an aggressive goal of maintaining statewide water use at current levels through 2060. In its associated evaluation of appropriate programs and policies, the OWRB should identify the optimum financial incentives, as well as recognize the potential for lost water provider revenues resulting from improved conservation. In particular, the OWRB should consider the following:

Water Efficiency & Reuse Innovative Solutions to Forecasted Water Shortages


- Implementation of incentives (tax credits, zero-interest loans, cost-share programs, increasing block rate/tiered water pricing mechanisms, etc.) to encourage improved irrigation and farming techniques, efficient (green) infrastructure, retrofitting of water-efficient infrastructure, use of water recycling/reuse systems in new buildings, promotion of "smart" irrigation techniques, control of invasive species, and use of marginal quality waters (including treated gray and waste water).
- Establishment of education programs that modify and improve consumer water use habits.
- The applicability of existing or new financial assistance programs that encourage Oklahoma water systems to implement leak detection and repair programs that result in reduced loss and waste of water.

SUGGESTED CONSOLIDATED RECOMMENDATION:


Important Elements of the Recommendation

- Reducing forecasted 2060 demand to current levels:
 - By developing programs and policies that are voluntary.
 - By offering financial incentives to encourage the adoption of practices, the development and employment of technologies, and the use of equipment, fixtures and infrastructure that reduce demand and increase supply.
 - By creating education programs that change consumer behavior and instill an ethic of conservation.

Demand Projections Characterize the Need for Water

Water Efficiency & Reuse The Opportunity

What Do We Mean?

- "Water use efficiency" refers to conservation through such things as specific consumer decisions and activities, employing more efficient equipment and technology, and the adoption of voluntary programs and policies.
- "Reuse" is the utilization of either untreated (gray) or treated wastewater instead of freshwater or potable water for appropriate purposes.

Effect on Supply and Demand

- Both affect the supply AND the demand side of water use and management.
- When you reduce demand, you increase supply; when you increase available supply you mitigate the impacts of future demands:
 - Water Efficiency/Conservation both reduces demand and increases available supply
 - Water Reuse typically stretches currently available supplies and reduces need for development of new supplies but does not necessarily reduce demand

How Did the OCWP Explore These Issues?

- Conservation:
 - Evaluated various scenarios in the Municipal/Industrial and Irrigation sectors
 - Analysis performed statewide and in all 82 basins
 - Used the information to evaluate effectiveness as an option to reduce shortages
- Reuse (MQW Workgroup):
 - Analyzed potential for reuse across the state and proposed where where most feasible
 - Discussed considerations necessary to determine local applicability: regulatory, treatment, suitability for various applications, etc.

OCWP Municipal/Industrial Conservation Analysis

Scenario I (Moderate Level) Considerations:

- Passive Conservation: water savings that are the direct result of plumbing codes of the federal Energy Policy Act of 1992 requiring water efficient plumbing fixtures
- Metering: installing meters to monitor water loss
- Tiered Rate Structure: increasing tiers of cost with increased water use
- Community Education and Information: changing fundamental habits

OCWP Municipal/Industrial Conservation Analysis

Scenario II (Substantial Level) Considerations:

- More aggressive implementation of various components of Scenario I
- Analyzed the impact of high efficiency indoor water use regulations beyond that of passive conservation

Fixture	Passive Mandates	High Efficiency Examples
Toilet	1.6 gpf	1.0 gpf
Urinal	1.0 gpf	0.5 gpf
Faucet	2.5 gpm	1.0 gpm
Showerhead	2.5 gpm	2.0 gpm

OCWP Irrigation Conservation Analysis

- Scenario I (Moderate Level)
 - Considered trends in the conversion to higher efficiency irrigation methods in the following categories:
 - Sprinkler (low pressure systems)
 - Surface/Flood (improvements in the infrastructure of the conveyance system)
 - Micro (at or near the surface or root zone)
- Scenario II (Substantial Level)
 - Considered the above plus an analysis of the impact of shifting to less water-intensive crops (e.g., grain sorghum instead of corn, forage crops like alfalfa and pasture grass instead of grain, etc.) beginning in 2015.

OCWP Conservation Analysis Other Savings

- OCWP Analysis Also Considered Other Savings Associated with Conservation
- Energy:
 - Less energy required to produce water (treatment and delivery)
 - Less energy required to convey and treat wastewater (since less water in system)
 - Therefore, less water requires less energy
- Cost/Benefit :
 - Monetary savings associated with having to treat and convey less water and wastewater

OCWP Conservation Analysis Conservation-Associated Cost Savings

- Considered direct operational costs for water (by source) and wastewater treatment and delivery saved due to conservation.
- Took into account electricity, labor, chemical costs, water analysis, regulatory compliance.

	Surface Water	Groundwater	Wastewater	Total
Scenario I	\$26,036,731	\$2,903,100	\$18,510,151	\$47,449,981
Scenario II	\$38,961,078	\$4,344,167	\$23,880,443	\$67,185,689

Energy/Water Nexus Savings

- It takes water to produce thermoelectric power; energy is used in the distribution and treatment of water and wastewater.
- Therefore, energy savings associated with reduced water production and wastewater treatment are important.

	Energy Saved	Water Saved
	GW hours	Acre-Feet/Year
Scenario I	102	221
Scenario II	146	316

OCWP Conservation Analysis Total Water Savings

M&I and Agriculture Statewide Demand Projections & Water Savings for Conservation Scenarios (AFY)

	2010	2020	2030	2040	2050	2060	2060 with Energy Savings
Baseline	1,377,318	1,455,309	1,523,273	1,587,406	1,642,069	1,711,392	
Scenario I	N/A	1,301,816	1,332,781	1,388,603	1,435,807	1,496,643	1,496,422
Scenario II	N/A	1,155,397	1,170,248	1,209,372	1,244,123	1,295,569	1,295,252

OCWP Conservation Analysis What is the Impact?

Gaps/Depletions Mitigation Statewide (2060)

Source	Baseline Shortage Amount	Total & Percent Reduction from Baseline Shortage Amount					
		Moderate Conservation		Substantial Conservation			
SW	75,240 AFY	18,810 AFY	25%	23,980 AFY	32%		
AGW	38,980 AFY	12,474 AFY	32%	22,554 AFY	59%		
BGW	92,710 AFY	13,906 AFY	15%	73,784 AFY	78%		

OCWP Conservation Analysis What is the Impact?

Panhandle

West Centra

Beaver-Cache

CWP "hot spot" basins

Middle Arkansas

Eufaula

Blue-Boggy

Upper Arkansas

Central

Lower Washita

Grand

Lower Arkansas

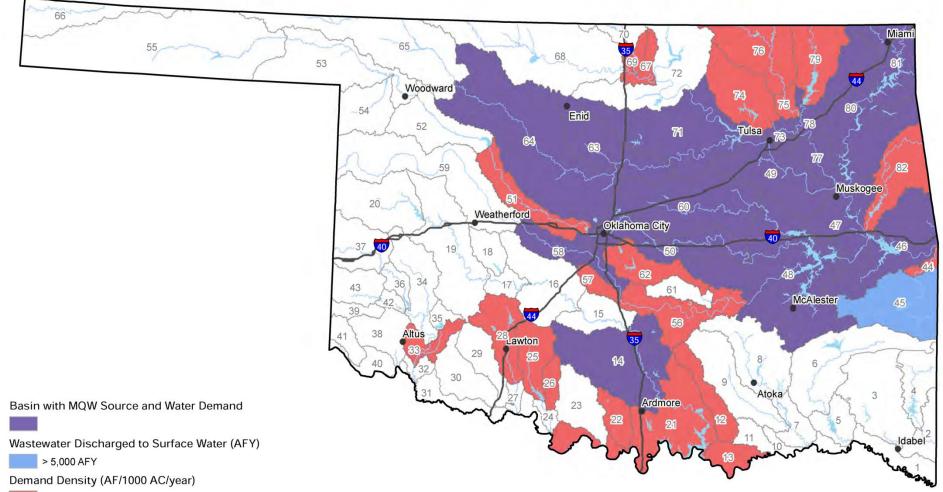
Southeast

Gaps/Depletions Mitigation for Hot Spots (2060)

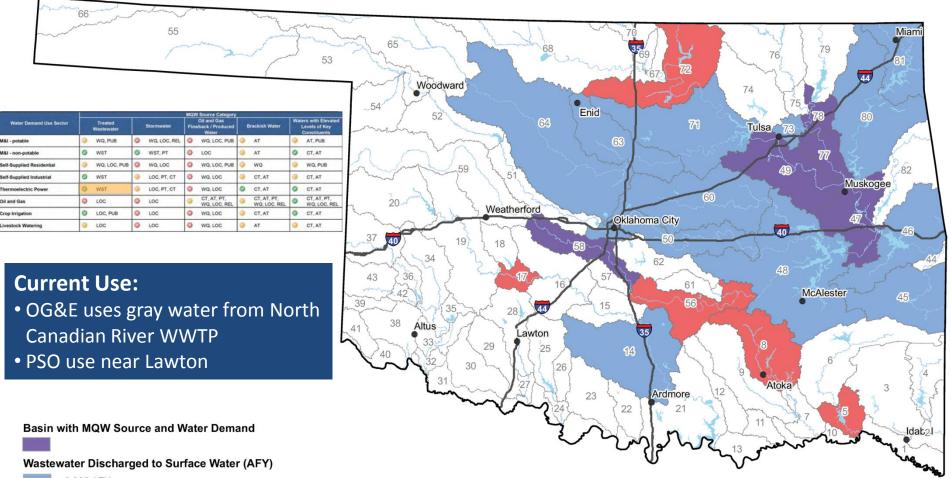
Source	Baseline Shortage Amount	Total & Percent Reduction from Baseline Shortage Amount					
		Moderate Level		Substantial Level			
SW	14,590 AFY	7,440 AFY	51%	8676 AFY	60%		
AGW	12,070 AFY	6,036 AFY	50%	9036 AFY	75%		
BGW	69,000 AFY	24,080 AFY	35%	61,320 AFY	89%		

OCWP Conservation Analysis Improving the Water Future of Basins

	Reduction in the Number of Basins with Gaps and/or Storage Depletions			
	Surface Water	Alluvial Groundwater	Bedrock Groundwater	
Baseline	55	63	34	
Scenario I	42	51	26	
Scenario II	33	41	23	

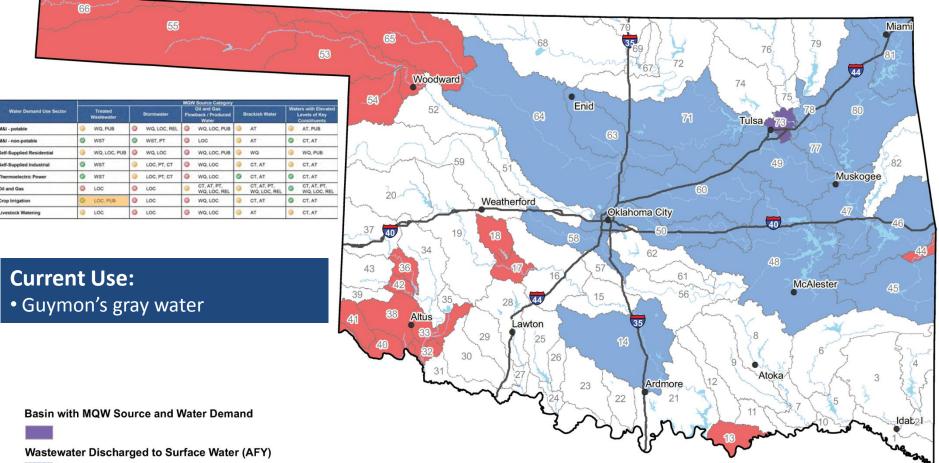

OCWP Conservation Analysis Further Benefits of Conservation

- Reduce Capital Needs for Forecasted Infrastructure Needs:
 - Can stretch supplies and thereby reduce \$166 billion need
- Drought Mitigation:
 - Reduces demand
 - Stretches supplies
 - Delays or avoids acute drought restrictions
- More Water for Non-consumptive Uses:
 - Protect Oklahoma's 3rd largest industry tourism & recreation
 - Equally important to fish & wildlife, both sport industry and ecological protections (e.g., endangered species protection)
 - Can reduce impacts of drought on non-consumptive needs


OCWP Conservation Analysis Reuse of Wastewater

- Includes uses for gray water and treated wastewater.
- Gray water uses include subsurface landscape irrigation of nonedible plants, for example.
- Treated Wastewater uses were analyzed by the OCWP Marginal Quality Water Workgroup:
 - Determined it to be a viable source for non-potable uses
 - Matched greatest supply availability with greatest demand
 - M&I landscape irrigation, crop irrigation, and power and industrial use are most likely the most cost-effective and viable uses
 - May require slightly greater levels of treatment beyond that required for discharges depending upon site-specific conditions

OCWP Conservation Analysis Treated Wastewater for M&I Use (2060)


OCWP Conservation Analysis Treated Wastewater for Thermoelectric Power Use (2060)

> 5,000 AFY

Demand Density (AF/1000 AC/year)

OCWP Conservation Analysis Treated Wastewater for Crop Irrigation Use (2060)

> 5,000 AFY

Demand Density (AF/1000 AC/year)

How Do We Get There?

- Work with key sectors and data from OCWP to develop the most viable options for Oklahoma.
- In response, develop programs and policies that encourage voluntary conservation activities.
- Provide financial incentives in the form of tax credits, grants, low/zero interest loans, etc. as a part of programs, where applicable.
- Promote and facilitate research that helps develop technologies to achieve conservation savings, such as "smart" irrigation.

Benefits of Water Efficiency & Reuse

- Make more supply available for non-consumptive and consumptive uses
- Allowing for greater economic development with reduced impact on water availability and shortages
- Savings in energy, operational and future infrastructure costs for utilities and ratepayers
- Lower operational costs for irrigators and the opportunity for increased acres in crop production with minimal to no net increase in water use
- Business growth opportunities for Oklahoma in the water efficiency technology sector
- Be a national leader in conservation and water efficiency

The State Legislature should provide a dedicated source of funding to enable the State of Oklahoma to accurately assess the quality and quantity of its water resources, thereby ensuring improved water quality protection, accurate appropriation and allocation, and long-term collection of data to inform water management decisions...

SUGGESTED CONSOLIDATED RECOMMENDATION:

...Such funding should be directed toward development and maintenance of a permanent statewide water quality and quantity monitoring program(s), specifically allowing for:

- Integration of all state surface and groundwater quality and quantity monitoring programs into one holistic, coordinated effort.
- Stable and dedicated appropriations for the Cooperative Stream Gaging and Beneficial Use Monitoring Programs.
- Creation of an ambient groundwater quality monitoring program.
- Full implementation of a statewide program for the collection of biological data to provide a better indication of long-term water quality.

Justification:

- Reliable water management is predicated on the consistent, long-term collection of "good" data, its availability and interpretation:
 - Water Quality Protection & Pollution Remediation
 - Permitting
 - Public Health
 - Pollution Remediation
 - Flood Forecasting
 - Drought Preparedness
 - Planning

- Does a particular swimming area pose a risk to me or my family?
- Where's the optimum location to drill a water supply well?
- When and where could the next blue-green algae outbreak occur?

Supported by OCWP Technical Analyses:

- Insufficient streamflow data in some locations reduced confidence in supply/demand assessment.
- Lack of comprehensive data on groundwater quality reduced confidence in water supply assessment.

Implementation:

-	Α	nnual Cost	*Timeline
Surface Water Quality Monitoring: – Current Funding – Additional Funds Required	= \$ = \$	800,000 975,000	2012
Surface Water Quantity Monitoring: – Current Funding – Additional Funds Required	= \$ = \$	I 20,000 445,000	2012
Groundwater Quality/Quantity Monitoring: – Current Funding – Additional Funds Required	= \$ = \$	0 815,000	2012
Total New Funding Requirement	= \$ 2	2,235,000	

*Existing program framework in place.

To address projected increases in water demands and related decreases in availability, as well as to ensure the fair, reliable, and sustainable allocation of Oklahoma's water supplies, the Oklahoma Water Resources Board should implement the following recommendations:

SUGGESTED CONSOLIDATED

RECOMMENDATION:

 Address the growing backlog of maximum annual yield studies and required 20 year updates on groundwater basins within the state – including characterizations of the valid interactions between surface and groundwater sources – to accurately determine water available for use...

- ...Develop stream water allocation models on all stream systems within the state to assess water availability at specific locations, manage junior/senior surface water rights under various drought scenarios, anticipate potential interference of use, and evaluate impacts of potential water transfers.
- Facilitate a workgroup of stakeholders, researchers and other professionals to investigate:
 - transitioning from an average annual to seasonal stream water allocation program; and
 - implementation of a conjunctive surface water/groundwater management program.

Justification:

- Hydrologic studies are fundamental for determining water available for allocation.
- Lack of hydrogeologic study on water budget, demands, flow delineation, and surface water-groundwater interactions allows for over-appropriation; uncertainty for economic sustainability and growth, and ongoing back-end management of conflicts between water users.
- Scientifically-based hydrologic study and allocation of water rights
 explicitly contemplated and set out in Oklahoma Statute.
- Provides policy-makers a basis for forecasting water shortages in drought and high-use conditions and in specific location.
- Local and state **economies depend** upon reliable water supply.

Justification:

- Limit potential intrastate and interstate conflicts and litigation.
- Addresses public issues brought by OCWP process:
 fairness in water rights administration, priority on unstudied basins/outdated studies, assessment of SW/GW interaction, interstate water issues; legislative funding.
- Accounting for seasonal variations in use and the interrelationship between surface and groundwaters minimizes over appropriation and shortage.

Supported by OCWP Technical Analyses:

- Identified "Hot Spot" basins facing significant future water supply challenges.
- Identified basins with forecasted surface water gaps and groundwater storage depletions.

Implementation:

Annual Hydrologic Study Costs (through 2022)

Unstudied and Overdue 20-Year Groundwater Basin Updates	\$1,045,200
Stream Water Hydrologic Studies	<u>\$ 73,125</u>
Total	\$1,118,325

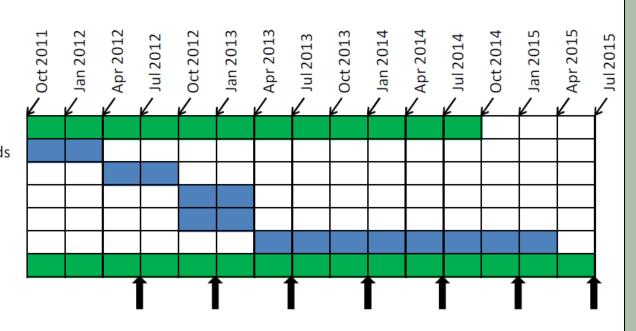
Annual Hydrologic Study Costs (2023 through 2060)

Total	\$ 360,884
Stream Water Hydrologic Studies	<u>\$ 18,750</u>
20-Year GW Basin Updates	\$ 342,134

The establishment of an instream flow program should be investigated and evaluated to preserve water quality, protect ecological diversity, and sustain and promote economic development, including benefits associated with tourism, recreation, and fishing. The process developed by the OCWP Instream Flow Workgroup should be implemented and followed to ascertain the suitability of such a program for Oklahoma. The OWRB should seek express authority from the State Legislature prior to promulgating rules to accommodate and protect instream flows.

Justification:

- <u>Significant</u> interest in value of nonconsumptive water uses of water, especially related to recreation & tourism (our 3rd biggest industry).
- Associated factors related to ecological integrity, endangered species, interstate compact compliance, etc.
 Consistent with holistic
 - water planning principles and in calculating excess/surplus water.


Supported by OCWP Technical Analyses:

- Generally recognized the importance of nonconsumptive water uses (recreation, tourism, etc.) to state and local economies.
- Instream and environmental flows specifically investigated by OCWP workgroup.
- Developed water use models that can be used on the local level to incorporate nonconsumptive demands and adjust management schemes accordingly.

Implementation Costs = \$ 1.5 million over 4 years

Recommended Timeline

Rec 1: Legal and policy questions Rec 2: Other flow protection methods Rec 3: Draft methodology Rec 4a: Cost of studies Rec 4b: Economic impacts Rec 5: Pilot study Rec 6: Advisory Group activities

Policy investigation Technical investigation

Reporting requirement

Building Cooperation to Avoid Future Conflict & Remove Uncertainties to Water Use

SUGGESTED CONSOLIDATED RECOMMENDATION:

To address uncertainties relating to the possible validity of water rights claims by the Tribal Nations of Oklahoma and to effectively apply the prior appropriation doctrine in the fair apportionment of state waters, the Oklahoma Governor and State Legislature should establish a formal consultation process as outlined in the OCWP Report on Tribal Issues and Concerns.

Building Cooperation to Avoid Future Conflict & Remove Uncertainties to Water Use

Justification:

- Resolve longstanding uncertainty over tribal claims.
- Strengthen state planning efforts.
- Allow effective application of appropriation doctrine

- Facilitate the fair apportionment of water
- Avoid costly, protracted litigation
- Opportunity for amicable resolution and recognition of State and Tribal sovereignty.

Building Cooperation to Avoid Future Conflict & Remove Uncertainties to Water Use

Supported by OCWP Technical Analyses:

- Recognized in Excess/Surplus Water calculation:
 - "...exclude from consideration for any permit for out-ofbasin use... the quantity of water adjudicated or agreed by cooperative agreement or compact to be reserved for Federal or Tribal rights"

Building Cooperation to Avoid Future Conflict & Remove Uncertainties to Water Use

Implementation:

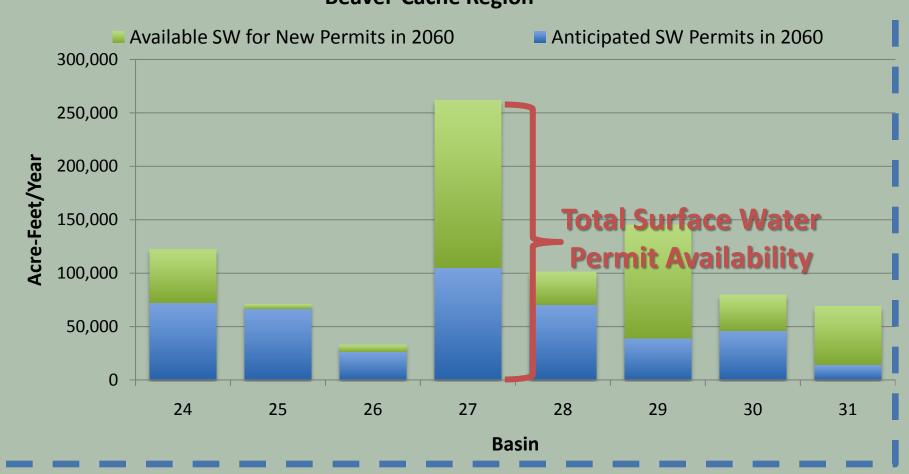
• To be established by Oklahoma Governor and State Legislature.

Cost:

• To be determined by Oklahoma Governor and State Legislature.

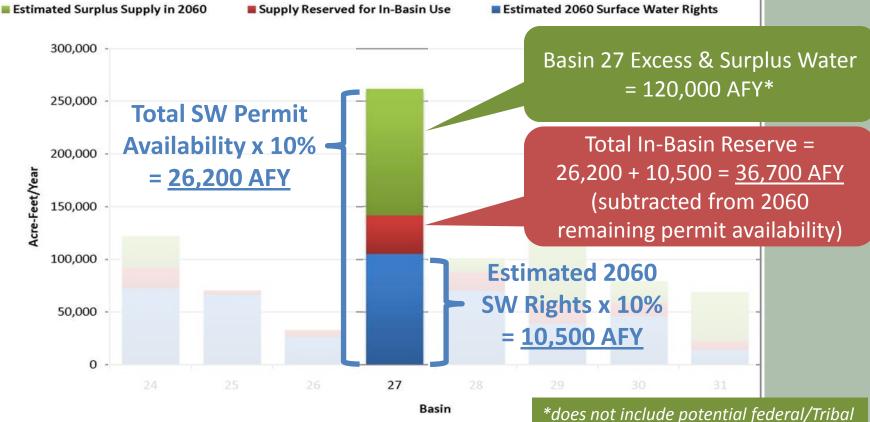
The OWRB adopts the following definition and procedure for determining excess and surplus water for inclusion in the OCWP update:

'Excess and surplus water' means the projected surface water available for new permits in 2060, less an in-basin reserve amount, for each of the 82 basins as set forth in the 2012 OCWP Watershed Planning Region Reports; provided that nothing in this definition is intended to affect ownership rights to groundwater and that groundwater is not considered excess and surplus water.


- Each of the 82 OCWP watershed planning basins shall be considered an individual stream system wherein water originates (i.e., area of origin) for purposes of appropriation and permitting.
- 2) The total annual amount of available stream water for new permits in 2060 is equal to the total Surface Water Permit Availability amount as set forth in the OCWP Watershed Planning Region Reports minus the amount of the annual Anticipated Surface Water Permits in 2060 also set forth in those reports. The in-basin reserve amount is equal to 10% of the total Surface Water Permit Availability amount plus 10% of the annual Anticipated Surface Water Permits in 2060...

- 3) In considering individual applications for permits to transport and use more than 500 acre-feet of stream water per year outside the stream system wherein the water originates, the Board shall determine whether there is "unappropriated water available in the amount applied for" by considering only the remaining amount of excess and surplus water calculated for the stream system where the point of diversion is proposed, and for stream systems located downstream from this proposed point of diversion.
- 4) The Board will also exclude from consideration for any permit for out-ofbasin use:
 - a) the quantity of water adjudicated or agreed by cooperative agreement or compact to be reserved for Federal or Tribal rights, and
 - b) the quantity of water reserved for instream or recreational flow needs established pursuant to law.

Calculating **Surplus Water**



Beaver-Cache Region

Example Calculating Surplus Water

DRAFT Provisional Estimated Surface Water Surplus in 2060 for the Beaver-Cache Region

rights or instream flow requirements

Justification:

• Definition and procedure required by OCWP statute to protect areas-of-origin.

Supported by OCWP Technical Analyses:

 OCWP Excess/Surplus Water Assessment applied draft definition and procedure to supply/demand data collected for individual planning basins ("areas-oforigin").

Implementation:

• Initial assessment and calculation completed.

Cost:

• Negligible; utilized data collected through OCWP technical analyses.

Regional Planning Groups Addressing Regional Variability through Direct Local Input

The OWRB should form a workgroup to investigate and make appropriate recommendations to the State Legislature related to the creation of at least 13 Regional Planning Groups to assist in planning and implementing OCWP initiatives at the regional level. These regional groups should consist of local stakeholders, as well as appropriate agency representatives, charged with developing regional water plans in a manner consistent with the OCWP and its implementation priorities. Such plans would include the identification of specific projects, studies, programs, research and other evaluations designed to address the unique needs and issues identified by Regional Planning Group participants. The State Legislature should establish regular appropriations to the OWRB to coordinate the activities of these groups.

Regional Planning Groups Addressing Regional Variability through Direct Local Input

Justification:

- Included in 9 OCWP
 Recommendations.
- Facilitate OCWP implementation and establish groundwork for next OCWP update.
- Recognize unique regional characteristics and needs.

- Prioritize regional issues through regional water plans.
- Establish feedback mechanism between OWRB/stakeholders.
- Facilitate local outreach on water issues.

Regional Planning Groups Addressing Regional Variability through Direct Local Input

Supported by OCWP Technical Analyses:

- Regional/basin delineations formed the basis of OCWP supply/demand studies and other technical analyses.
- Public input recognized the integral importance of regional citizen representation.

Regional Planning Groups Addressing Regional Variability through Direct Local Input

Implementation:

- Continue momentum and local citizen/stakeholder relationships established through OCWP Update.
- Work with State Legislature/Joint Water Committee to draft legislation next session.
- Contemplates OWRB administration of and coordination with RPGs to "seed" local water planning projects.

*Estimated Cost = \$2,000,000/year

*based on Texas model

Draft Priority Water Policy Recommendations for Implementation "The Big 8"

- Water Quality & Quantity Monitoring
- State/Tribal Water Consultation and Resolution
- Instream (Environmental) Flows
- Water Supply Reliability

- Excess & Surplus Water
- Regional Planning Groups
- Water Project & Infrastructure Funding
- Water Efficiency & Reuse

Agenda 4B-3. REVIEW AND DISCUSSION OF DRAFT SUPPORTING RECOMMENDATIONS

Draft Priority Water Policy Recommendations for Implementation Supporting Recommendations & Initiatives

Identified by OCWP public input participants as those necessary to the future use, management and protection of Oklahoma's water resources.

- Interstate Water Issues
- Navigation
- Nonpoint Source
 Pollution
- Regionalization of Water Supply Systems
- Reservoir Maintenance & Development

- Source Water Protection
- Water Emergency & Drought Planning
- Water Supply Augmentation

Draft Priority Water Policy Recommendations for Implementation Supporting Recommendations & Initiatives

Interstate Water Issues:

 Explore creation of standing planning committees with neighboring states to proactively address interstate conflicts and litigation.

Navigation:

 Continued collaboration between OWRB and ODOT Waterways Advisory Board to advance navigation interests.

Nonpoint Source Pollution:

 Advance voluntary BMPs, incentives and related programs to decrease NPS pollution.

Regionalization of Water Supply Systems:

• Develop a state plan to incentivize interconnections and shared water storage between water systems.

Draft Priority Water Policy Recommendations for Implementation Supporting Recommendations & Initiatives

Reservoir Maintenance & Development:

• State and federal agencies should collaborate to maximize the benefits of existing reservoir projects and evaluate potential projects.

Source Water Protection:

• The State should provide technical assistance to public water systems for the development of source water and wellhead protection plans.

Water Emergency/Drought Planning:

 Update and expand the Oklahoma Drought Management Plan to improve response to all water-related emergencies.

Water Supply Augmentation:

Investigate beneficial use of
unconventional water sources (marginal
quality waters, stormwater runoff,
water produced through artificial
aquifer recharge, etc.) and evaluate
supply augmentation through programs
to manage invasive plant species,
increase water filtration and reduce
runoff.

Draft Priority Water Policy Recommendations for Implementation Supporting Recommendations & Initiatives Workgroup & Agency Submissions

Submitted by various OCWP workgroups and agencies commissioned to investigate specific water-related issues.

- Agricultural Water Research
- Climate & Weather Impacts on Water Management
- Water Quality Management

Draft Priority Water Policy Recommendations for Implementation Workgroup & Agency Submissions

Agricultural Water Research:

 Agencies and tribal governments should continue to work collaboratively with the agriculture industry to support research, education and extension activities.

Climate & Weather Impacts on Water Management:

 Agencies and tribal governments should continue to collaborate with the Oklahoma Climatological Survey to advance the understanding of climate impacts on water use.

Water Quality Management:

 Agencies and tribal governments should continue to collaborate on and advance programs to improve water quality. Draft Priority Water Policy Recommendations for Implementation Supporting Recommendations & Initiatives OWRB Recommendations

Submitted by the OWRB by virtue of its unique statutory authority and experience in managing Oklahoma's water resources.

- Water Management & Administration
- Water-Related Research
- Permit Condition Associated with Protecting Reservoir Yield and Defining Interference

Draft Priority Water Policy Recommendations for Implementation OWRB Recommendations

Water Management & Administration:

 Various suggestions to improve water rights administration, groundwater protection, floodplain protection, and hazard mitigation.

Water-Related Research:

 Advance, coordinate, and prioritize state water research activities.

Permit Condition Associated with Protecting Reservoir Yield and Defining Interference:

 The OWRB should form a workgroup to investigate conditioning junior permits to discontinue water diversions during periods of probable interference.

Draft Priority Water Policy Recommendations for Implementation Supporting Recommendations & Initiatives Additional Issues for Consideration

Submitted by various OCWP workgroups and agencies commissioned to investigate specific water-related issues.

- Interstate Water Issues
- Interstate Water Sales
- Interagency Coordination •
- General Conditions on Permits
- Riparian Rights to Reasonable Use

- Statewide Water Planning
- Water Dispute Resolution
 - Water Emergency & Drought Planning
- Water Sales & Transfers
- Water Use Permitting

Draft Priority Water Policy Recommendations for Implementation Additional Issues for Consideration

Interstate Water Issues:

 Investigate development of an interstate (Ogallala) groundwater compact.

Interstate Water Sales:

 Allocation of potential interstate water sale proceeds to a specified trust or authority, limiting uses to water infrastructure projects and OCWP water studies.

Interagency Coordination:

 The State should create an interagency water resources committee to improved coordination and communication.

General Conditions on Permits:

 Amend statute to provide express authority to the OWRB in imposing permit conditions and limitations.

Riparian Rights to Reasonable Use:

• Amend Constitution or statutes to resolve uncertainty of future use claims by riparian landowners.

Draft Priority Water Policy Recommendations for Implementation Additional Issues for Consideration

Statewide Water Planning:

 Provide that each OCWP utilize a Town Hall or similar forum to review, discuss and frame proposed water policy as well as the Governor's Water Conference to exchange OCWP-related information.

Water Dispute Resolution:

• The OWRB and other state agencies should establish a formal alternative dispute resolution program.

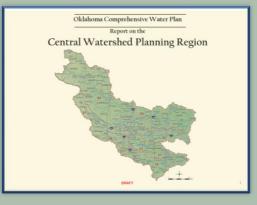
Water Emergency/Drought Planning:

• The OCWP should include a transparent process for regional prioritization of water uses during emergencies.

Water Sales & Transfers:

• The OWRB should require recipients of an intra- or interstate water transfer to submit a water conservation plan that protects the basin of origin.

Water Use Permitting:

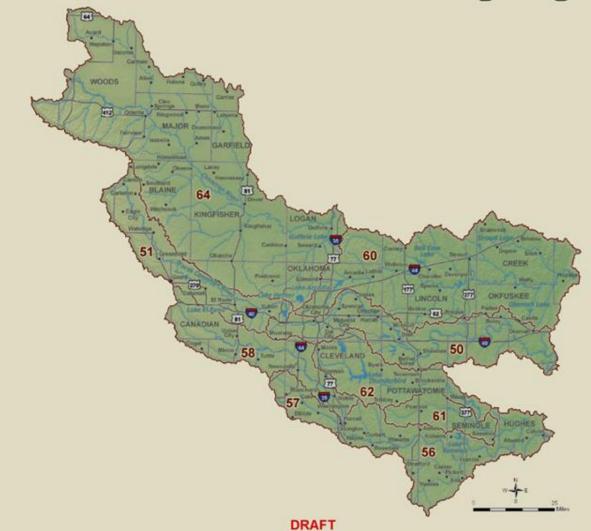

• The use of mining (pit) water should be subject to the OWRB's water rights administration procedures.

PRESENTATION AND DISCUSSION OF 13 DRAFT WATERSHED PLANNING REGION REPORTS

Agenda 4B-4.

Watershed Planning Region Reports

- Introduction (Regional Overview)
- Regional Summary
- Water Supply:
 - Physical Water Availability
 - Permit AvailabilityWater Quality
- Water Demand
- Public Water Providers
- Water Supply Options
- Basin Summaries & Data/Analysis



Oklahoma Comprehensive Water Plan

Report on the

Central Watershed Planning Region

Introduction

Contents

Introduction
Regional Overview
Regional Summary4
Synopsis
Water Resources & Limitations
Water Supply Options
Water Supply8
Physical Water Availability
Surface Water Resources
Groundwater Resources
Permit Availability
Water Quality
Water Demand
Public Water Providers
OCWP Provider Survey
Potential Reservoir Site Viability
Basin Summaries and Data & Analysis
Basin 50
Basin 5159
Basin 5669
Basin 57
Basin 58
Basin 6099
Basin 61
Basin 62
Basin 64

Introduction

The Oklahoma Comprehensive Water Plan (OCWP) was originally developed in 1980 and last updated in 1995. With the specific objective of establishing a reliable supply of water for state users throughout at least the next 50 years, the current update represents the most ambitious and intensive water planning effort ever undertaken by the state. The 2012 OCWP Update is guided by tw o ultimate goals:

- Provide safe and dependable water supply for all Oklahomans while improving the economy and protecting the environment.
- Provide information so that water providers, policy makers, and water users can make informed decisions concerning the use and management of Oklahoma's water resources.

In accordance with the goals, the 2012 OCWP Update has been developed under an innovative parallel-path approach: inclusive and dynamic public participation to build sound water policy complemented by detailed technical evaluations.

The primary factors in the determination of reliable future water supplies are physical supplies, water rights, water quality, and infrastructure. Gaps and depletions occur when demand exceeds supply, and can be attributed to physical supply, water rights, infrastructure, or water quality constraints.

Also unique to this update are studies conducted according to specific geographic boundaries (watersheds) rather than political boundaries (counties). This new strategy involved subdividing the state into 82 surface water basins for water supply availability analysis (see the OCWP Physical Water Supply Availability Report). Existing watershed boundaries were revised to include

Oklahoma Comprehensive Water Plan

a United States Geological Survey (USGS) stream gage at or near the basin outlet (dow astream boundary), where practical. To facilitate consideration of regional supply challenges and potential solutions, basins were aggregated into 13 distinct Watershed Planning Regions.

This Watershed Planning Region Report, one of 13 such documents prepared for the 2012 OCWP Update, presents elements of technical studies pertinent to the Central Region. Each regional report presents information from both a regional and multiple basin perspective, including water supply/demand analysis results, forecasted water supply shortages, potential supply solutions and alternatives, and supporting technical information.

As a key foundation of OCWP technical work, a computer-based analysis tool, "Oklahoma H2O," was created to compare projected demands with physical supplies for each basin to identify areas of potential water shortages.

Integral to the development of these reports was the Oklahoma H2O model, a sophisticated database and geographic information system (GIS) based analysis tool created to compare projected water demand to physical supplies in each of the 82 OCWP basins statew ide. Recognizing that water planning is not a static process but rather a dynamic one, this versatile tool can be updated over time as new supply and demand data become available, and can be used to evaluate a variety of "w hat.if" scenarios at the basin level, such as a change in supply sources, demand, new reservoirs, and various other policy management scenarios.

Primary inputs to the model include demand projections for each decade through 2060, founded on widely-accepted methods and peer review of inputs and results by state and

Regional Overview

The Central Watershed Planning Region includes nine basins (for reference, numbered 50, 51, 56-58, 60-62, and 64). The region is located in the Central Lowland physiography province, encompassing 10,142 square miles in central Oklahoma, spanning from southern Woods County to Hughes and Pontotoc Counties in the southeastern portion of the region and including all or portions of Alfalfa, Woodward, Garfield, Major, Kingfisher, Logan, Blaine, Dewey, Creek, Lincoln, Okmulgee, Canadian, Oklahoma, Okfuskee, Caddo, Seminole, Pottawatomie, Grady, Cleveland, McClain, and Garvin Counties.

The region displays many of the physical diversities of the state. The extremes range from the metropolitan areas of Oklahoma City in Oklahoma County to the more forested areas of the southeast, the open farmland in the central and western areas, and the sond hills in the western portion of the region.

The region's climate is moist and sub-humid with the mean annual temperature ranging from 59°F to 62°F. Annual average precipitation ranges from 26 inches in the northwest to 46 inches in the southeastern corner. Annual lake evaporation ranges from 50 to 62 inches and exceeds precipitation. Frequent droughts cause severe crop damage while severe flooding also occurs as the result of concentrated areas of heavy precipitation. Thunderstorms accompanied by high winds, hail, and heavy rain increase the likelihood of flash flooding, emphasizing the necessity of watershed protection and flood prevention projects.

The largest cities in the region include Oklahoma City (2010 population of 501,450), Norman (109,865), Edmond (79,562), Midwest City (56,886), and Moore (52,621). The greatest demand is from Municipal and Industrial water use.

By 2060, this region is projected to have a total demand of 442,890 acre-feet per year (AFY), an increase of approximately 107,250 AFY (32%) from 2010.

federal agency staff, industry representatives, and stakeholder groups for each demand sector. Surface water supply data for each of the 82 basins used 58 years of publiclyavailable daily streamflow gage data collected by the USGS. Groundwater resources were characterized using previously-developed assessments of groundwater aquifer storage and recharge rates.

Additional information gained during the development of the 2012 Update is provided in various OCWP supplemental reports. Assessments of statew ide physical water availability and potential shortages are documented in the OCWP Physical Water Supply Availability Report. Statewide water demand projection methods and results are presented in the Water Demand Forecast Report. Permitting availability was evaluated based on the OWRB's administrative protocol and documented in the Water Supply Permit Availability Report. All supporting documentation can be found on the OWRB's website.

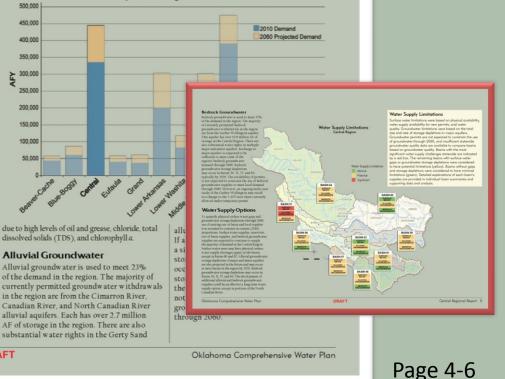
Regional Summary

Central Regional Summary

Synopsis-

- The Central Watershed Planning Region relies primarily on surface water supplies (including reservoirs), out-of-basin supplies, and to a lesser extent alluvial and bedrock groundwater.
- It is anticipated that water users in the region will continue to rely on these sources to meet future demand.
- By 2020, surface water supplies may be insufficient at times to meet demand in all basins in the region, except Basins 60 and 62.
- By 2020, alluvial and bedrock groundwater storage depletions may occur and eventually lead to higher pumping costs, the need for deeper wells, and potential changes to well yields or water quality.
- To reduce the risk of adverse impacts on water supplies, it is recommended that gaps and storage depletions be decreased where economically feasible.
- Additional conservation could reduce surface water gaps and groundwater storage depletions, eliminating bedrock groundwater depletions in Basin 50 and alluvial groundwater storage depletions in Basins 50 and 62.
- Aguifer storage and recovery in Basins 50 and 51 could be considered to store variable surface water supplies, increase groundwater storage, and reduce adverse effects of localized storage depletions.
- Surface water alternatives, such as aroundwater sources, out-of-basin supplies. and/or developing new reservoirs, could mitigate gaps without major impacts to groundwater storage.
- The Central Region accounts for 18% of the state's total water demand. The largest demand sectors are Municipal and Industrial (58% of the

provide public water supply, flood control, and recreation. There are two major federal reservoirs in the Central Region: Arcadia, built by the U.S.



s and Thunderbird, au of Reclamation. Large lakes in the region include rea lakes-Overholser, ner. There are 16 additional egion with normal storage Reno Lake) to 23,000 AF water in Basins 50 and ting diversions to existing other basins in the region ilable surface water for al demand through 2060. the region is variable and al basins relative to other iple rivers, creeks, and are impaired for Public and se and Agricultural use DRAFT

Central Region Demand Summary

Current Water Demand:	335,640 acre-feet/year (18% of state total)
Largest Demand Sector:	Municipal & Industrial (58% of regional total)
Current Supply Sources:	55% SW 23% Alluvial GW 22% Bedrock GW
Projected Demand (2060):	442,890 acre-feet/year
Growth (2010-2060):	107,250 acre-feet/year (32%)

Current and Projected Regional Water Demand

Physical Water Availability

Water Supply

Physical Water Availability Surface Water Resources

Surface water supply has historically been used to meet just over half of the demand in the Central Region. The region's major rivers include the Canadian, Cimarron, Little, Deep Fork, and North Canadian. Many streams in this region experience a wide range of flows, including both periodic no-flow conditions and flooding events.

The North Canadian River (320 miles long in the Central Region) flows from the Panhandle Region through Basins 50 and 51 in the Central Region. Total dissolved solids (TDS) and chloride levels are relatively high and Oklahoma City wastewater return flows constitute a large percentage of the North Canadian River's total flow.

The Deep Fork River originates in the Central Region and is 140 miles long in Basin 60. The river is generally of fair quality with moderate mineral content. However, the chloride content may reach high levels during certain periods of the year.

As important sources of surface water in Oklahoma, reservoirs and lakes help provide dependable water supply storage, especially when streams and rivers experience periods of low seasonal flow or drought.

The Canadian River (190 miles long in the Central Region) enters the Central Region from the West Central Region. Major tributaries in the region include Walnut Creek (25 miles long), the Little River (110 miles long), and Salt Creek

Nater Supply Availability Analysis

(70 mil

Canadia

Basins 3

experie

dissolve

The ma

miles thr

Turkey

Creek (

by natur

reaches 1

0 0

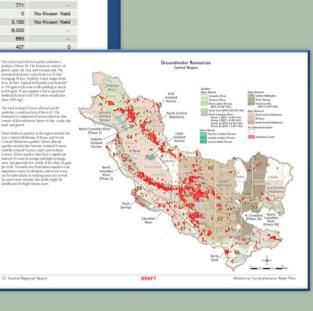
DRAFT

						Water Supply		Irrigation		Wat	
Primary Basin				Normal Pool Storage	Storage	Yield	Storage	Yield	Storage		
voir Name	Number	Reservoir Owner/ Operator	Year Built	Purpose ¹	AF	AF	AFY	AF	AFY	AF	
	60	USACE	1986	FC, WS, R	29,544	23,090	12,320	-		-	
**	60	City of Chandler	1990	FC, WSR	15,613		4,558		-		
er .	60	City of Chandler	1954	WS, R	2,778	2,778		0	0	0	
•	51	City of El Reno	1966	FC,R	709			0	0	0	
	64	City of Guthrie	1919	WS, R	3,875			-			
•	64	City of Oklahoma City	1947	WS, R	68,868	75,000	1	0	0	0	
ville	56	City of Holdenville	1931	WS, R	11,000	11,000		0	0	0	
	56	OG&E	1968	CW	23,000			0	0	0	
	64	City of Guthrie	1948	WS, R	2,740			0	0	0	
r.	60	City of Meeker	1970	WS, FC, R	1,976		202	0	0	0	
h	60	City of Okemah	N/A	WS, R	10,392	10,392	2,200				
alser*	51	City of Oklahoma City	1919	WS, R	13,913	17,000	5,000	0	0	0	
City	60	City of Prague	1984	WS, FC, R	2,415		549	0	0	0	
Ti chi chi chi chi chi chi chi chi chi ch	57	City of Purcell	1930	WS, R	2,600				-		
ee Twin Lakes	50	City of Shawnee	1935/1960	WS, R	34,000	34,000	4,400				
whale delemate and gype	and The laws	The Conserve Rover allocal agailar underlass (between 50 as	- Del maria de la maria	WS, R	87,296	100,000		0	0	0	
of the second strength and gype	a light of a light from		ad 100 gpm in the terrace. Although		0.000						

Resen Arcadia Bell Con Chandle El Remo Guthrie Holden Konaw Liberty

ells generally yield from				Cant	tral Regio	n			
r quality is generally a, concentrations of		-		Continue of Respire	Sectors.	Cornel Constante Repti	Angele Strengt	Same Properties at	Sector Sector
ram, and selection may estandards.	-			Percett	940,71	MY.	M	APC No.	any .
r icentients.	Canalian Binas	Allowed International	Mager	81	24	71,204	2,795,895	temporary 2.0	and pint
extend aquifiers may	closure then	Market .	i high	115	28	102,006	1425.000	waynes 22	1287,288
resert. However,	Fait / Janib & DeCalloning	Dettait.	Mean	.2%	2.8	4.00	8,771.300	Arrent 20	894,912
ields, and water	of Renal	Indust	Ment	251	175	900.0	11,040,000	integran (1)	4.407.208
is ere currently	Roda Instituted Terrined	Allowed I	1 Mager	485	2.8	1.800	11,000	8.8	2.800
	Darrow Maletal Terms	Abute	Mar	470	175	704	76.00	impres 11	NAG
the anderlas portions	Safe Ballyge	Deltast	Maja	270	1.8	212,968	10.04.00	wagers(22	1.08,200
and 67. The formation	Ners Sele	Allerta	Maple	1.00	1.8	12.100	141,000	100	24,000
t fort of interbuilded	Includes Surgery Terrard	March 1	Mean		678	706	26.000	invested 2.0	71,800
onglomente Welh	Ingel Indexed Terrine	Allowed I	10-1	1485	4.75	1.000	45.000	New York 215	24.500
150 gpm. Water quality extable for use as public	Note Canadian Now	10.00	Mar		1.845	79,405	1291.000	1813	210,298
inditration and hardness	Internet Control of Co	Deput.	iterat	410.	12	1,201	100.000	wrapped 12	CLER
areas and there are local	Build large	Sector.	Mager	10	1.8	8,000	040.000	termines 2.0	10,000
existivies revulking from	Names of Add	faires.	-		1.4	6.800	10100	24	1,200,400
lan.	Nam Solitorief	-	-			4.400			
dor underlies a portion concomints of a	Name And Street and Name and Address of Street and Address of Stre	Bellen.	Alter			7,605			
(spiler with some	f partner applies off typical of	in prate the X	press	in an deside of the second	()ett per	the 19 preas			
anistas Mintal Plan			DRAFT					Central Basto	rel Basicet 1

		****	1,299				
WS, R	1,118			0	0	0	0
FC, WS, R, FW	105,644	105,900	21,7005	0	0	0	0
FC, WS, R	14,065	TT 3		0	0	0	0
WS, R	1,839						


Reservoirs **Central Region**

vater from groundwater resources during periods of drought.

DRAFT

Oklahom

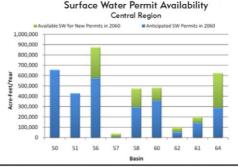
Page 8-12

Permitting (Legal) Availability

Permit Availability

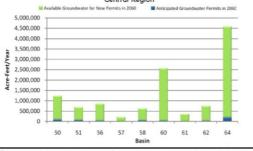
For the OCWP water availability analysis, "permit availability" pertains to the amount of water that could be made available for withdrawals under permits issued in accordance with Oklahoma water law.

If water authorized by a stream water right is not put to beneficial use within the specified time, the OWRB may reduce or cancel the unused amount and return the water to the public domain for appropriation to others.


Projections indicate that there will be no surface water available for new permits in Basins 50 and 51, but surface water will be available for new permits through 2060 in all other basins in the Central Region. For groundwater, equal proportionate shares in the Central Region range from 0.5 acre-feet per year (AFY) per acre to 2 AFY per acre.

Water Use Permitting in Oklahoma

Oklahoma stream water laws are based on riparian and prior appropriation doctrines. Riparian rights to a reasonable use of water, in addition to domestic use, are not subject to permitting or oversight by the OWRB. An appropriative right to stream water is based on the prior appropriation doctrine, which is often described as "first in time, first in right." If a water shortage occurs, the diverter with the older appropriative water right will have first right among other appropriative right holders to divert the available water up to the authorized amount.


The permit availability of surface water is based on the average annual flow in the basin, the amount of water that flows past the proposed diversion point, and existing water uses upstream and downstream in the basin. The permit availability of surface water at the outlet of each basin in the region was estimated through OCWP technical analyses. The current allocated use for each basin is also noted to give an indication of the portion of the average annual streamflow used by existing water right holders. A site-specific analysis is conducted before issuing a permit.

Groundwater permit availability is generally based on the amount of land owned or leased that overlies a specific aquifer (groundwater basin). State law provides for the OWRB to conduct hydrologic investigations of groundwater basins and to determine amounts of water that may be withdrawn. After a hydrologic investigation has been conducted on a groundwater basin, the OWRB determines the maximum annual yield of the basin. Based on the "equal proportionate share"—defined as the maximum annual yield of water from a groundwater basin that is allocated to each acre of land overlying the basin—regular permits are issued to holders of existing temporary permits and to new permits are granted to users allocating two acre-feet of water per acce of land preyortionate shares have yet to be determined on many aquifers in the state. For those aquifers, "temporary" permits are granted to users allocating two acre-feet of water per acce of land per year. When the equal proportionate share and maximum annual yield are approved by the OWRB, all temporary permits overlying the studied basin are converted to regular permits at the new approved allocation rate. As with stream water, a groundwater permit grants only the right to withdraw water; it does not ensure yield.

There is no surface water available for new permits in Basins 50 and 51, but projections indicate that there will be surface water available for new permits through 2060 in all other basins in the Central Region. Water users throughout the region need to consider the rights of existing major reservoirs.

Projections indicate that the use of groundwater to meet in-basin demand is not expected to be limited by the availability of permits through 2060 in the Central Region.

Page 13

Oklahoma Comprehensive Water Plan

Characterization of Water Quality

Water Quality

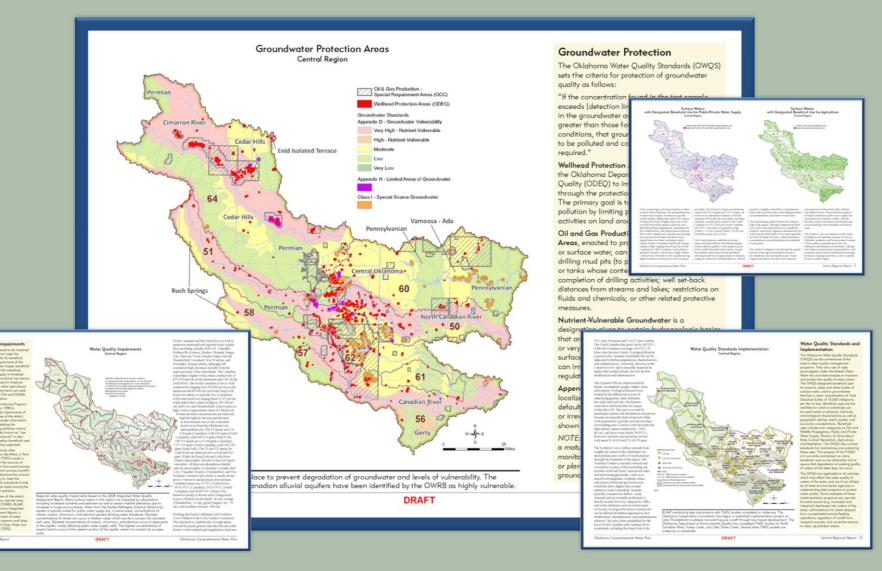
Water quality of the Central Watershed Planning Region is defined by numerous minor and major water supply reservoirs and the middle Cimarron and low er Canadian River watersheds. The area is co-dominated by two ecoregions, the Central Great Plains (CGP) to the west and the Cross Timbers (CT) to the east. Several additional ecoregions intersect the periphery of the planning region, but their impact is minimal and they will not be addressed in this discussion.

The western half of the planning region is characterized by the Prairie Tablelands and several other intervening CGP ecoregions, the Pleistocene Sand Dunes/Sandsage Grassland. and Gypsum Hills. The Cimarron and North Canadian Rivers drain the area from northwest to southeast, and the Canadian River intersects the area in the south. The Prairie Tablelands are nearly level, underlain by shale, sandstone, and siltstone. They are dominated by cropland with dense mixed grass prairies. Streams are typically turbid and silt-dominated with some sand, lying in broad, shallow, low gradient channels with highly incised banks. The tributaries of the major rivers best exemplify water quality in the tablelands. These include Buggy Creek along the Canadian, and from west to east on the Cimarron, Eagle Chief, Turkey, Kingfisher, and Cottonwood Creeks. Salinity is high throughout the watersheds. Mean conductivities range from 1,029 µS/cm on Cottonwood Creek to near 2,300 µS/cm on Kingfisher Creek, while Buggy Creek is 1,100 µS/cm. Nutrient concentrations are also high. Mean concentrations of total phosphorus (TP) and total nitrogen (TN) range from 0.18

Lake Trophic Status

A lake's trophic state, essentially a measure of its biological productivity, is a major determinant of water quality. Ofligotrophic: Low primary productivity and/or low nutrient levels. Mesotrophic: Moderate primary productivity with moderate nutrient levels. Eutrophic: High primary productivity and nutrient rich. Hypereutrophic: Excessive primary productivity and eccessive nutrients. and 2.05 ppm on Kingfisher Creek to 0.98 and 4.08 ppm on Cottonwood Creek. Buggy Creek is similar with mean TP and TN of 0.38 and 2.0 ppm. Water clarity is poor to very poor, with mean turbidity ranging from 65 NTU on Eagle Chief Creek to 184 NTU on Cottonwood Creek, Buggy Creek is 160 NTU. Ecological diversity is average and highly impacted by siltation/sedimentation, habitat degradation, and channelization.

Conversely, the Pleistocene Sand Dunes have more permeable sandy soils interlaced with springs and inter-dune wetlands. Streams have incised. highly erodible banks but are typically sandy. The northern and eastern banks of the major river systems are influenced heavily by the features and are typically sandier than many of their tributaries. The Cimarron and North Canadian best exemplify the area as well as El Reno Lake in the North Canadian watershed. Salinity on the Cimarron is very high and steadily decreases from west to east. Near Waynoka, mean conductivity is nearly 29,000 uS/cm. but at Guthrie, it decreases to 8,730 µS/cm. Salinity on the North Canadian (including El Reno Lake) and Canadian is much lower with mean conductivities of 1,350-1,400 µS/cm. Nutrient concentrations increase steadily along the Cimarron. Near Waynoka, the river is mesotrophic, with low TP and TN mean concentrations of 0.05 and 0.69 ppm. The river gradually becomes eutrophic to hyper-eutrophic; at Guthrie, TP and TN increase to 0.36 and 1.95 ppm. The North Canadian and Canadian are also hyper-eutrophic, with TP ranging from 0.20-0.22 ppm and TN from 0.99-1.24 ppm. El Reno Lake is hyper-eutrophic and nitrogenlimited. Water clarity is excellent to average on the Cimarron with mean turbidity values of 6


The Central Planning Region is a transitional area between the Central Great Plains and Cross Timbers. Water quality is highly influenced by both geology and land use practices, and is generally poor to good depending on drainage and location.

14 Central Regional Report

DRAFT

Oklahoma Comprehensive Water Plan

Water Quality Protections-Standards-Trends

Water Demand Source-Sector thru 2060

Water Demand

The Central Region accounts for about 18% of the total statewide water demand. Regional demand will increase by 32% (107,250 AFY) from 2010 to 2060. Municipal and Industrial use will continue to be the largest demand sector.

By 2060, Municipal and Industrial (M&I) demand is projected to account for approximately 58% of the Central Region's total demand. Currently, 62% of the region's M&I demand is supplied by surface water, 12% by alluvial groundwater, and 26% by bedrock groundwater.

Water Demand

Water Demand Sectors

thermoelectric power plants.

2007 Agriculture Census.

supplemental OCWP reports.

distinct consumptive water demand sectors.

moly system are included in the SSR sector.

Water demand refers to the amount of water required to meet the needs of people,

Demands have been projected from 2010 to 2060 in ten-year increments for seven

communities, industry, agriculture, and other users. Growth in water demand frequently

corresponds to growth in population, agriculture, industry, or related economic activity.

Thermoelectric Power: Thermoelectric power producing plants, using both self-supplied water and municipal-supplied water, are included in the thermoelectric power sector.

Self Supplied Residential: Households on private wells that are not connected to a public water

Self Supplied Industrial: Demands from large industries that do not directly depend upon a public

voter supply system. Available water use data and employment counts were included in this sector. Oil and Gas: Oil and gas dilling and exploration activities, encluded in the oil and gas refineries hysically categorized as set supplied industrial use), are included in the oil and gas sector. Municipal and Industrial: These demands represent water that is procided by public water

systems to homes, businesses, and industries throughout Oklahoma, excluding water supplied to

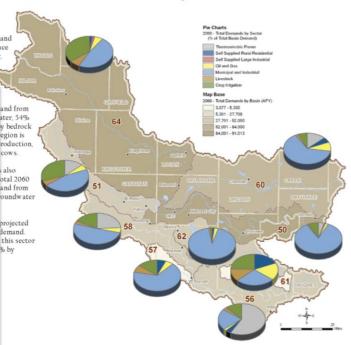
Evestock: Livestock demands were evaluated by livestock aroup (beef, poultry, etc.) based on the

Crop Irrigation: Water demands for crop irrigation were estimated using the 2007 Agriculture

based on standard methods using data specific to each sector and planning basin.

Projections were initially developed for each courty in the state, then allocated to each of the 82 baims. To provide regional context, demands were aggregated by Watershed Planning Region. Water shortages were calculated at the basin level to more occurately determine areas where shortages may occur. Therefore, gaps, depletions, and options are presented in detail in the Basin Summaries and subsequent sections. Future demand projections were developed independent of analloles supply, water quality, or infrastructure considerations. Impacts of allmate change, increased efficiency, conservation, and non-consumptive uses, such as hydropower, are presented in

Present and future demands were applied to supply source categories to facilitate an evaluation of potential surface water gaps and aquifer storage depletions at the basin


level. For this baseline analysis, the proportion of each supply source used to meet future demonds for each sector was held contant at the proportion established through current active water use permit allocations. For example, if the crop irrigation sector in a basin current yuse \$50\$ bedrock; groundwater, then \$50\$ of that projected future demond is assumed to use bedrock groundwate. Stating out-of-basin supplies are represented as surface water supplies in the receiving basin and as demand on the source basin.

Census data for irrigated acres by crop type and county. Crop irrigation requireme

primarly from the Natural Resource Conservation Service Infgation Guide Reports. OCWP demands were not projected for non-consumptive or instream water uses, such as hydroelectric power generation, fish and wildlife, recreation and instream flow maintenance. Projections, which were augmented through user/state/holder input, are

and InterGen North America's Redbud Power Plant. Currently, 89% of the demand from this sector is supplied by surface water, 10% by alluvial groundwater, and 1% by bedrock groundwater.

Oil and Gas demand is projected to account for 5% of the total 2060 demand. Currently, 6%% of the demand from this sector is supplied by surface water, 12% by alluvial groundwater, and 20% by bedrock groundwater. Total 2060 Water Demand by Sector and Basin (Percent of Total Basin Demand) Central Region

Projected water demand by sector. Municipal and Industrial is expected to remain the largest demand sector in the region, accounting for 58% of the total regional demand in 2060.

DRAFT

Oklahoma Comprehensive Water Plan

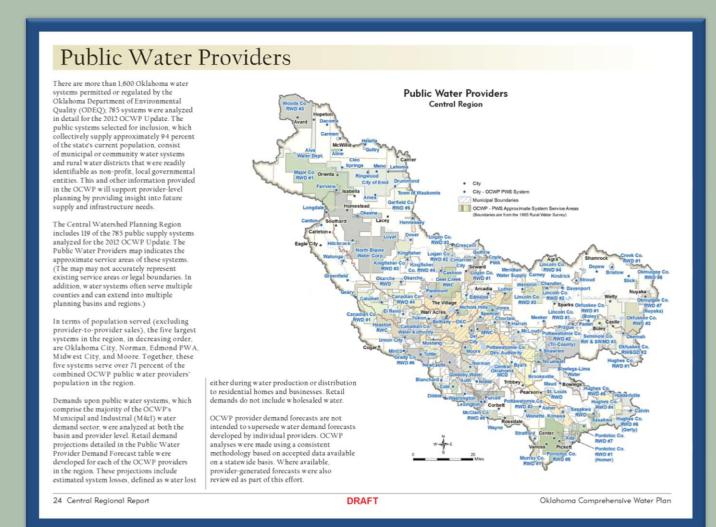
Central Region Current Demand (2010) Central Reg

Total Water Demand by Sector

Supply Sources Used to Meet

The Central Region's water needs account for about 18% of the total statewide demand. Regional demand will increase by 32% (107,250 AFr) from 2010 to 2060. Municipal and Industrial use will continue to be the largest demand sector.

Total Water Demand by Sector Central Region


Planning	Crop	Uvestock	Municipal & Industrial	08 8 GM	Self Supplied Industrial	Self Supplied Residential	Thermoelectric Power	Total
Horizon					AFY			
2010	58,100	13,850	208,390	7,100	2,420	8,680	37,100	335,640
2020	60,700	14,020	222,260	12,450	2,420	9,370	41,390	362,620
2030	63,290	14,190	233,370	12,900	2,510	9,990	46,180	382,400
2040	65,890	14,360	242,520	14,680	2,690	10,580	51,520	402,240
2050	67,880	14,530	249,970	17,240	2,870	11,140	57,470	421,100
2060	71,080	14,700	257,500	20,700	3,060	11,730	64,120	442,890

DRAFT

Page 22-23

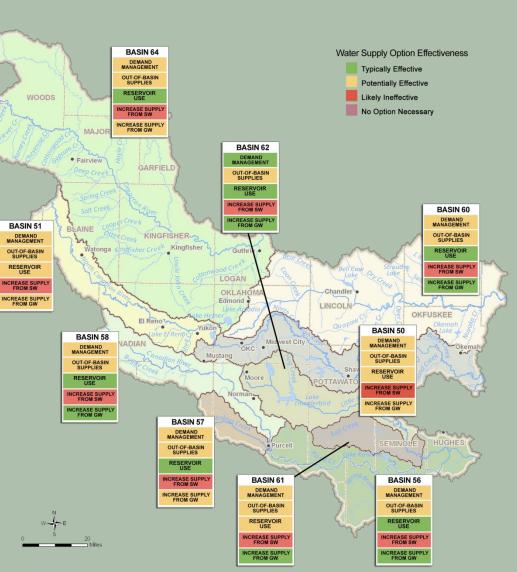
Public Water Providers

Customers-Demand Forecasts-Infrastructure Needs

Page 24-45

Water Supply Limitations & Options

Limitations Analysis:


- Assessed factors
 limiting the use of the three major supply categories:
 - surface water
 - alluvial groundwater
 - bedrock groundwater

Water Supply Limitations & Options

Options Analysis:

- Assessed the ability of options to potentially mitigate identified water supply shortages
- Primary Options:
 - Demand Management
 - Out-of-Basin Supplies
 - Reservoir Use
 - Increasing Reliance on Surface Water
 - Increasing Reliance on Groundwater
- Additional Options:
 - Potential Reservoir Development
 - Water Conveyance System
 - Artificial Groundwater Recharge
 - Marginal Quality Water Sources

Page 6

Oklahoma Comprehensive Water Plan

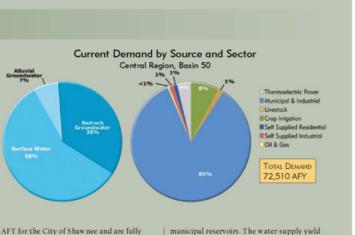
Data & Analysis Central Watershed Planning Region

Basin 50

Basin Summary

Basin 50 Summary BASIN 50

Synopsis -


- Water users are expected to continue to rely primarily on surface water and bedrock. groundwater, and to a lesser extent, alluvial groundwater.
- By 2020, there is a low to moderate probability of surface water gaps from increased demands on existing supplies during low flow periods.
- Alluvial groundwater storage depletions may occur by 2020 and bedrock groundwater storage depletions may occur by 2040. However, the storage depletions will be minimal in size relative to aquifer storage in the basin. Localized storage depletions may cause adverse effects for users.
- To reduce the risk of adverse impacts on water supplies, it is recommended that gaps and storage depletions be decreased where economically feasible.
- Additional conservation measures could reduce gaps and groundwater storage depletions.
- Aquifer storage and recovery could be considered to store variable surface water supplies, increase groundwater storage, and reduce adverse effects of localized storage depletions.
- To mitigate surface water gaps, dependable groundwater supplies and/or developing new small reservoirs could be utilized as alternatives without major impacts to groundwater storage

Basin 50 accounts for about 22% of the current demand in the Central Watershed Planning Region. About 84% of the basin's 2010 demand is from the Municipal and Industrial demand sector. Crop Irrigation is the second largest demand sector at 8%. Surface water satisfies about 58% of the current demand in the basin. Groundwater satisfies about 42% of the current demand (7% alluvial and 35% bedrock). The peak summer month total water demand in Basin 50 is about 2.4 times the winter monthly demand, which is similar to the overall statewide pattern.

The flow in the North Canadian River near Wetumka is typically greater than 13,800 AF/ month throughout the year and greater than 35,000 AF/month in the spring and early summer. However, the river can have periods of low flow in any month of the year. The Shawnee Twin Lakes on South Deer Creek are actually two impoundments connected by a 10-foot-deep canal. Lake number one was built in 1935 and number two in 1960. The lakes provide a combined dependable yield of 4,400

50 Central Regional Report

allocated. Wes Watkins Reservoir, Tecumseh Lake, and Lake Wetumka are also important

municipal reservoirs. The water supply yield of these lakes is unknown; therefore, the ability of these reservoirs to provide future

East-Central

BONEY J	()klanoma
<figure><figure></figure></figure>	<text><text><text><text><text></text></text></text></text></text>
Furlary Creek, Sand Creek, Olarnah Creek, and a small segment of the North Canadan Rever are majored for Approximan loss due to high fevels of chloride, sullater, and total dissoftwal solids (TDS). South Deer Creek is impaired for Public and Perrate Water Supply	Gaps & Depletions Reset on projected demand and historical hydrology verface water gaps and allavial groundwater storage depletions may occur by 2020. Bedrock groundwater depletions
Caller - Caller - Marco - Marco - Marco	00

1715	and the second
Limitations	Self Supplied Residential, and Crop Insparates
e. Bosin 50	demand sectors could mitigate hedrock
n, uurin av	groundwater storage depletions, and reduce
	surface water gaps and alluvial groundwater
	storage depletions. Temporary drought
	management activities may not be effective for this basis, since gaps have a moderate
	probability of occurring and groundwater
	storage could continue to provide supplies
ul 📕 Significant	during droughts.
ly Option	
eness	Out-of-basin supplies could initigate
en Basin 50	surface water gaps and groundwater storage
ey, Basin 20	depletions. The OCWP Reservoir Viability
	Study, which evaluated the potential for reservoirs throughout the state, identified
	fifteen potential out-of-basin aites in the
	Central Region. How ever, in light of the
	substantial groundwater supplies and distance
a alternative state	to reliable water supplies, out-of-basin
Surface Water	supplies may not be cost-effective for many
Groundwater	users in the basin.
Performants Effortion	Additional reservoir storage in flasts 30 could
No Option Hocmany	effectively supplement supply during dry
No Option Heconology	months. The entire increase in demand from
ages and alloredal	2010 to 2060 could be supplied by a new river
detions are expected	diversion and 7.500 AF of reservoir storage
er, and fall, peaking	at the basin outlet. The OCWP Reservoir
drock groundwater	Viability Study also identified one potential site in the basis.
ecor in the summer Prosected annual	tite in the nexus.
endwater storage	Increased reliance on surface water through
elative to the amount	direct diversions, without reservoir storage.
North Canadian	will increase surface water gaps and is not
n, and Vamoosa-	recommended
ocalized storage	Contract of the second s
affect well yields,	Increased reliance on the Garber-Wellington.
mping costs.	Vamoosa-Ada, or North Canadian River aquifers could mitigate surface water gaps.
	Any increases in storage depletions would be
I na constance na	interimal relative to the volume of water scored

Page 52-53

Historical/Monthly Precipitation & Streamflow

Basin 50 Data & Analysis BASIN 50 Surface Water Resources Historical Streamflow at the Basin Outlet Monthly Historical Streamflow at the Basin Outlet Historical streamflow from 1950 through Central Region, Basin 50 Central Region, Basin 50 2007 was used to estimate the range of 120.000 1,600,000 future surface water supplies. The North 1,400,000 100.000 Canadian River near Wetumka had a period # Median 1 200 000 of below-average streamflow from the early 80,000 1.000.000 1960s to the early 1970s. From the mid 60,000 1980s through the late 1990s, the basin went 800.000 through a prolonged period of above-average 40.000 600.000 streamflow and precipitation, demonstrating 400.000 the hydrologic variability in the basin. 20.000 200.000 · The range of historical streamflow at the basin outlet is shown by the average, median Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De and minimum streamflow over a 58-year period of record. The median flow in the - - - Streamflow Average (587,000 AFV) North Canadian River near Wetumka is Streamflow Data Source greater than 13,800 AF/month throughout Central Region, Basin 50 **Historical Precipitation** the year and greater than 35,000 AF/month **Regional Climate Division** in the spring and early summer. However, the Primarily Measured Flows river can have periods of low to very low flow Measured/Synthesized Flows in any month of the year. Relative to other Significant Synthesized Flows basins in the state, the surface water quality in Basin 50 is considered fair. Shawnee Twin Lakes provide 4,400 AFY of dependable vield for the City of Shawnee and are fully allocated. Wes Watkins Reservoir, Tecumseh Lake, and Lake Wetumka are important municipal reservoirs in the basin but the water supply yields of these lakes are unknown; therefore, their ability to provide future water supplies could not be evaluated.

Notes & Assumptions

Page 54

- · Precipitation data are based on regional information, while streamflow is basin-specific.
- Measured streamflow implicitly reflects the conditions that exist in the stream at the time the data were recorded (e.g., hydrology, diversions, reservoirs, and infrastructure).
- For water supply planning, the range of potential future hydrologic conditions, including droughts, is represented by 58 years of monthly surface water flows (1950 to 2007).
 Climate change variations to these flows are documented in a separate OCWP report.
- Surface water supplies are calculated by adjusting the historical streamflow to account for upstream demands, return flows, and out-of-basin supplies.
- The upstream state is assumed to use 60 percent of the flow at the state line based on OWRB permitting protocol.
- Historical flow is based on USGS stream gages at or near the basin outlet. Where a
 gage did not exist near the outlet or there were missing data in the record, an estimation
 of flow was determined from representative, nearby gages using statistical techniques.
- Existing surface water rights may restrict the quantity of available surface water to meet future demands. Additional permits would decrease the amount of available water.

52 Central Regional Report, Basin Data & Analysis

DRAFT

Groundwater Supply Sources

Central Region, Basin 50								
Aquifer			Portion of Basin Overlaying Aquifer	Current Groundwater Rights	Aquifer Storage in Basin	Equal Proportionate Share	Groundwater Available for New Permits	
Name	Туре	Class ¹	Percent	AFY	AF	AFY/Acre	AFY	
North Canadian River	Alluvial	Major	17%	17,100	1,541,000	1.0	100,500	
East-Central Oklahoma	Bedrock	Minor	18%	300	1,892,000	temporary 2.0	242,700	
El Reno	Bedrock	Minor	3%	6,100	100,000	temporary 2.0	36,300	
Garber-Wellington	Bedrock	Major	52%	71,400	11,736,000	temporary 2.0	556,600	
Vamoosa-Ada	Bedrock	Major	24%	2,600	2,632,000	2.0	313,500	
Non-Delineated Groundwater Source	Bedrock	Minor	N/A	400	N/A	temporary 2.0	N/A	
Non-Delineated Groundwater Source	Alluvial	Minor	N/A	400	N/A	temporary 2.0	N/A	

Groundwater Resources - Aquifer Summary 2010

1 Bedrock aquilers with typical yields greater than 50 gpm and allovial aquilers with typical yields greater than 150 gpm are considered major.

Groundwater Resources

 The majority of aroundwater permits in Basin 50 are from the Garber-Wellington major bedrock aguifer and the North Canadian River major alluvial aquifer. The Garber-Wellington aquifer has over 11.7 million AF of storage in Basin 50's portion of the aquifer and underlies the western half of the basin. The OWRB and USGS are currently conducting a detailed study of the Garber-Wellington that will establish the equal proportionate share for the aquifer, which may change the amount of the current two AFY/acre allocated for temporary permits. The North Canadian River aquifer has over 1.5 million AF of storage in Basin 50 and underlies the eastern portion of the basin. There are also substantial permits in the Vamoosa-Ada major bedrock aquifer, El Reno minor bedrock aquifer, and other minor alluvial and bedrock aquifers. Basin 50 contributes about 49,000 AFY of recharge to the Garber-Wellington and Vamoosa-Ada aquifers.

50

BASIN

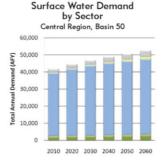
 High concentrations of nitrate, ansenic, chromium, radionuclides, and selenium have been found locally in the Garber-Wellington aquifer and may limit its use for Municipal and Industrial and other demand sectors. The OWR8 and USGS are currently conducting a detailed study to better characterize the water quality of the aquifer for all usens. There are no significant groundwater quality issues in other aquifes in the basin.

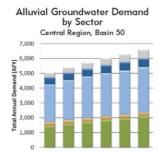
Notes & Assumptions

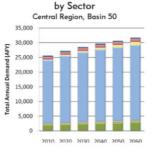
- Alluvial groundwater recharge is not considered separately from streamflow in physical supply availability analyses because any increases or decreases in alluvial groundwater recharge or storage would affect streamflow. Therefore, surface water flows are used to represent available alluvial groundwater recharge.
- Site-specific information on minor aquifers should be considered before large scale use. Suitability for long term supply is typically based on recharge, storage yield, capital and operational costs, and water quality.
- Groundwater permit availability is generally based on the amount of land owned or leased that overlies a specific aquifer.
- Temporary permit amounts are subject to change when the aquifer's equal proportionate share is set by the OWRB.
- Current groundwater rights represent the maximum allowable use. Actual use may be lower than the permitted amount.
- Bedrock groundwater recharge is the long-term annual average recharge to aquifers in the basin. Recharge rates on a county- or aquifer-wide level of detail were established from literature (published reports) of each aquifer. Seasonal or annual variability is not considered; therefore the modeled bedrock groundwater supply is independent of changing hydrologic conditions.

Oklahoma Comprehensive Water Plan

DRAFT


Central Regional Report, Basin Data & Analysis 53


Water Demand thru 2060 Source & Water Use Sector


Water Demand

BASIN 50

- Basin 50's water needs are about 22% of the demand in the Central Watershed Planning Region and will increase by 26% (18,510 AFY) from 2010 to 2060. The majority of the demand and growth in demand over this period will be in the Municipal and Industrial demand sector.
- Surface water is used to meet 58% of total demand in the basin and its use will increase by 26% (10,740 AFY) from 2010 to 2060. The majority of surface water use and growth in surface water use over this period will be in the Municipal and Industrial demand sector. Out-of-basin supplies moved from the Blule-Boggy Region via Oklahoma City's Atoka Pipeline currently helps meet a portion of the surface water demand.
- Alluvial aroundwater is used to meet 7% of total demand in the basin and its use will increase by 30% (1,540 AFY) from 2010 to 2060. The majority of alluvial groundwater use and growth in alluvial groundwater use over this period will be in the Crop Irrigation and Municipal and Industrial demand sectors.
- · Bedrock groundwater is used to meet 35% of total demand in the basin and its use will increase by 24% (6,210 AFY) from 2010 to 2060. The majority of bedrock groundwater use and growth in bedrock groundwater use over this period will be in the Municipal and Industrial demand sector.

Bedrock Groundwater Demand

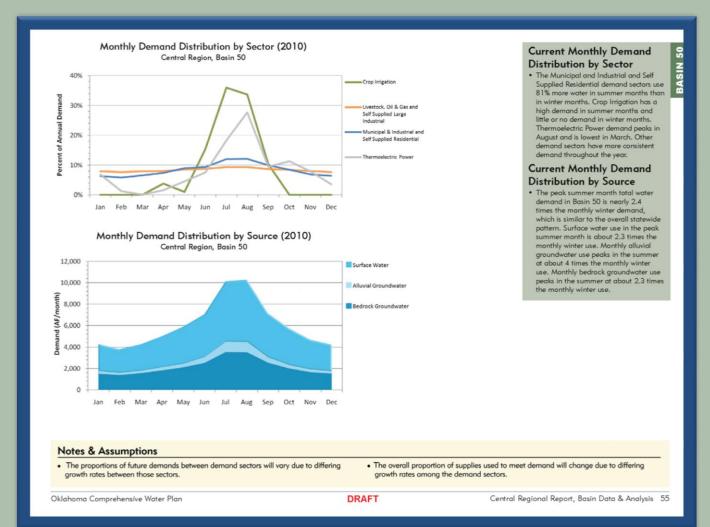
III Thermoelectric Power Self Supplied Residential Supplied Industrial Oil & Gas Municipal & Industrial Uvestock

Crop Irrigation

Total Demand by Sector

2010 2020 2030 2040

			Interest of the owner where the second s	1		STATISTICS.	Service and the service of the servi	
Planning	Crop Irrigation	Livestock	Municipal & Industrial	Oil & Gas	Self Supplied Industrial	Self Supplied Residential	Thermoelectric Power	Total
Hanning Horizon				A	FY			
2010	5,570	1,050	61,240	310	900	700	2,740	72,510
2020	6,070	1,060	64,910	560	900	740	3,060	77,300
2030	6,560	1,070	67,690	830	910	780	3,410	81,250
2040	7,060	1,080	69,860	1,170	950	810	3,810	84,740
2050	7,440	1,090	71,510	1,580	990	840	4,250	87,700
2060	8,060	1,100	73,170	2.040	1,030	880	4,740	91,020


Notes & Assumptions

- Demand values represent total demand (the amount of water pumped or diverted to meet the needs of the user).
- Values are based on the baseline demand forecast from the March 2011 OCWP Water Demand Forecast Report.
- . The effect of climate change, conservation, and non-consumptive uses, such as hydropower, are not represented in this baseline demand analysis but are documented in separate OCWP reports.
- The proportion of each supply source used to meet each water use sector's demand was assumed to be equal to the existing proportion, as represented in water rights.
- The proportions of future demands between water use sectors will vary due to differing arowth rates.
- The overall proportion of supplies used to meet demand will change due to differing growth rates among the water use sectors.

54 Central Regional Report, Basin Data & Analysis

DRAFT

Distribution Among Uses/Sources of Current & Projected Supply

Likelihood & Severity of Shortages Surface Water Gaps-Groundwater Depletions

Gaps and Storage Depletions

- **BASIN 50** Based on projected demand and historical hydrology, surface water gaps and alluvial groundwater storage depletions may occur by 2020. Bedrock groundwater depletions may occur in Basin 50 by 2040.
 - · Surface water gaps in Basin 50 may occur during the spring, summer, and fall, peaking in size in the summer. Surface water gaps in 2060 will be up to 17% (1,250 AF/month) of the surface water demand in the peak summer month, and as much as 7% (300 AF/month) of the spring monthly surface water demand. There will be a 22% probability of gaps occurring in at least one month of the year by 2060. Surface water gaps are most likely to occur during summer and fall months.
 - Alluvial groundwater storage depletions in Basin 50 may occur during the spring, summer, and fall, peaking in size during the summer. Alluvial storage depletions in 2060 will be up to 16% (210 AF/month) of the alluvial groundwater demand in the peak summer month and as much as 8% (30 AF/month) of the spring monthly alluvial groundwater demand. There will be a 22% probability of alluvial storage depletions occurring in at least one month of the year by 2060. Alluvial depletions are most likely to occur during summer and fall months.
 - Bedrock groundwater storage depletions in Basin 50 will occur in the summer and in 2060 will be 9% (420 AF/ month) of the bedrock groundwater demand in the peak summer month.
 - Projected annual groundwater storage depletions are minimal relative to the amount of water in storage in the North Canadian River, Garber-Wellington, and Vamoosa-Ada aquifers. However, localized storage depletions may adversely affect well yields, water quality, and/or pumping costs.

Surface Water Gaps by Season (2060 Demands)

Central Region, Basin 50							
	Maximum Gap ¹	Median Gap	Probability				
Months (Season)	AF/month	AF/month	Percent				
Dec-Feb (Winter)	0	0	0%				
Mar-May (Spring)	300	300	5%				
Jun-Aug (Summer)	1,250	1,110	16%				
Sep-Nov (Fall)	560	470	14%				

1 Amount shown represents largest amount for any one month in season indicated.

Alluvial Groundwater Storage Depletions by Season (2060 Demands) Control Ragion Basin 50

	Maximum Storage Depletion ⁱ	Median Storage Depletion	Probability
Months (Season)	AF/month	AF/month	Percent
Dec-Feb (Winter)	0	0	0%
Mar-May (Spring)	30	30	5%
Jun-Aug (Summer)	210	200	16%
Sep-Nov (Fall)	70	55	14%

1 Amount shown represents largest amount for any one month in season indicated.

Magnitude and Probability of Annual Gaps and Storage Depletions Central Region, Basin 50

	Maximu	m Gaps/Storage	Depletions	Probabili Storage	ity of Gaps/ Depletions			
	Surface Water	Alluvial GW	Bedrock GW	Surface Water	Alluvial GW			
nning rizon		AFY	Percent					
2	180	30	0	9%	9%			
•	670	110	0	17%	17%			
2	1,460	240	160	19%	19%			
	2,270	360	450	21%	21%			
0	3,490	540	800	22%	22%			

Bedrock Groundwater Storage Depletions by Season (2060 Demands)

	Storage Depletion ¹ AF/month		
Months (Season)			
Dec-Feb (Winter)	0		
Mar-May (Spring)	0		
Jun-Aug (Summer)	420		
Sep-Nov (Fall)	0		

1 Amount shown represents largest amount for any one month in season indicated.

Notes & Assumptions

- · Gaps and Storage Depletions reflect deficiencies in physically available water (or "wet water"). Permitting, water guality, infrastructure, and nonconsumptive demand constraints are considered in separate OCWP analyses.
- · Local gaps and storage depletions may vary from basin-level values due to local variations in demands and local availability of supply sources.
- . For this baseline analysis, each basin's future demand is met by the basin's available supplies.
- For this baseline analysis, the proportion of future demand supplied by surface water and groundwater for each sector is assumed equal to current proportions.
- The available surface water supplies used in the OCWP water supply availability analysis include changes in historical streamflow due to increased upstream demand, return flows, and increases in out-of-basin supplies from existing infrastructure.
- Analysis of bedrock groundwater supplies is based upon recharge from major aquifers.
- Groundwater storage depletions are defined as the amount that future demands exceed available recharge.
- Median gaps and storage depletions are based only on months with gaps or storage depletions.
- Annual probability is based upon the number of years that a gap or depletion occurs in at least one month of that year.

56 Central Regional Report, Basin Data & Analysis

Oklahoma Comprehensive Water Plan

Options & Alternatives to Forecasted Shortages

Reducing Water Needs Through Conservation

	2060 G	p/Storage D	epletion	2060 Gap/Storage Depletion Probability	
	Surface Water	Alluvial GW	Bedrock GW	Surface Water	Alluvial GW
Conservation Activities	AFY			Percent	
Existing Conditions	3,490	540	800	22%	22%
Moderately Expanded Conservation in Crop Irrigation Water Use	3,190	480	690	22%	22%
Moderately Expanded Conservation in M&I Water Use	530	100	0	10%	10%
Moderately Expanded Conservation in Crop Irrigation and M&d Water Use	390	70	0	10%	10%
Substantially Expanded Conservation in Crop Irrigation and M&d Water Use	0	0	0	0%	0%

1 Conservation Activities are documented in the OCWP Demand Forecast Report.

Reliable Diversions Based on Available Streamflow and New Reservoir Storage

Central Region, Basin 50

Reservoir Storage	Diversion		
AF	AFY		
100	3,800		
500	5,000		
1,000	6,200		
2,500	9,200		
5,000	14,000		
Required Storage to Meet Srowth in Demand (AF)	7,500		
Required Storage to Meet Growth n Surface Water Demand (AF)	3,100		

Notes & Assumptions

- Water quality considerations may limit the use of supply sources, which may require new or additional treatment before use.
- Infrastructure related to the diversion, conveyance, treatment, and distribution of water will
 affect the cost-effectiveness of using any new source of supply.
- The ability to reduce demands will vary based on local acceptance of additional conservation and temporary drought management activities.
- Gaps and depletions may be mitigated in individual calendar months without reductions in the annual probability (chance of having shortage during another month).

Water Supply Options & Effectiveness

Demand Management

Hectiveness Typically Effective Potentially Effective

Likely Ineffective No Option Necessary

BASIN

50

Moderately expanded permanent conservation activities in the Municipal and Industrial, Self Supplied Residential, and Crop Irrigation demand sectors could mitigate bedrock groundwater storage depletions, and reduce surface water gaps and alluvial groundwater storage depletions by 89% and 87%, respectively. Temporary drought management activities may not be effective for this basin, since gaps have a moderate probability of occurring and groundwater storage could continue to provide supplies during droughts.

Out-of-Basin Supplies

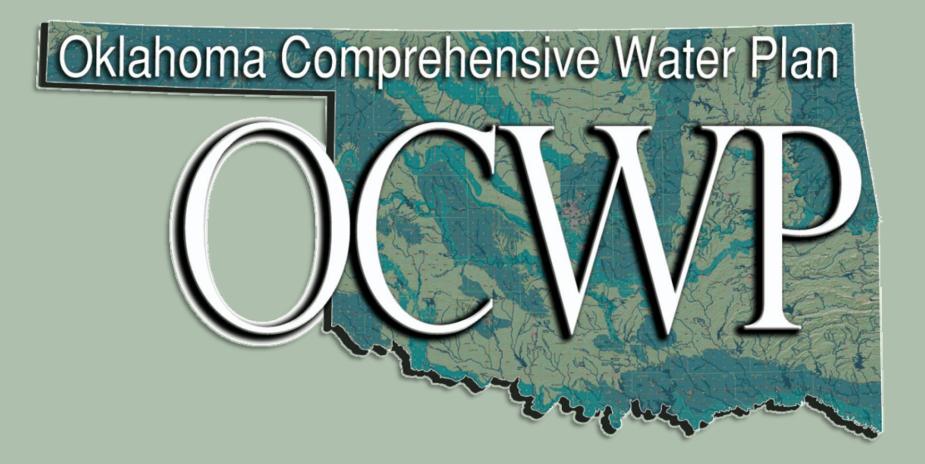
Out-of-basin supplies could mitigate groundwater storage depletions and surface water gaps. The OCWP Reservoir Vlability Study, which evaluated the potential for reservoirs throughout the state, identified fifteen potential out-of-basin sites in the Central Region: Asher and Scissortal in Basin 55; Dibble and Purcell in Basin 57; Union in Basin 58; Fallis, Nuyaka, Wellston and Welty in Basin 60; Sasakwa in Basin 61; Tate Mountain and West Elm Creek (terminal storage) in Basin 62; and Crescent, Hennessey and Navina in Basin 64. However, in light of the substantial groundwater supplies, out-of-basin supplies may not be cost-effective for many users in the basin.

Reservoir Use

Additional reservoir storage in Basin 50 could effectively supplement supply during dry months. The entire increase in demand from 2010 to 2060 could be supplied by a new river diversion and 7,500 AF of reservoir storage at the basin outlet. The use of multiple reservoirs in the basin or reservoirs upstream of the basin's outlet may increase the amount of storage necessary to mitigate future gaps and storage depletions. The OWRB Reservoir Viability Study identified one potential site in Basin 50 (Centerpoint).

Increasing Reliance on Surface Water

Increased reliance on surface water through direct diversions without reservoir storage will increase surface water gaps and is not recommended.


Increasing Reliance on Groundwater

- Increased reliance on the Garber-Wellington, Vamoosa-Ada, or North Canadian River aquifers could mitigate surface water gaps. Any increases in storage depletions would be minimal relative to the volume of water stored in the basin's major aquifers. The Aquifer Recharge Workgroup identified a site near Shawnee and Seminole (site # 9) as potentially feasible for aquifer recharge and recovery. Water could potentially be withdrawn from the North Canadian River to recharge the Vamoosa-Ada aquifer.
 - Yield from new, unused, or additional reservoir storage is based on a hypothetical on-channel reservoir at the basin outlet. Reported yields will vary depending upon the reservoir location; placement at the basin outlet would likely result in a higher yield.
 - Surface water diversions may provide substantial annual dependable yield with little or no reservoir storage if surface supplies are frequently equal to or greater than the annual total and monthly pattern of demand.
 - Aquifer storage and recovery may provide additional storage or an alternative to surface storage and should be evaluated on a case by case basis.

Oklahoma Comprehensive Water Plan

Central Regional Report, Basin Data & Analysis 57

