

U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology

CONNECTED VEHICLE PILOT Deployment Program

Ben McKeever and Walt Fehr

ITS Joint Program Office

- Ben McKeever
 Team Leader, Transportation Operations Applications, FHWA R&D
 - Connected Vehicle Pilot Deployment Program Overview
 - Connected Vehicle Communication Technologies
- Walt Fehr System Engineering Program Manager, ITS JPO
 - Role of DSRC in CV Pilots
 - Preparing for Interoperability
- Stakeholder Q&A

Connected Vehicle Pilot Deployment Program Overview

PROGRAM GOALS

ORGANIZING PRINCIPLES AND REQUIREMENTS

Organizing Principles

- Problem-Driven
- Multiple Pilot Sites
- Large-Scale and Multi-Modal
- Multiple Applications Deployed Together

Deployment Requirements

- Data Capture and Sharing
- Quantifiable Performance Measures
- Security and Credentialing Management System
- Multiple Forms of Communication Technologies
 - DSRC desired as one communication technology
 - Integrated or carry-in devices for connected vehicles capable of generating an SAE J2735 Basic Safety Message (BSM)

CONNECTED VEHICLE APPLICATIONS

V2I Safety

Red Light Violation Warning Curve Speed Warning Stop Sign Gap Assist Spot Weather Impact Warning Reduced Speed/Work Zone Warning Pedestrian in Signalized Crosswalk Warning (Transit)

V2V Safety

Emergency Electronic Brake Lights (EEBL) Forward Collision Warning (FCW) Intersection Movement Assist (IMA) Left Turn Assist (LTA) Blind Spot/Lane Change Warning (BSW/LCW) Do Not Pass Warning (DNPW) Vehicle Turning Right in Front of Bus Warning (Transit)

Agency Data

Probe-based Pavement Maintenance Probe-enabled Traffic Monitoring Vehicle Classification-based Traffic Studies

CV-enabled Turning Movement & Intersection Analysis CV-enabled Origin-Destination Studies Work Zone Traveler Information

Environment

Eco-Approach and Departure at Signalized Intersections **Eco-Traffic Signal Timing Eco-Traffic Signal Priority Connected Eco-Driving** Wireless Inductive/Resonance Charging **Eco-Lanes Management Eco-Speed Harmonization Eco-Cooperative Adaptive Cruise** Control **Eco-Traveler Information Eco-Ramp Metering** Low Emissions Zone Management **AFV Charging / Fueling** Information **Eco-Smart Parking Dynamic Eco-Routing (light** vehicle, transit, freight) **Eco-ICM Decision Support System**

Road Weather

Motorist Advisories and Warnings (MAW) Enhanced MDSS Vehicle Data Translator (VDT) Weather Response Traffic Information (WxTINFO)

Mobility

Advanced Traveler Information System Intelligent Traffic Signal System (I-SIG) Signal Priority (transit, freight) Mobile Accessible Pedestrian Signal System (PED-SIG) **Emergency Vehicle Preemption (PREEMPT) Dynamic Speed Harmonization (SPD-**HARM) Queue Warning (Q-WARN) **Cooperative Adaptive Cruise Control** (CACC) Incident Scene Pre-Arrival Staging **Guidance for Emergency Responders** (RESP-STG) Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE) **Emergency Communications and Evacuation (EVAC) Connection Protection (T-CONNECT) Dynamic Transit Operations (T-DISP)** Dynamic Ridesharing (D-RIDE) Freight-Specific Dynamic Travel Planning and Performance Drayage Optimization

Smart Roadside

Wireless Inspection Smart Truck Parking

Proposed CV Pilots Deployment Schedule

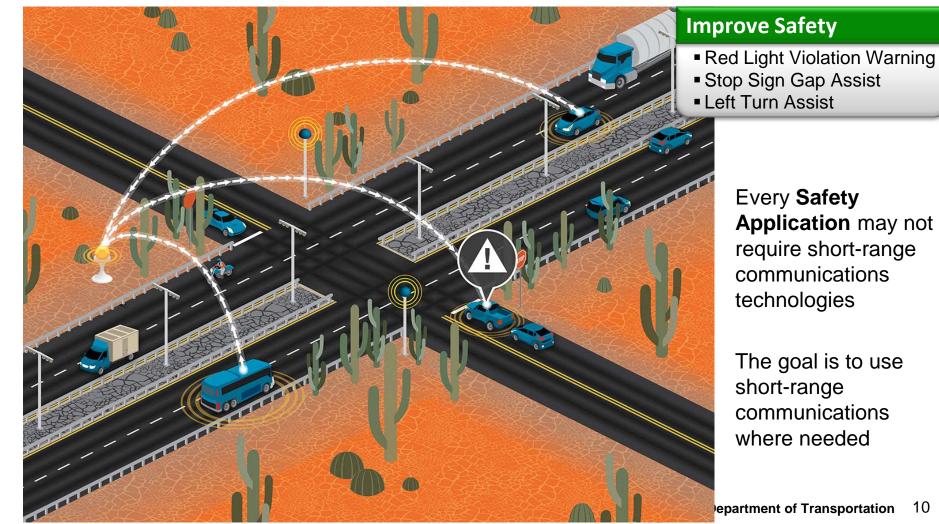
Schedule Item	Date
Regional Pre-Deployment Workshop/Webinar Series	Summer-Fall 2014
Solicitation for Wave 1 Pilot Deployment Concepts	Early 2015
Wave 1 Pilot Deployments Award(s) Concept Development Phase (6-9 months) Design/Build/Test Phase (10-14 months) Operate and Maintain Phase (18 months)	September 2015
Solicitation for Wave 2 Pilot Deployment Concepts	Early 2017
Wave 2 Pilot Deployments Award(s) Concept Development Phase (6-9 months) Design/Build/Test Phase (10-14 months) Operate and Maintain Phase (18 months)	September 2017
Pilot Deployments Complete	September 2020

CV Pilots Program Website: <u>http://www.its.dot.gov/pilots</u>

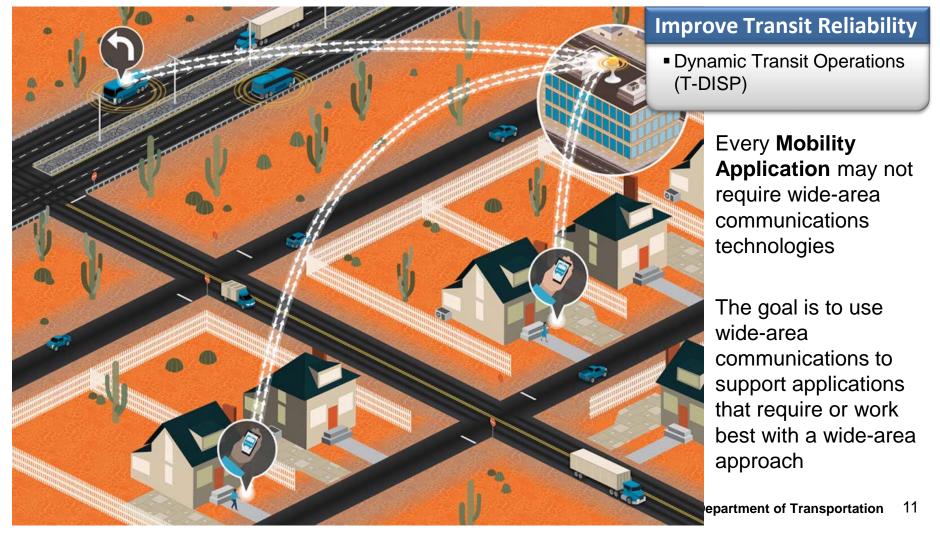
Connected Vehicle Communication Technologies

CONNECTED VEHICLE COMMUNICATION TECHNOLOGIES

- CV Pilot Program seeks an appropriate role for DSRC but open to all approaches do what works
 - 5.9 GHz DSRC
 - 4G and older 3G cellular networks provide high-bandwidth data communications
 - Other wireless technologies such as Wi-Fi, satellite, and HD radio will likely have roles to play



GREYPOOL COUNTY SCENARIO - SAFETY


 An example of using short-range communication technologies (e.g., DSRC) for Safety Applications

GREYPOOL COUNTY SCENARIO - MOBILITY

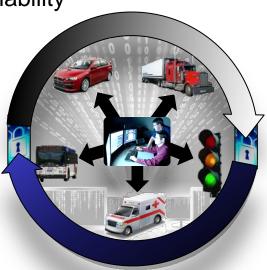
 An example of using other types of communication technologies for Mobility Applications

- <u>Multiple forms of communications technologies are desired</u>
- DSRC is intended for <u>safety applications</u> but we are open to any technology that is available now to help us to improve mobility, safety and environmental impacts
- Pilot concept developers should consider DSRC <u>only where it is</u> <u>appropriate</u>.
- Pilot concepts are sought where <u>DSRC is included as one form of</u> communications technology

Role of DSRC

A VARIETY OF COMMUNICATION MEDIA RANGES

- Communication Resources
 - Wired, wireless and the Internet
 - 3,000 miles, 3,000 meters, 300 meters, 3 meters
- Communication Requirements
 - Two types of information distribution: To all, To one



- In October 1999, the Federal Communications Commission (FCC) allocated 75 MHz of spectrum in the 5.9 GHz band for ITS applications, primarily <u>public safety</u> oriented.
- The USDOT's commitment to DSRC highlights two critical points
 - <u>Safety</u> is the highest priority for the Department and will form the central focus for the connected vehicle technologies.
 - A detail analysis illustrates that DSRC is the only established communication option available in the near-term that offers the <u>latency</u>, <u>accuracy</u>, and <u>reliability</u> needed for active safety.

- Fast Network Acquisition
 - Active safety applications require immediate establishment of communication
- Low Latency
 - Active safety applications must execute in the smallest amount of time possible
- High Reliability when Required
 - Active safety applications require high level of link reliability
- Priority for Safety Applications
 - Safety applications on DSRC are given priority over non-safety applications
- Security and Privacy
 - DSRC provides safety message authentication and privacy

BENEFITS AND CHALLENGES OF DSRC

- <u>Benefits</u> of the DSRC communications technology
 - Reduced price
 - $_{\circ}$ Improved reliability \rightarrow fewer false alarms
 - Increased performance \rightarrow addresses more crash scenarios
- <u>Challenges</u> of the DSRC communications technology
 - Both parties (vehicle/vehicle or vehicle/infrastructure) need to be equipped to gain benefit
 - Requires security infrastructure

U.S. Department of Transportation 18

BENEFITS AND CHALLENGES OF CELLULAR TECHNOLOGY

- Benefits of 4G and 3G cellular technology:
 - Widely deployed commercial networks
 - Increasingly available in vehicles
 - Mobility and environmental applications
- Challenge of 4G and 3G cellular technology:
 - May not be suitable for safety applications that require low latency

CV PILOTS WORKSHOP QUESTIONS ON DSRC

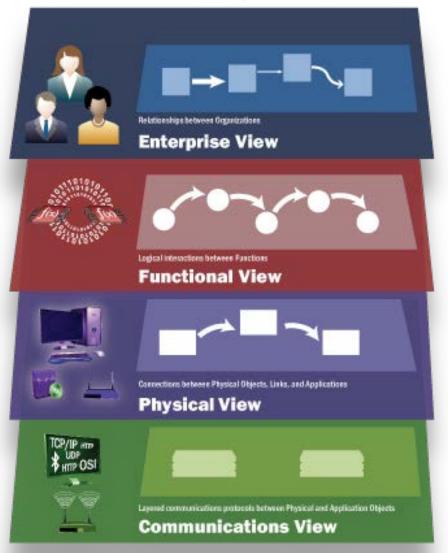
- Questions from Stakeholders We Heard
 - What are Benefits and Challenges of using DSRC in CV Pilots?
 - Where would DSRC be most useful? Least useful? Where would another type of communications be more useful?
 - Are the messages the same whether they are carried by DSRC or another communications method?
 - What alternative communications methodologies are considered and for what purpose?
- Stakeholder Feedback on DSRC
 - Varying views on keeping DSRC as a requirement: <u>encourage but not require</u>
 - <u>Safety</u> requires DSRC, other apps should be able to use other methods if they meet requirements
 - We want CV pilots to be test of DSRC channel utilization will usage for <u>mobility</u> <u>apps</u> interfere with <u>safety apps</u>?
 - DSRC is more than sending BSMs. <u>Other apps</u> may use DSRC also
 - We want to leverage data from vehicles beyond currently available commercial offerings

Preparing for Interoperability

- Connected Vehicles <u>Interoperability</u> research is primarily focused on adoption and eventual deployment.
 - The ability for vehicles to interface with other vehicles
- <u>Emerging Technologies</u> will focus on identifying existing technologies in other industry areas that might be brought into the Connected Vehicle program to speed adoption.

COMMUNICATION INTEROPERABILITY

- Communications-based sensor systems could potentially be a low-cost means of enabling hazard detection capability on all vehicle classes, but requires vehicles and infrastructure to be outfitted with <u>interoperable communications capabilities</u>.
- Using communication technology based on <u>widely accepted standards</u> <u>interpretations</u> can enable interoperability. It supports both V2V and V2I communications.


- The vision is to have <u>multiple interoperable locations</u> as part of one connected system moving toward nation-wide deployment.
- Common architecture Vision Common standards Independent operations Shared resources http://www.its.dot.gov/testbed.htm

CVRIA: A FRAMEWORK FOR INTEGRATING TECHNOLOGIES AND IDENTIFYING INTERFACES FOR STANDARDIZATION

Connected Vehicle Reference Implementation Architecture

http://www.iteris.com/cvria/

 The Systems Engineering Tool for Intelligent Transportation (SET-IT)

Training in November and December

Stakeholder Q&A

