

Hardcopy Uncontrolled

NOAA NESDIS

CENTER for SATELLITE APPLICATIONS
and RESEARCH

TRAINING DOCUMENT

TD-11.1
FORTRAN PROGRAMMING

STANDARDS and GUIDELINES
Version 3.0

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 2 of 2

Hardcopy Uncontrolled

TITLE: TD-11.1: FORTRAN PROGRAMMING STANDARDS AND GUIDELINES VERSION
3.0

AUTHORS:

Ken Jensen (Raytheon Information Solutions)

Alward Siyyid (Raytheon Information Solutions – version 1)

FORTRAN PROGRAMMING STANDARDS AND GUIDELINES

VERSION HISTORY SUMMARY

Version Description Revised
Sections

Date

1.0 New Work Instruction (WI-12.1.1) adapted from Raytheon
SOI 505 by Ken Jensen (Raytheon Information Solutions)

New
Document 03/31/2006

1.1
Revision by Alward Siyyid (Raytheon Information Solutions).
Added sections on error trapping (4.10) and interoperability
(4.17).

4.10, 4.17 05/05/2006

1.2 Revision by Ken Jensen (Raytheon Information Solutions).
Applied STAR standard style to entire document. All 06/02/2006

2.0

Revision by Ken Jensen (Raytheon Information Solutions).
Changed from WI-12.1.1 to Training Document TD-12.1.1
for version 2 of the STAR Enterprise Product Lifecycle
(EPL). Numerous revisions in response to peer review
comments. Quick reference by Walter Wolf (STAR) added
to appendices.

All 09/28/2007

3.0 Renamed TD-11.1 and revised by Ken Jensen (RIS) for
version 3. 1, 2 10/1/2009

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 3 of 3

Hardcopy Uncontrolled

TABLE OF CONTENTS

 Page

LIST OF TABLES .. 5

LIST OF ACRONYMS ... 6

1. INTRODUCTION .. 7
1.1. Objective... 7
1.2. Background .. 8
1.3. Fortran Versions ... 9
1.4. Benefits... 9
1.5. Overview ... 10

2. REFERENCE DOCUMENTS ... 11

3. DEFINITIONS ... 12
3.1. Language Features .. 12
3.2. Readability .. 13
3.3. Naming Conventions .. 17
3.4. Compound Expressions .. 18
3.5. Preamble .. 19
3.6. Organization ... 20
3.7. Size .. 20
3.8. Declarations .. 20
3.9. Error Trapping .. 21
3.10. Statement Numbers (Fortran 77) .. 22
3.11. Subroutine Control .. 22
3.12. Statements ... 22

3.12.1. IMPLICIT NONE Statement .. 24
3.12.2. DO Statement ... 24

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 4 of 4

Hardcopy Uncontrolled

3.12.3. FORMAT Statement ... 24
3.12.4. IF Statement ... 25
3.12.5. SAVE Statement ... 27
3.12.6. EXIT/CYCLE Statement .. 27
3.12.7. EQUIVALENCE Statement ... 27
3.12.8. END Statement ... 27

3.13. Common Libraries .. 27
3.14. Use of Standard Constants ... 28
3.15. Efficient Use of Memory ... 28
3.16. Fortran/C Interoperability ... 28
3.17. Documentation ... 31
3.18. Grandfathering ... 32

3.18.1. COTS ... 32
3.18.2. Reuse ... 32

APPENDIX A. FORTRAN PROGRAMMING EXAMPLES 33

APPENDIX B. FORTRAN CODING STANDARDS - QUICK REFERENCE 49

APPENDIX C. TRANSITION FROM FORTRAN 77 TO FORTRAN 90 55

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 5 of 5

Hardcopy Uncontrolled

LIST OF TABLES
 Page
Table 1. Fortran/C Interoperability .. 29

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 6 of 6

Hardcopy Uncontrolled

LIST OF ACRONYMS

CICS Cooperative Institute for Climate Studies
CIMSS Cooperative Institute for Meteorological Satellite Studies
CIOSS Cooperative Institute for Oceanographic Satellite Studies
CIRA Cooperative Institute for Research in the Atmosphere
COTS Commercial Off-The-Shelf
CREST Cooperative Remote Sensing and Technology Center
EPL Enterprise Project Lifecycle
FCD Final Committee Draft
IEC International Engineering Consortium
IMSL International Mathematical and Statistical Library
INCITS International Committee for Information Technology Standards
ISO International Organization for Standardization
NESDIS National Environmental Satellite, Data, and Information Service
NOAA National Oceanic and Atmospheric Administration
PAR Process Asset Repository
PG Process Guideline
STAR Center for Satellite Applications and Research
TD Training Document

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 7 of 7

Hardcopy Uncontrolled

1. INTRODUCTION

The NOAA/NESDIS Center for Satellite Applications and Research (STAR) develops a
diverse spectrum of complex, often-interrelated, environmental algorithms and software
systems. These systems are developed through extensive research programs, and
transitioned from research to operations when a sufficient level of maturity and end-user
acceptance is achieved. Progress is often iterative, with subsequent deliveries providing
additional robustness and functionality. Development and deployment is distributed,
involving STAR, multiple cooperative institutes (CICS, CIMSS, CIOSS, CIRA, CREST)
distributed throughout the US, multiple support contractors, and NESDIS operations.
NESDIS/STAR is implementing an increased level of process maturity to support the
exchange of these software systems from one location or platform to another. The purpose
of this coding standards guideline is to assist software developers reliably and repeatably
develop, port, and deliver NOAA/NESDIS environmental software systems across
platforms, locations, and organizations.

1.1. Objective

The objective of this Training Document (TD) is to provide STAR standards for Fortran
code that is developed, tested, and reviewed during the STAR Enterprise Product Lifecycle
(EPL)1. The intended users of this TD are programmers of Fortran code that will be used to
implement an algorithm that creates an operational product from remote sensing satellite
data. To achieve the objective, this TD shall:

• Establish Fortran programming standards for STAR, drawn from international
standards

• Provide Fortran programming guidelines

• Provide examples of good Fortran programming practices

• Serve as a common reference for programming practices within the STAR

Enterprise.

1 For a description of the STAR EPL, refer to the STAR EPL Process Guidelines (PG-1 and PG-1.A).

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 8 of 8

Hardcopy Uncontrolled

1.2. Background

This TD defines programming standards and provides implementation guidelines for coding
in the Fortran programming language for software programs within STAR. This TD has
been adapted from Raytheon Software Operating Instruction 505 “FORTRAN 2
Programming Standards and Guidelines” and has benefited from review and comments by
John Stroup, Sid Boukabara, Paul van Delst and Walter Wolf.

The development of code that will be used to implement an algorithm that creates an
operational product from remote sensing satellite data is part of a unified STAR EPL. As
such, it takes place in a series of defined steps:

Basic Research Code: In this step, a new or improved algorithm is being developed by a
scientist. Usually, some coding is needed to implement the Basic Research algorithm so
that the algorithm developer can do sufficient testing to determine whether the algorithm
has operational potential. At the discretion of the Basic Research organization, Basic
Research code can be prototype “throwaway” code that does not have to conform to
standards, and there will be no code review at this step. If the programmer intends to reuse
his Basic Research code in future steps, he should be aware that the reused code will be
required to conform to standards.

Research Grade Code: In this step, the algorithm has been identified as having
operational potential and additional development has been authorized to determine whether
a STAR Research Project proposal should be submitted. Research grade code is a
required artifact for the STAR review of a Project Proposal. STAR reviewers will expect that
this code can be re-used in the development of pre-operational code. The conformance of
the code to these standards may be a factor in STAR’s decision to approve the project for
development.

Pre-operational Code: In this step, the algorithm has been approved for development and
has passed a Critical Design Review. The code is developed from research grade to pre-
operational status. The conformance of the pre-operational code to the standards in this TD
shall be a factor in a decision to approve its installation in an operations environment.

2 Beginning with Fortran 77, it has been the convention to use Sentence Case instead of Upper Case for the
name. Many Fortran documents retain the old convention.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 9 of 9

Hardcopy Uncontrolled

Operational Code: In this step, the pre-operational code has been successfully integrated
into the operational environment and is ready for approval for operations. There are no
additional programming standards for operational code.

1.3. Fortran Versions

The Fortran programming language standards are maintained by the International
Committee for Information Technology Standards (INCITS, http://www.incits.org/). The
U.S. Fortran standards committee J3 (http://j3.incits.org/), an INCITS technical
subcommittee, developed the Fortran 66, Fortran 77, Fortran 90, Fortran 95 and Fortran
2003 standards. Fortran 2003, published 18 November 2004, is an upwardly-compatible
extension of Fortran 95, adding, among other things, support for exception handling, object-
oriented programming, and improved interoperability with the C language. Working closely
with ISO/IEC/JTC1/SC22/WG5 (http://www.nag.co.uk/sc22wg5/), the international Fortran
standards committee, J3 is the primary development body for Fortran 2008. Fortran 2008 is
planned to be a minor revision of Fortran 2003.

Fortran 90 represented a substantial revision from Fortran 77. Later revisions were
significant, but not nearly as substantial.

This TD is tailored for STAR, based on the recognition that many Fortran programmers and
potential reviewers in the STAR Enterprise are accustomed to the Fortran 77 version, and
much of the legacy Fortran code is in the Fortran 77 style. While it is recommended that
Fortran programming be in accordance with Fortran 90 or later standards when practical, it
is not required. Fortran 77 code, when written according to its standards, is compatible with
newer Fortran compilers. To assist those who would like to begin programming in later
versions of Fortran, and those who will have to peer review Fortran 90 or later code, there
is an Appendix to this TD (TD-11.1.A “Transition from Fortran 77 to Fortran 90”) available in
the STAR EPL Process Asset Repository (PAR, c.f. Section 2).

Appendix A of this TD contains programming examples in Fortran 77 (Example A-1) and
Fortran 90 (Example A-2).

1.4. Benefits

Code developed in accordance with the standards in this TD assists the programmers and
testers by increasing the efficiency of code testing and debugging.

http://www.incits.org/
http://j3.incits.org/
http://www.nag.co.uk/sc22wg5/

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 10 of 10

Hardcopy Uncontrolled

Code developed in accordance with the standards in this TD assists code reviewers by
ensuring that the code presented for review is well documented, readable, and traceable to
design.

Code developed in accordance with the standards in this TD makes it easier to perform
code maintenance during operations.

Most important to the programmer, it is a STAR requirement that Fortran code be
developed in accordance with the standards in this TD. Failure to do so may result in
disapproval and the need to rewrite the code for a delta review.

1.5. Overview

This TD contains the following sections:

 Section 1.0 - Introduction
 Section 2.0 - Reference Documents
 Section 3.0 - Definitions
 Section 4.0 - Programming Standards and Guidelines
 Appendix A - Programming Examples
 Appendix B - STAR Fortran Coding Standards Quick Reference
 Appendix C - Transition from Fortran 77 to Fortran 90

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 11 of 11

Hardcopy Uncontrolled

2. REFERENCE DOCUMENTS

ISO/IEC FCD 1539-1:2004 is the international standard for Fortran code. This is a very
large document that can be used as a reference at the programmer’s discretion. This
document is available at:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39691

Boukabara, S.-A. and P. van Delst (2007), Standards, Guidelines and
Recommendations for Writing FORTRAN 95 Code provides the SPSRB standards,
guidelines and recommendations for Fortran 95. The STAR standards and guidelines are
intended to be completely consistent with the SPSRB standards. This document is
available on the SPSRB web site at:

http://projects.osd.noaa.gov/spsrb/standards_docs/Fortran95_standard_rev22Jun2009.pdf

The following references are STAR EPL process assets that are accessible in a STAR EPL
Process Asset Repository (PAR) on the STAR web site:

http://www.star.nesdis.noaa.gov/star/EPL_index.php.

TD-11.1.A: Transition from Fortran 77 to Fortran 90, an Appendix to this TD, is a useful
training document for programmers and code reviewers who are not familiar with Fortran
90 and later versions of Fortran. This document is available to approved STAR EPL
stakeholders in the STAR EPL PAR.

PG-1: STAR EPL Process Guideline provides the definitive description of the standard
set of processes of the STAR EPL.

PG-1.A: STAR EPL Process Guideline Appendix, an appendix to PG-1, is a Microsoft
Excel file that contains the STAR EPL process matrix (Stakeholder/Process Step matrix),
listings of the process assets and standard artifacts, descriptions of process gates and
reviews, and descriptions of stakeholder roles and functions.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39691
http://www.star.nesdis.noaa.gov/star/EPL_index.php

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 12 of 12

Hardcopy Uncontrolled

rce file.

3. DEFINITIONS

Main Program. A Fortran main program begins with the reserved word PROGRAM and
ends with a matching reserved word END, and consists of a sequence of executable
statements and optional declarations. A program is always a separately compilable unit.

Program Unit. A program unit is any of the three structures in Fortran, namely PROGRAM,
SUBROUTINE, and FUNCTION.

Subprogram. A Fortran subprogram begins with either the reserved word FUNCTION,
SUBROUTINE, MODULE, or BLOCK DATA and ends with a matching reserved word END.
It consists of a sequence of executable statements and is called by a main program or by
another subprogram. A subprogram may or may not be a separately compilable unit,
depending upon implementation.

This section contains the STAR Fortran programming standards and associated guidelines.

3.1. Language Features

Only language features and capabilities that are documented or defined in the ISO/IEC
FCD 1539-1:2004(E) (c.f. Section 2) shall be used. Use the -iso compiler flag to ensure
this.

Fixed source form (Fortran 77) and free source form (Fortran 90 3) shall not be mixed
within a subprogram. Program units written in fixed form and free form may be mixed in the
same program, but each unit must be only in one form and at the compilation both forms
may not be in the same sou

If an algorithm is re-using a substantial amount of legacy Fortran 77 code, it is advisable to
complete the code in the Fortran 77 (fixed form) style. If there is no re-use, it is
recommended that new code be re-written in free form style. If the amount of re-use is
small, it is recommended that new code be written in free form style and the legacy code be
re-written in free form style. An exception to this guideline is the case where the designated
programmers are not familiar with free form style and the scope of the project does not

3 In this document, references to Fortran 90 are intended to apply to all later versions on Fortran (e.g. Fortran
95).

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 13 of 13

Hardcopy Uncontrolled

warrant the training cost. In this case, new code written in fixed form style shall be
acceptable.

It is expected that a waiver will be required for approval of fixed form code. It is
recommended that this waiver be obtained before a significant coding effort is expended.

One of the requirements for code to pass STAR reviews is that the code can be compiled
on a standard Fortran compiler.

During the development and testing phases, all compiler options that provide additional
checks of the code should be turned on.

3.2. Readability

Pagination:

Begin each program unit at the top a new page.

Continuation Statements:

Fortran 77: When a single statement extends to more than one (1) line, begin each
continuation line with an ampersand (&) in column six (6), and indent two (2) levels of
indentation relative to the first statement line.

Fortran 90: When a single statement extends to more than one (1) line, insert one blank
character and an ampersand (“ &”) at the end of the line and begin the continuation line at
an indentation of at least two spaces. Refer to lines 160-161, 187-188, 190-191, 206-207,
223-224, and 284-285 of Example A-2. Though a statement may have as many as 39 lines
of continuation, it is recommended that long statements be partitioned into a number of
smaller statements wherever possible. Try to limit the number of continuation lines to 10 or
less.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 14 of 14

Hardcopy Uncontrolled

Characters per line of code:

Fortran 77: A “line” of code cannot extend more than 80 columns.

Fortran 90: Use a maximum of 90 characters per line (maximum allowed under ISO is 132)

Alphabetic case shall be used consistently to enhance readability throughout a program.

GOOD: *******************

C = A + B * X

GOOD: *******************

c = a + b * x

BAD: *******************

C = a + B * x

Blocking with blank lines shall be used consistently to enhance readability throughout a
program. A comment line shall be separated from a preceding executable line of code by a
single blank line. All comment lines that are followed by an executable line of code should
be separated from the executable line of code either by a single blank line or by no blank
line. This is an optional matter of style that should be used consistently throughout a
program.

GOOD: **

 ! Compute the sides of a right triangle

 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse

c_squared = a * a + b * b
 **

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 15 of 15

Hardcopy Uncontrolled

GOOD: **
 ! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse

c_squared = a * a + b * b
 **

BAD: **

! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5
 ! Compute the square of the hypotenuse

 c_squared = a * a + b * b
 **

BAD: **

! Compute the sides of a right triangle

 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse
 c_squared = a * a + b * b
 **

Compound Expressions: Place spaces before and after relational operators, Fortran
reserved words, identifiers, and arithmetic operators to enhance readability of compound
expressions. Refer to example A-1, line 236.

Input/Output: In addition to identifying input and output variables in the Preamble, it is
helpful for readability and clarity to separate Input, Output, and Processing functions in a

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 16 of 16

Hardcopy Uncontrolled

program so that all Input functions precede all Processing functions, followed by all Output
functions. Exceptions to this rule occur when memory constraints require dynamic
allocation of memory within the processing function. When dynamic allocation is used, input
and output functions within processing functions should be clearly identified by comments
that identify the input/output variables with references to the Preamble and/or design
documents.

Indentation shall be used consistently to enhance readability throughout a program. Each
indentation should use at least two spaces. A comment line should be indented in the same
way as the following executable line of code. Statements in nested loops should be
indented so that all statements in the same nesting are indented by the same amount.
Statements in inner nested loops should be indented by a greater amount than statements
in outer nested loops.

GOOD: ***

 ! Loop over values of x and y
 DO i=1,5
 x = x_value(i)
 DO j=1,4
 y = y_value(j)

 ! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse
 c_squared(i,j) = a * a + b * b

 ! Close the loops
 END DO
 END DO

BAD: ***

 ! Loop over values of x and y

 DO i=1,5
 x = x_value(i)

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 17 of 17

Hardcopy Uncontrolled

 DO j=1,4
 y = y_value(j)

! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse
 c_squared(i,j) = a * a + b * b

 ! Close the loops
 END DO
 END DO

3.3. Naming Conventions

There is no standard for Fortran naming conventions, as Fortran code will work with all
names composed of recognized characters. That is why they are called naming
“conventions”, not naming “standards”. The only required standard is for what names can
NOT be: Names can not be identical to Fortran reserved words or implementation supplied
function names.

In addition, naming conventions within a programming community are under continual
development, as programmers communicate with each other and agree to adopt particular
conventions.

When writing code, the names of files, subroutines, functions and variables created by a
programmer are always up to the programmer. A programmer can choose to make the
names long or short, descriptive or useless, clear or confusing. A lot depends on the
mindset of the programmer. Will this code be reused? Is this "quick and dirty" code? Is this
code so clear that it is self-explanatory? The names of files, subroutines, functions and
variables can be extremely useful in making code more readable. Choosing names may
seem not very important, but insisting on meaningful names helps a programmer to
organize thoughts and produce code that is readable and reviewable.

Avoid names that look alike by differing only in characters that resemble each other, as do
2 and z, 0 and O, 5 and S, or I and 1.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 18 of 18

Hardcopy Uncontrolled

Name programs, subroutines, and functions to indicate purpose. Familiarize yourself with
the STAR Common Library of Fortran routines. This serves two main purposes: 1) You may
find a library routine that you can use to implement your desired function, 2) You should
avoid using names that are similar to library routines.

Name symbolic variables to indicate what they are, not what values they may contain.

Names should be as mnemonically descriptive as possible, subject to constraints imposed
by Fortran standards.

Names shall not be identical to Fortran reserved words or implementation supplied function
names. Names should not resemble Fortran reserved words or implementation supplied
function names.

3.4. Compound Expressions

The evaluation of logical and arithmetic expressions shall be clarified through the use of
parentheses and spaces.

GOOD: **
 pk = pk - 1.0 + (0.5 * REAL(ning))
 **

BAD: **
 pk = pk - 1.0 + 0.5 * REAL(ning)
 **

The nesting of parentheses in logical and arithmetic expressions shall be limited to four (4)
levels. If an expression requires a greater level of nesting, it shall be separated into more
than one expression.

GOOD: **

mu_s = COS(pi*sza/180.)
mu_v = COS(pi*sva/180.)
tan_s = TAN(pi*sza/180.)
tan_v = TAN(pi*sva/180.)

d = SQRT(tan_s * tan_s + tan_v * tan_v - &
2.0 * tan_s * tan_v * COS(pi*relaz/180.))

fac = tan_s * tan_v * SIN(pi*relaz/180.)

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 19 of 19

Hardcopy Uncontrolled

cost = SQRT(d * d + fac * fac)/ ((1./mu_s) + (1./mu_v))

 **

BAD: **

mu_s = COS(pi*sza/180.)
mu_v = COS(pi*sva/180.)
tan_s = TAN(pi*sza/180.)
tan_v = TAN(pi*sva/180.)

cost = SQRT((tan_s * tan_s + tan_v * tan_v - &
2.0 * tan_s * tan_v * COS(pi*relaz/180.) + &
(tan_s * tan_v * SIN(pi*relaz/180.) * tan_s * &
tan_v * SIN(pi*relaz/180.)))) / ((1./mu_s) + (1./mu_v))

 **

3.5. Preamble

Every new Fortran program unit shall contain a preamble. Designate information required in
the preamble with the following keywords:

a. NAME: The name of the program unit.

b. FUNCTION: A brief description of the program unit function (e.g., 1-2 sentences).

c. DESCRIPTION: A description of the program unit processing (e.g., diagrams, PDL).

d. REFERENCE: The reference(s) to program unit design materials (e.g.,

requirements document, design document, standards, algorithm decisions).

e. CALLING SEQUENCE: The source statements necessary to invoke the program

unit.

f. INPUTS: A description of the program unit inputs (e.g., parameters, files).

g. OUTPUTS: A description of the program unit outputs (e.g., parameters, files).

h. DEPENDENCIES: A description of the program unit dependencies (e.g., HW/SW

dependencies, INCLUDE files, operating systems, initialization).

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 20 of 20

Hardcopy Uncontrolled

i. SIDE EFFECTS: A description of the program unit side effects.

j. HISTORY: The revision history of the program unit.

Refer to examples A-1 (lines 002 – 117) and A-2 (lines 001 – 112).

The requirement for a preamble can be waived for re-used legacy Fortran programs, but it
is recommended that a preamble be added to these programs.

3.6. Organization

Elements of the program units shall include the following and shall be organized as shown:

a. program unit identifier,
b. preamble,
c. INCLUDE files,
d. specification statements,
e. DATA statements,
f. statement function statements,
g. executable statements,
h. EXIT statement, and
i. END statement.

3.7. Size

It is recommended that each program unit is kept as small and simple as possible to
perform a specific task. Use multiple, smaller routines with well-defined functions rather
than a larger routine that does a lot of things. Program units containing more than 200 lines
of code should be examined to see if they can be segmented.

3.8. Declarations

Fortran 77: Align each declaration type name in column seven (7). Refer to example A-1,
lines 127, 131, 134 and 136.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 21 of 21

Hardcopy Uncontrolled

Avoid continuation lines in a declaration statement by using multiple statements. Refer to
example A-2, lines 118-121.

List several variables of a single type on a line alphabetically. Refer to example A-2, lines
118-121.

Use named common blocks for all global externally referenced common data.

Explicitly dimension all arrays. Use parameters as much as possible to specify array
dimensions/sizes. Use of dynamic memory allocation is encouraged.

3.9. Error Trapping

The Fortran programmer is encouraged to read applicable compiler and operating system
documentations and consult http://www.nag.co.uk/sc22wg5/ for the latest concerning
Fortran standards (see section 1.3) relating to error trapping. General guidelines regarding
this topic are as follows:

• Check for error return values, even from functions that "can't" fail. It is recommended
that the following convention be used for error return values:

o A value of zero indicates the function completed successfully
o A negative value indicates the function failed
o A positive value indicates the function completed successfully but

encountered something unexpected.

• Include the system error text for every system error message.

• Take special care with I/O statements since these are usually affected by events
beyond the control of the programmer. Include an item of the form ERR=label which
causes control to be transferred to the statement attached to that label in the event
of an error. This must, of course, be an executable statement and in the same
program unit. For example:

READ(UNIT=IN, FMT=*, ERR=999) VOLTS, AMPS
WATTS = VOLTS * AMPS
rest of program in here and finally
STOP

http://www.nag.co.uk/sc22wg5/

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 22 of 22

Hardcopy Uncontrolled

WRITE(UNIT=*,FMT=*)'Error reading VOLTS or AMPS'
END

• Similarly, handle the end-of-file condition when reading beyond the end of a
sequential or internal file. If an item of the form: END=label (as opposed to ERR=999
in the above example) then control is transferred to the labeled statement when the
end-of-file condition is detected.

• The END= keyword may only be used in READ statements, but it can be used in the
presence of both ERR= and IOSTAT= keywords. End-of-file detection is very useful
when reading a file of unknown length.

3.10. Statement Numbers (Fortran 77)

Avoid referencing statement numbers in comments (Fortran 77).

Consistently justify statement numbers in columns two (2) through five (5) in ascending
order throughout a program.

3.11. Subroutine Control

To retain the value of a variable in a program unit after control is returned from that unit,
use a SAVE attribute or SAVE statement. Do not rely on the compiler to retain the
variable's value for you. This will help make it clear to anyone reading the code that the
value of the variable is being retained between calls to the routine.

The use of an alternate return specifier as an argument in a calling sequence in the event
of an error (e.g., "CALL foo (a, b, *999)") is highly discouraged.

3.12. Statements

Each statement shall begin on a separate line.

Nesting of statements shall be limited to five (5) levels.

All variables shall be declared using a type-statement, INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, and CHARACTER. The KIND statement may be used
to specify the type. Variables of derived types (Fortran 90) may be declared as structures.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 23 of 23

Hardcopy Uncontrolled

Computed GO TO (Fortran 77) or ELSE IF statements shall be acceptable in lieu of a
CASE statement. However, out of range conditions shall be included in the statement.

The use of COMMON blocks and INCLUDE files is discouraged. Use global variables or
modules instead of COMMON blocks. If COMMON blocks are used, the following practices
should be followed:

• All variables in a common block should be named the same in every program unit
that uses the common data.

• Common blocks should be declared in a separate file and copied into the source file
using the INCLUDE statement.

• For efficiency, variables in the COMMON statement should be aligned on their
proper word and byte boundaries. This generally means listing the variables in
descending order according to their data type size: quad-word variables first, then
double-word variables, word variables, half-word variables, and finally single byte
variables.

All loops shall terminate with a unique CONTINUE statement (Fortran 77)

Each GO TO statement shall target a unique CONTINUE statement (Fortran 77).

The DO statement shall not contain any statements that change the value of the loop-
controlling variable.

GO TO statements (Fortran 77) shall be used only where required to meet specific
execution time, space constraints, or to reduce unnecessary complexity. Every GO TO
statement shall be accompanied by comments placed near the GO TO statement to
document the applicable constraints and comments placed near the statement receiving
control to document the origin of the transfer of control. GO TO statements shall not be
used to transfer control outside loops. The use of GO TO statements in new Fortran 77
code is discouraged. GO TO statements should not be used in Fortran 90 code.

Assigned GO TO statements (Fortran 77) shall not be used.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 24 of 24

Hardcopy Uncontrolled

3.12.1. IMPLICIT NONE Statement

All program units should include the "IMPLICIT NONE" statement and should be compiled
with the option so the compiler flags any variables that are not explicitly declared.

3.12.2. DO Statement

Indent the statements following the Fortran DO statement one (1) level of indentation.

Fortran 77: Format the DO statement as follows:

 DO <stmt#> <expression>
 statements
<stmt#> CONTINUE

Refer to example A-1, lines 161-173.

Fortran 90: Format the DO statement as follows:

DO <expression>
 statements
 END DO

Refer to example A-2, lines 216-218.

3.12.3. FORMAT Statement

Fortran 77: Accompany each READ and WRITE statement with the corresponding
FORMAT statement. Example:

 READ(5,10) SIZE
 10 FORMAT(I5)

Fortran 90: Specify format with the FMT specifier in the argument list of a READ or WRITE
statement. Example:

READ (UNIT=15,FMT='I5',IOSTAT=io) size

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 25 of 25

Hardcopy Uncontrolled

3.12.4. IF Statement

Enclose the condition(s) following the Fortran reserved word IF in parentheses. Refer to
example A-1, lines 315-318 and example A-2, line 193.

Indent the statements following the IF, ELSE IF, and ELSE statement, one (1) level of
indentation. Refer to example A-1, lines 266-272 and example A-2, lines 316-326.

Fortran 77: Format the Arithmetic IF statement as follows:
 IF (<expression>) s#1, s#2, s#3
C
 s#1 CONTINUE
 <statements>
 GO TO s#4
C
 s#2 CONTINUE
 <statements>
 GO TO s#4
C
 s#3 CONTINUE
 <statements>
C
 s#4 CONTINUE

The ELSE IF statement can be used in lieu of an Arithmetic IF statement if so desired.

Format the IF statement as follows:
 IF (<expression>) THEN
 statements
 END IF

Refer to example A-1, lines 290-307 and example A-2, lines 178-185.

Format the ELSE statement as follows:

 IF (<expression>) THEN
 statements
 ELSE

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 26 of 26

Hardcopy Uncontrolled

 statements
 END IF

Refer to example A-1, lines 266-272 and example A-2, lines 316-326.

Format the ELSE IF statement as follows:

 IF (<expression>) THEN
 statements
 ELSE IF (<expression>) THEN
 statements
 ENDIF

Refer to example A-1, lines 309-319 and example A-2, lines 234-253..

Fortran 77: Format the computed GO TO statement as follows:

 GO TO (s#1, s#2, s#3) i
C
 s#1 CONTINUE
 <statements>)
 GO TO s#4
C
 s#2 CONTINUE
 <statements>)
 GO TO s#4
C
 s#3 CONTINUE
 <statements>)
C
 s#4 CONTINUE

The ELSE IF statement can be used in lieu of the Computed GO TO statement if so
desired.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 27 of 27

Hardcopy Uncontrolled

3.12.5. SAVE Statement

To retain the value of a variable in a program unit after control is returned from that unit,
use a SAVE attribute or SAVE statement. Do not rely on the compiler to retain the
variable's value for you. By explicitly putting the variable in a SAVE statement, it will help
make it clear to anyone reading the code that the value of the variable is being retained
between calls to the routine.

3.12.6. EXIT/CYCLE Statement

Fortran 90: Use an EXIT/CYCLE statement to exit/cycle loops

3.12.7. EQUIVALENCE Statement

The use of EQUIVALENCE statements is discouraged. The TRANSFER intrinsic function
should be used instead of EQUIVALENCE statements.

3.12.8. END Statement

An END statement shall be used as the last statement for all functions, subroutines,
modules and programs.

The last statement in a DO loop should be an END DO statement. If there are a large
number of statements in a DO loop, include a comment that relates the END statement to
the DO statement for that loop.

The last statement in an IF loop should be an END IF statement. If there are a large
number of statements in an IF loop, include a comment that relates the END statement to
the IF statement for that loop.

3.13. Common Libraries

Use the IMSL Fortran Numerical Library. This library is usually available from suppliers of
Fortran compilers. The IMSL Fortran Library, a complete collection of mathematical and
statistical algorithms for high performance computing applications, integrates the IMSL F90
Library with the IMSL Fortran 77 library into a single, cohesive package. The IMSL Fortran
Library includes all of the algorithms from the IMSL Family of Fortran libraries for more than

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 28 of 28

Hardcopy Uncontrolled

three decades, including the IMSL F90 Library, the IMSL Fortran 77 Library, and the IMSL
parallel processing features.

3.14. Use of Standard Constants

Use standard mathematical and geophysical constants (e.g. PI).

3.15. Efficient Use of Memory

Use dynamic allocation of memory wherever possible. Avoid COMMON blocks. Do not
allocate memory for local variables until they are used in a subprogram, and deallocate the
memory for a local variable as soon as its use in the program is finished. This is especially
important when handling large, multi-dimensional arrays.

Example:

REAL(KIND=4),ALLOCATABLE :: variable5(:,:,:), variable6(:,:,:)

<statements preceding use of variable “variable5”>
 ALLOCATE(variable5(n_dimension_1,n_dimension_2,n_dimension_3))
 <statements using variable5>
 DEALLOCATE(variable5)

<statements preceding use of variable “variable6”>
 ALLOCATE(variable6(n_dimension_1,n_dimension_2,n_dimension_3))
 <statements using variable6>
 DEALLOCATE(variable6)

3.16. Fortran/C Interoperability

Fortran provides a standard mechanism (ISO_C_BINDING) for interoperating with C.
Fortran and C entities should be declared equivalently. Reader is encouraged to read
applicable compiler and operating system documentations and consult
http://www.nag.co.uk/sc22wg5/ for the latest concerning Fortran standards (see section
1.3) and interoperability issues. General considerations are summarized in Table 1.

http://www.nag.co.uk/sc22wg5/

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 29 of 29

Hardcopy Uncontrolled

Table 1. Fortran/C Interoperability
Language

Entity Description

Data types

ISO_C_BINDING module defines named constants for the
intrinsic data types. Some examples are :

Type Named constant C type or types
INTEGER C_INT int, signed int
 C_LONG long int, signed long int
REAL C_FLOAT float
 C_DOUBLE double
CHARACTER C_CHAR char

Pointers

For interoperating with C pointers, the module contains a derived
type C_PTR that is interoperable with any C pointer type and a
named constant C_NULL_PTR with the value NULL of C.

Derived
types

Derived types are given the BIND attribute explicitly:

TYPE, BIND(C) :: MYTYPE
:
END TYPE MYTYPE

E.g.

typedef struct {
 int m, n;
 float r;
} ctype

is interoperable with

USE ISO_C_BINDING

TYPE, BIND(C) :: FTYPE
INTEGER(C_INT) :: I, J
REAL(C_FLOAT) :: S

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 30 of 30

Hardcopy Uncontrolled

END TYPE FTYPE

Arrays

Array variables must be of explicit shape and size. However,
indices are reversed. Example:

FORTRAN:

 INTEGER :: A(30, 3:7, *)

C:
 int b[][5][30]

Procedures
And

Subroutines

A Fortran procedure is interoperable if it is declared with the
BIND attribute:

FUNCTION FUNC(I, J, K, L, M), BIND(C, NAME='C_Func')

Such a procedure corresponds to a C function prototype with the
same binding label.

Fortran function result must be interoperable.
Fortran subroutine must have a void result.

Common
Block

An interoperable module variable or a common block with
interoperable members may be given the BIND attribute:

USE ISO_C_BINDING
INTEGER(C_INT), BIND(C) :: C_EXTERN
INTEGER(C_LONG) :: C2
BIND(C, NAME='myVariable') :: C2
COMMON /COM/ R, S
REAL(C_FLOAT) :: R, S
BIND(C) :: /COM/

It has a binding label defined by the same rules as for procedures
and interoperate with a C variable of a corresponding struct type.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 31 of 31

Hardcopy Uncontrolled

3.17. Documentation

Comments should be used on a regular basis throughout a program. As a general rule,
there should be no more than 10 – 15 executable lines of code without a comment. The
comment should be descriptive enough to explain the function of the following block of
code. Comments preceding a block of code that initiates a major program function should
be referenced to the description in the preamble and/or the design documents. In particular,
a block of code that initiates a data flow identified in the algorithm’s software architecture
should be preceded by a comment that refers to the data flow identifier.

Fortran 77: Delimit comments consistently, with a 'C' in column one (1) and a blank line
before and after the comment line. See example A-1 in the appendix.

Fortran 90: Delimit comments consistently, using a ‘!’ character preceding the comment.
Comments customarily occupy a distinct line (‘comment line’) separated from executable
lines of code by blank lines. With Fortran 90 and later versions, it is possible to include
executable statements and comments on the same line. This practice can be helpful in
identifying the comment with the relevant executable statement, in cases where the
comment applies to a single executable statement. When this is done, the line should be
preceded and followed by blank lines, to improve readability. See example A-2 in the
appendix.

Precede each major section of code within a program unit with a block comment briefly
describing the processing involved.

Precede each conditional statement (e.g., DO, IF, Computed GO TO) with a block
comment describing the condition being tested and the branching alternatives. Refer to
example A-1, lines 228-230.

Accompany each variable declaration with a comment. Refer to example A-1, lines 57-107
and example A-2, lines 54-110.

Accompany each program unit END statement with a comment indicating the program unit
name. Refer to example A-1, lines 385-389 and example A-2, lines 346-349. Alternatively,
include the name of the program unit in the END statement (see example A-2, line 349).

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 32 of 32

Hardcopy Uncontrolled

3.18. Grandfathering

This section explains what can be excluded from these Programming Standards and
Guidelines.

3.18.1. COTS

Commercial Off The Shelf (COTS) software currently in use is grandfathered and does not
have to comply with the standards and guidelines documented in this TD. If adding
additional functionality to COTS software, consider implementing the standards and
guidelines documented in this TD wherever possible.

3.18.2. Reuse

Software reuse from a common Product Line baseline or any other STAR baseline is
grandfathered and does not have to comply with the standards and guidelines documented
in this TD.

STAR-unique Software Components that are developed for use with the reuse software
shall follow the standards and guidelines in this TD.

STAR-unique Software Units that are developed to integrate with reuse software shall
follow the standards and guidelines in this TD, if possible, given the reuse software
architecture and reuse software standards involved.

Newly developed STAR software that is deemed to be generic in nature and suitable for
addition to the reuse software baseline will follow the standards and guidelines established
for the reuse software.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 33 of 33

Hardcopy Uncontrolled

APPENDIX A. FORTRAN PROGRAMMING EXAMPLES

This section contains examples that clarify and are referenced by the standards and
guidelines in section 4.0.

Example A-1. Subroutine MLTGEN (Fortran 77)

001 SUBROUTINE MLTGEN
002 C
003 C$$
004 C
005 C NAME: Template Generation
006 C
007 C FUNCTION:
008 C This process transform the list of sets of 3D points defined
009 C in the target reference coordinate system into the 2D image
010 C plan. The 3D data is contained in the object point data base,
011 C the 2D transformed data is contained into the screen coordinate
012 C data base.
013 C
014 C DESCRIPTION:
015 C - Construct the direction COSINE matrix and the altitude
016 C - Initialize screen coordinate data base
017 C - Determine the bin selector index
018 C - Program the image screen programion points for each zone onto
019 C the ground-seeker coordinates, with y and z coordinates scaled
020 C by the focal length.
021 C - Prepare the transformation matrix
022 C - Transform the verticies
023 C - Determine the number of polygons to be used in zone
024 C - Program verticies into the image plane.
025 C - Transform the aimpoint
026 C - Program the aimpoint into the image plane
027 C - Calculate the minimum ploygon size and area
028 C - Calculate the minimum background/target ration
029 C
030 C CALLING SEQUENCE: CALL MLTGEN
031 C
032 C INPUTS: NONE
033 C
034 C OUTPUTS: NONE
035 C
036 C REFERENCES: Spec # 2410820, CSCI for MGFV Program
037 C
038 C DEPENDENCIES:
039 C SUBPROGRAMS: H:MKMTML.HDR, H:MLGDMA.HDR,
040 C H:MLGPIX.HDR,H:ERLG.HDR
041 C COMMON BLOCKS: H:CLOALP.FCU, H:CLOPDB.FCY
042 C
043 C SIDE EFFECTS: NONE

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 34 of 34

Hardcopy Uncontrolled

044 C
045 C TARGET PROCESSOR: VHSIC 1750A
046 C--
047 C HISTORY:
048 C
049 C D: 09/04/86 C: Modified compiler directives for
050 C use with ACT FORTRAN compiler.
051 C
052 C D: 10/28/86 C: Removed reference to CFTRIG
053 C and replaced FTR180 with local constant PI.
054 C
055 C VARIABLES : DESCRIPTION
056 C
057 C ALT: real, scalar, altitude
058 C DCM: real, array(1..3,1..3), direction cosine matrix
059 C TRANS: real, array(1..3,1..3), transformation matrix
060 C LXB: real, scalar, effective x-axis focal length
061 C LYB: real, scalar, effective y-axis focal length
062 C G: real, scalar, G
063 C DN: real, scalar, denominator used in calculating G
064 C DX: real, array(1..6), X distance from sensor to target
065 C DY: real, array(1..6), Y distance from sensor to target
066 C DZ: real, array(1..6), Z distance from sensor to target
067 C S7: real, scalar, sine of aspect 1 angle
068 C C7: real, scalar, cosine of aspect 1 angle
069 C ASPA1: real, scalar, aspect 1 angle
070 C X: real, scalar, X vrtx coord prior to xfrm.
071 C Y: real, scalar, Y vrtx coord prior to xfrm.
072 C Z: real, scalar, Z vrtx coord prior to xfrm.
073 C XJ: real, array(1..18,1..6), X vrtx coord. after xfrm.
074 C YJ: real, array(1..18,1..6), Y vrtx coord. after xfrm.
075 C ZJ: real, array(1..18,1..6), Z vrtx coord. after xfrm.
076 C XJSA: real, array(1..18), sngl adj check after xfrm.
077 C YJSA: real, array(1..18), sngl adj check after xfrm.
078 C ZJSA: real, array(1..18), sngl adj check after xfrm.
079 C DENOM: real, scalar, denominator used in misc calc
080 C I: integer, scalar, loop index
081 C J: integer, scalar, loop index
082 C J1: integer, scalar, loop index
083 C J2: integer, scalar, loop index
084 C INX: integer, scalar, local parameter index
085 C EROVF: logical, scalar, error overflow flag
086 C ERDYN: logical, scalar, error dynamic range
087 C XMAX: integer, scalar, max proj x value, temp value
088 C YMAX: integer, scalar, max proj y value, temp value
089 C XMIN: integer, scalar, min proj x value, temp value
090 C XMIN: integer, scalar, min proj y value, temp value
091 C IX: integer, scalar, proj x coordinate, temp value
092 C IY: integer, scalar, proj y coordinate, temp value
093 C XMAXZ: integer, array(1..6), max proj x for each zone
094 C XMINZ: integer, array(1..6), min proj x for each zone
095 C YMAXZ: integer, array(1..6), max proj y for each zone
096 C YMAXZ: integer, array(1..6), min proj y for each zone
097 C LX: integer, scalar, proj polygon x-axis length

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 35 of 35

Hardcopy Uncontrolled

098 C LY: integer, scalar, proj polygon y axis length
099 C FM: real, array(1..3,1..3), array used in calc TRANS
100 C HLX: real, scalar, horizon location, x axis
101 C COUNT: integer, scalar, count # of polyhedrons selected
102 C AMG: integer, scalar, amg segment selected counter
103 C XLATE: integer, array(1..6), translation bet image screen
104 C programion point and zone target reference point
105 C
106 C PI: Real, scalar, 3.141593 radians.
107 C
108 C SUBPROGRAMS:
109 C============================= subpgm ===========================
110 C
111 C INCLUDE 'H:MKMTML.HDR'
112 C INCLUDE 'H:MLGDMA.HDR'
113 C INCLUDE 'H:MLGPIX.HDR'
114 C INCLUDE 'H:ERLG.HDR'
115 C
116 C$$$
117 C
118 IMPLICIT NONE
119 C
120 INCLUDE 'H:CLOALP.FCY'
121 INCLUDE 'H:CLOPDB.FCY'
122 C
123 C***
124 C LOCAL VARIABLE DECLARATIONS *
125 C***
126 C
127 REAL ALT,DCM(3,3),LXB,LYB,G,DN,DX(6),DY(6),DZ(6),
128 & TRANS(3.3),S7,C7,ASPA1,X,Y,Z,XJ(18,8),YJ(18,8),ZJ(18,8),
129 & XJSA(18),YJSA(18),ZJSA(18),DENOM,
130 & FM(3,3),HLX,PI
131 INTEGER I,J,J1,J2,INX,XMAX,XMIN,YMAX,YMIN,IX,IY,COUNT,AMG,
132 & XMAXZ(6),XMINZ(6),YMAXZ(6),YMINX(6),LX,LY,
133 & XLATE(6)
134 LOGICAL EROVF,ERDYN
135 C
136 DATA PI /3.141593/
137 C
138 C/EJECT
139 C
140 C***
141 C EXECUTABLE CODE *
142 C***
143 C
144 C Construct the direction Cosine matrix and the altitude
145 C
146 CALL MLGDMA(SLNUMB,DCM,ALT)
147 C
148 C Initialize screen coordinate data base
149 C
150 LSSNUM = SLNUMB
151 LSFLDC = SLFCNT

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 36 of 36

Hardcopy Uncontrolled

152 LSSAST = LOSAST
153 C
154 C Determine th Bin Selector Index
155 C
156 CALL MLGPIX(LSSNUM,INX)
157 C
158 C Program image screen programion points for each zone onto
159 C ground-seeker coordinates, with Y & Z coord scaled by focal length
160 C
161 DO 100 I = 1,LZONES
162 LXB = TQISPP(I) - SCCENX
163 LYB = LZTRPY(I) - SCCENY
164 DN = DCM(1,3) + DCM(2,3) * LYB / SCCCON
165 & + DCM(3,3) * LXB / SCACON
166 G = TQZALT(I) / DN
167 DX(I) = G
168 DY(I) = G * LYB
169 DZ(I) = G * LXB
170 LSDISX(I) = DX(I)
171 LSDISY(I) = DY(I)
173 100 CONTINUE
174 C
175 C Prepare the Transformation matrix
176 C
177 C The following matrix will rotate target coordinate to align
178 C with the navigation coordinates.
179 C
180 IF (LOAPAF .EQ. 0) THEN
181 LOCAPA(INX) = LPAPRA
182 ELSE
183 LOCAPA(INX) = SLHEAD - LPTAAN + PI
184 ENDIF
185 C
186 ASPA1 = LOCAPA(INX) + LOASAC(INX)
187 S7 = SIN(ASPA1)
188 C7 = COS(ASPA1)
189 C
190 TRANS(1,1) = -C7
191 TRANS(1,2) = S7
192 TRANS(1,3) = KR0000
193 TRANS(2,1) = S7
194 TRANS(2,2) = C7
195 TRANS(2,3) = KR0000
196 TRANS(3,1) = KR0000
197 TRANS(3,2) = KR0000
198 TRANS(3,3) = -KR0001
199 C
200 C The DCM transforms navigation coordinates to seeker
201 C coordinates. Scaling Z and Y coordinates by focal length
202 C will simplify calc when points are programed into the
203 C image plane (IMAGE COORDINATES).
204 C |1 0 0 |
205 C FM := |0 FY 0 | * DCM
206 C |0 0 Fx|

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 37 of 37

Hardcopy Uncontrolled

207 C
208 C FM(1,1) = KR0001
209 C FM(1,2) = KR0000
210 C FM(1,3) = KR0000
211 C FM(2,1) = KR0000
212 C FM(2,2) = SCCCON
213 C FM(2,3) = KR0000
214 C FM(3,1) = KR0000
215 C FM(3,2) = KR0000
216 C FM(3,3) = SCACON
217 C
218 C CALL MKMTML(FM,FM,DCM)
219 C
220 DO 175 I = 1,3
221 DO 150 J = 1,3
222 LSTRAN(I,J) = FM(I,J)
223 150 CONTINUE
224 175 CONTINUE
225 C
226 CALL MKMTML(TRANS,FM,TRANS)
227 C
228 C Transform the verticies, the following process changes coord
229 C values for the polyhedron form target coordinates to seeker
230 C coordinates.
231 C
232 COUNT = 0
233 AMG = 0
234 C
235 DO 250 I = 1,LONPOL
236 IF (IOR (LOSMPF(I,INX), LOAMPF(I,INX)) .NE. 0) THEN
237 COUNT = COUNT + 1
238 LSSMPF(COUNT) = LOSMPF(I,INX)
239 LSAMPF(COUNT) = LOAMPF(I,INX)
240 AMG = AMG + LSAMPF(COUNT
241 LSSEGT(COUNT) = LOSEGT(I)
242 LSNVER(COUNT) = LONVER(I)
243 DO 200 j = 1,LONVER(I)
244 X = LOVERX(J,I)
245 Y = LOVERY(J,I)
246 Z = LOVERY(J,I)
247 XJ(J,COUNT) = X * TRANS(1,1) + Y * TRANS(1,2)
248 & + Z * TRANS(1,3)
249 YJ(J,COUNT) = X * TRANS(2,1) + Y * TRANS(2,2)
250 & + Z * TRANS(2,3)
251 ZJ(J,COUNT) = X * TRANS(3,1) + Y * TRANS(3,2)
252 & + Z * TRANS(3,3)
253 200 CONTINUE
254 ENDIF
255 250 CONTINUE
256 IF (AMG .NE. 0) THEN
257 LOAMGS(INX) = .TRUE.
258 ELSE
259 LOAMGS(INX) = .FALSE.
260 ENDIF

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 38 of 38

Hardcopy Uncontrolled

261 C
262 C Determine the number of polygons to be used in zone
263 C
264 DO 300 I = 1,LZONES
265 HLX = -SCACON * (DCM(1,3) / DCM(3,3) + SCCENX
266 IF ((LZSTRR(I) - HLX) .GT. LOMINX) THEN
267 LSNPOL(I) = COUNT
268 LSNVSA(I) = 0
269 ELSE
270 LSNPOL(I) = 0
271 LSNVSA(I) = 0
272 ENDIF
273 300 CONTINUE
274 EROVF = .FALSE.
275 ERDYN = .FALSE.
276 C
277 C Program vert into image plane- for each zone & vertex of each
278 C polyhedron is translated around the target reference pt that
279 C was programed onto the ground, then the translated pt is programed
280 C into the image plane. ONce ther vertex is programed, it is
281 C translated around the target reference point for the zone.
282 C
283 DO 550 i = 1,LZONES
284 XLATE(I) = LZTRPX(I) - TQISPP(I)
285 C
286 DO 500 J1 = 1,LSNPOL(I)
287 DO 400 J2 = 1,LSNVER(JI)
288 DENOM = DX(I) + XJ(J2,J1)
289 IX = (DZ(I) + ZJ(J2,J1)) / DENOM + SCCENX + LXLATE(I)
290 IF (IX .GT. LOUPBX) THEN
291 IX = LOUPBX
292 EROVF = .TRUE.
293 ENDIF
294 IF (IX .LT. LOLWBX) THEN
295 IX = LOLWBX
296 EROVF = .TRUE.
297 ENDIF
298 LSVERX(J2,J1,I) = IX
299 IY = (DY(I) + YJ(J2,J1) / DENOM + SCCENY
300 IF (IY .GT. LOUPBY) THEN
301 IY = LOUPBY
302 EROVF = .TRUE.
303 ENDIF
304 IF (IY .LT. LOLWBY) THEN
305 IY = LOLWBY
306 EROVF = .TRUE.
307 ENDIF
308 LSVERY(J2,J1,I) = IY
309 IF (J2 .EQ. 1) THEN
310 XMAX = IX
311 YMAX = IY
312 XMIN = IX
313 YMIN = IY
314 ELSE

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 39 of 39

Hardcopy Uncontrolled

315 IF (IX .GT. XMAX) XMAX = IX
316 IF (IX .LT. XMIN) XMIN = IX
317 IF (IY .GT. YMAX) YMAX = IY
318 IF (IY .LT. YMIN) YMIN = IY
319 ENDIF
320 400 CONTINUE
321 C
322 IF ((XMAX - XMIN) .GT. 2047) ERDYN = .TRUE.
323 IF ((YMAX - YMIN) .GT. 2047) ERDYN = .TRUE.
324 IF (J1 .EQ. 1) THEN
325 XMAXZ(I) = XMAX
326 YMAXZ(I) = YMAX
327 XMINZ(I) = XMIN
328 YMINZ(I) = YMIN
329 ELSE
330 IF (XMAX .GT. XMAXZ(I)) XMAXZ(I) = XMAX
331 IF (XMIN .GT. XMINZ(I)) XMINZ(I) = XMIN
332 IF (YMAX .GT. YMAXZ(I)) YMAXZ(I) = YMAX
333 IF (YMIN .GT. YMINZ(I)) YMINZ(I) = YMIN
334 ENDIF
335 500 CONTINUE
336 C
337 LSXMAX(I) = XMAXZ(I)
338 LSYMAX(I) = YMAXZ(I)
339 LSXMIN(I) = XMINZ(I)
340 LSYMIN(I) = YMINX(I)
341 550 CONTININUE
342 C/EJECT
343 C log any errors that might have occurred
344 C
345 IF (EROVF) CALL ERLG(200,LSSNUM)
346 IF (ERDYN) CALL ERLG(201,LSSNUM)
347 C
348 C Transform the aimpoint
349 C
350 X = FLOAT(LPAIMX(LPAIMI))
351 Y = FLOAT(LPAIMY(LPAIMI))
352 Z = FLOAT(LPAIMZ(LPAIMI))
353 XJSA(1) = X * TRANS(1,1) + Y * TRANS(1,2) + Z * TRANS(1,3)
354 YJSA(1) = X * TRANS(2,1) + Y * TRANS(2,2) + Z * TRANS(2,3)
355 ZJSA(1) = X * TRANS(3,1) + Y * TRANS(3,2) + Z * TRANS(3,3)
356 C
357 C/EJECT
358 C Program the aimpoint into the image plane
359 C
360 DO 800 I = 1,LZONES
361 DENOM = DX(I) + XJSA(1)
362 IX = (DZ(I) + ZJSA(1)) / DENOM + SCCENX + XLATE(I)
363 LSAIMX(I) = IX
364 IY = (DY(I) + YJSA(I)) / DENOM + SCCENY
365 LSAIMY(I) = IY
366 800 CONTININUE
367 C
368 C/EJECT

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 40 of 40

Hardcopy Uncontrolled

369 C
370 C Calculate the minimum polygon size and area
371 C
372 DO 1000 I = 1,LZONES
373 LX = XMAXZ(I) = XMINZ(I)
374 LY = YMAXZ(I) = YMINZ(I)
375 IF (LX .LT. LY) THEN
376 LOMSIZ(I,INX) = LX
377 ELSE
378 LOMSIZ(I,INX) = LY
379 ENDIF
380 1000 CONTINUE
381 C
382 C Calculate the minimum background/target ratio
383 C
384 LOMBTR(INX) = LOMBTZ(INX)
385 C
386 C End MLTGEN
387 C
388 RETURN
389 END

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 41 of 41

Hardcopy Uncontrolled

Example A-2 Subroutine IC_TIE_POINT (Fortran 90)

001 ! SUBROUTINE NAME: IC_TIE_POINT
002 !
003 ! FUNCTION:
004 ! Calculates local ice tie-points and a global water tie point
005 ! for each band. Local tie points calculated by the use of a local search
006 ! window. Search window "size" is defined such that a window is
007 ! (2*size+1) pixels on a side and contains (2*size+1)*(2*size+1) pixels.
008 !
009 ! DESCRIPTION:
010 ! - Ice/water thresholds and water tie points are derived for band I1
011 ! surface reflectance, band I2 surface reflectance, and surface
012 ! temperature, using a global (granule) search window.
013 ! - Ice tie points for each pixel are derived for band I1 surface
014 ! reflectance, band I2 surface reflectance, and surface temperature,
015 ! using a local search window.
016 ! - The tie points and weights for each band are written to the Ice
017 ! Reflectance and Ice Temperature Intermediate Products.
018 !
019 ! CALLING SEQUENCE: CALL IC_TIE_POINT (Called from IC_MAIN)
020 !
021 ! INPUTS: None
022 !
023 ! OUTPUTS: None
024 !
025 ! REFERENCES:
026 ! Y3235 – Ice Concentration Detailed Design Document
027 ! Y2477 – Snow-Ice Module Software Architecture
028 !
029 ! DEPENDENCIES: None
030 !
031 ! SIDE EFFECTS: None
032 !
033 ! TARGET PROCESSOR: R10000
034 !
035 ! ---
036 ! HISTORY:
037 ! D: 24 May 2002 C: initial version. Created by Mark Kowitt.
038 !
039 ! D: 14 Sept 2004 C: modified by Mark Kowitt: search_win_qual now defaults
040 ! to 1_1 (bad) rather than 0_1 (good); pixels in search
041 ! windows with insufficient good pixels now processed but
042 ! flagged.
043 !
044 ! D: 15 Sept 2004 C: modified by Mark Kowitt: cleaned up use of nbin, nbig,
045 ! nint, and ning; resized histogram arrays.
046 !
047 ! D: 20 Jan 2005 C: Modified by Mark Kowitt: fill_test global replaces
048 ! local fill_real_test

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 42 of 42

Hardcopy Uncontrolled

049 !
050 ! ---
051 !
052 ! GLOBAL VARIABLES:
053 !
054 ! HMAX: maximum range of histogram, by band
055 !
056 ! HMIN: minimum range of histogram, by band
057 !
058 ! IC_INDATA: Surface Reflectance (I1, I2) and Surface Temperature (I5)
059 ! data, by band and pixel, extracted from SDR and st_ip,
060 ! respectively
061 !
062 ! ICE_TIE_PT: local ice tie points by band and pixel
063 !
064 ! MIN_PIX_WIN: minimum good pixels in search window
065 !
066 ! MIN_WSIZE: minimum local search window size (pixels)
067 !
068 ! NBIN: no. of bins in histogram of modes (local window)
069 !
070 ! NBIG: no. of bins in histogram of modes (scene)
071 !
072 ! NING: no. of scene histogram bins to sum for sliding integral
073 !
074 ! NINT: no. of local histogram bins to sum for sliding integral
075 !
076 ! QBITS_I: quality bit (RDR, SDR, and IP quality), by band and pixel;
077 ! obtained from Surface Reflectance and Surface Temperature
078 ! IPs
079 !
080 ! SEARCH_WIN_QUAL: quality flag = 0 if search window contains at least
081 ! min_pix_win pixels, 1 otherwise
082 !
083 ! THRE: derived ice/water threshold, by band
084 !
085 ! THRE_MIN: min. ice/water threshold, by band
086 !
087 ! WATER_DEFAULT: default water tie points
088 !
089 ! WATER_MAX: default maximum water tie points
090 !
091 ! WATER_MIN: default minimum water tie points
092 !
093 ! WATER_TIE_PT: global water tie point, by band
094 !
095 !
096 ! LOCAL VARIABLES:
097 !
098 ! COL0: index of oldest column of search window
099 !

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 43 of 43

Hardcopy Uncontrolled

100 ! COL1: index of column to be added to search window
101 !
102 ! COUNT1: no. of good pixels in active window
103 !
104 ! HISTOGRAM: active histogram bin counts
105 !
106 ! ICE_BIN: ice histogram bin width
107 !
108 ! WATER_BIN: water histogram bin width
109 !
110 ! WIDTH: size of active search window
111 !
112 !***
113
114 SUBROUTINE IC_tie_point
115 USE IC_util
116 IMPLICIT NONE
117
118 INTEGER(KIND=4)::cmw, cpw, col0, col1, count1, decrement, dumpcount
119 INTEGER(KIND=4)::kmax, mws1, n1, n2, n3, n4, n5
120 INTEGER(KIND=4)::nbig1, nbin1, rmw, rpw,
121 INTEGER(KIND=4)::width, winmax, ymax, yn(nbig+1)
122
123 REAL(KIND=4) :: ice_bin, water_bin, pk, local_max, local_min
124
125 !---_
126 ! EXECUTABLE CODE
127 !---
128
129 io = no_error
130
131 ! Change Sept 14, 2004 – search_win_qual default = BAD
132
133 search_win_qual = 1_1 ! Initialize search window quality
134
135 mws1 = min_wsize + 1
136 ice_tie_pt = fill_real
137 nbin1 = nbin+1-nint
138
139 ! Do for each band
140
141 loop3: DO band = 1,3
142
143 dumpcount=0
144
145 ! Bin size for water histogram (below the water/ice threshold)
146
147 water_bin = (thre(band) - hmin(band)) / REAL(nbig)
148
149 ! Do for each row

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 44 of 44

Hardcopy Uncontrolled

150
151 loop2: DO row = mws1, (nrows_i - min_wsize)
152
153 count1 = 0 ! Initialize good pixel counter
154
155 loop1: DO col = mws1, (ncols_i - min_wsize)
156
157
158 ! Skip histogram if pixel fill value or deweighted
159
160 IF(ic_indata(col,row,band) < fill_test .OR. &
161 w(col,row,band) <= 0.0) THEN
162 CYCLE loop1
163 END IF
164
165 width = min_wsize ! Initialize search window
166
167 cmw = col - width
168 cpw = col + width
169 rmw = row - width
170 rpw = row + width
171
172 ! A "good" pixel is one where qbits_i=0.
173
174 count1 = COUNT(qbits_i(cmw:cpw,rmw:rpw,band)==0_1)
175
176 ! If insufficient number of pixels, cannot make histogram
177
178 IF(count1 < 2) THEN
179 CYCLE loop1 ! Skip to next pixel
180 END IF
181
182 ! Enough pixels in the window -> good search window
183 IF(count1 >= min_pix_win) THEN
184 search_win_qual(col,row,band) = 0_1
185 END IF
186
187 local_max = MAXVAL(ic_indata(cmw:cpw,rmw:rpw,band), &
188 qbits_i(cmw:cpw,rmw:rpw,band)==0_1)
189
190 local_min = MINVAL(ic_indata(cmw:cpw,rmw:rpw,band), &
191 qbits_i(cmw:cpw,rmw:rpw,band)==0_1)
192
193 IF(local_max > local_min) THEN
194 ice_bin = (local_max - local_min) / REAL(nbin)
195 ELSE
196 CYCLE loop1 ! skip to next pixel
197 END IF
198
199 ! Populate the whole search window

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 45 of 45

Hardcopy Uncontrolled

200
201 histogram = 0 ! Good pixel counter
202
203 DO j = cmw,cpw
204 DO k = rmw,rpw
205 IF(qbits_i(j,k,band)==0_1) THEN
206 i = 1+INT((ic_indata(j,k,band) - &
207 local_min)/ice_bin)
208 histogram(i) = histogram(i) + 1
209 END IF
210 END DO
211 END DO
212
213 ! Find the bin with the highest frequency value
214
215 yn = 0
216 DO j = 1,nint
217 yn(1) = yn(1) + histogram(j)
218 END DO
219
220 ymax = yn(1)
221 kmax = 1
222 DO k = 2,nbin1
223 yn(k) = yn(k-1) - histogram(k-1) + &
224 histogram(k+nint-1)
225 IF(yn(k) > ymax) THEN
226 ymax = yn(k)
227 kmax = k
228 END IF
229 END DO
230
231 ! Correction for extended maximum
232
233 pk = REAL(kmax)
234 IF(kmax==1) THEN
235 ice_tie_pt(col,row,band) = fill_real
236 ELSE IF(kmax==nbin1) THEN
237 pk = pk - 1.0 + 0.5 * REAL(nint)
238 ice_tie_pt(col,row,band) = thre(band)+ ice_bin * pk
239 ELSE IF(kmax<nbin1) THEN
240
241 ! Correction for extended maximum
242
243 DO k=kmax+1, nbin1
244 IF(yn(k)==yn(kmax)) THEN
245 pk = pk + 0.5
246 ELSE IF(yn(k)<yn(kmax)) THEN
247 EXIT
248 END IF
249 END DO

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 46 of 46

Hardcopy Uncontrolled

250 pk = pk - 1.0 + 0.5 * REAL(nint)
251 ice_tie_pt(col,row,band) = local_min + ice_bin * pk
252
253 END IF
254
255 IF(dumpcount==0) THEN
256
257 ! First good pixel for ice tie point calculation
258
259 dumpcount=1
260
261 END IF
262
263 END DO loop1 ! cols
264
265 END DO loop2 ! rows
266
267 ! Bin size for water histogram (below the water/ice threshold)
268
269 water_bin = (thre(band) - hmin(band)) / REAL(nbig)
270
271 ! Build a water parameter histogram for the whole scene
272
273 histogram = 0
274 nbig1 = nbig+1-ning
275
276 DO j=1,ncols_i
277
278 DO k=1,nrows_i
279
280 IF(IAND(qbits_i(j,k,band),7_1)==4_1) THEN
281
282 ! Only include water pixels with "GREEN" quality
283
284 i = 1 + INT((ic_indata(j,k,band)-hmin(band)) / &
285 water_bin)
286 histogram(i) = histogram(i) + 1
287
288 END IF
289
290 END DO ! rows
291
292 END DO ! cols
293
294 ! Find the peak and its index
295
296 yn = 0
297 DO j=1,ning
298 yn(1) = yn(1) + histogram(j)
299 END DO

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 47 of 47

Hardcopy Uncontrolled

300
301 ymax = yn(1)
302 kmax = 1
303 DO k = 2,nbig1
304 yn(k) = yn(k-1) - histogram(k-1) + histogram(k+ning-1)
305 IF(yn(k) > ymax) THEN
306 ymax = yn(k)
307 kmax = k
308 END IF
309 END DO
310
311 ! Correction for extended maximum
312
313 pk = REAL(kmax)
314 IF(kmax<nbig1) THEN
315 DO k = kmax+1, nbig1
316 IF(yn(k)==ymax) THEN
317 IF(k<nbig1) THEN
318 pk = pk + 0.5
319 ELSE
320 water_tie_pt(band) = fill_real
321 END IF
322 ELSE IF(yn(k)<ymax) THEN
323 pk = pk - 1.0 + (0.5 * REAL(ning))
324 water_tie_pt(band) = hmin(band) + water_bin * pk
325 EXIT
326 END IF
327 END DO
328 ELSE
329 water_tie_pt(band) = fill_real
330 END IF
331
332 ! Check water tie points against default values from LUT
333 IF (water_tie_pt(band) < WATER_MIN(band) .OR. &
334 water_tie_pt(band) > WATER_MAX(band)) THEN
335
336 ! Default water tie point
337
338 water_tie_pt(band) = WATER_DEFAULT(band)
339
340 END IF
341
342 END DO loop3 ! band=1,3
343
344 io = no_error
345
346 !
347 ! End subroutine IC_TIE_POINT
348 !
349 END SUBROUTINE IC_TIE_POINT

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 48 of 48

Hardcopy Uncontrolled

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 49 of 49

Hardcopy Uncontrolled

APPENDIX B. FORTRAN CODING STANDARDS - QUICK REFERENCE

The following quick reference was provided by Walter Wolf (STAR).

Program unit elements and order:

1. program unit identifier
2. preamble
3. INCLUDE files
4. specification statements
5. DATA statements
6. statement function statements
7. executable statements
8. EXIT statement
9. END statement.

Preamble:

1. NAME
2. FUNCTION
3. DESCRIPTION
4. REFERENCE
5. CALLING SEQUENCE
6. INPUTS
7. OUTPUTS
8. DEPENDENCIES
9. RESTRICTIONS
10. HISTORY

IMPLICIT NONE must be used in all program units.

Statement Order: Separate functions so that all Input functions precede all Processing
functions, followed by all Output functions.

Each statement shall begin on a separate line.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 50 of 50

Hardcopy Uncontrolled

All variables shall be declared using a type-statement, INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, and CHARACTER.

Variables shall be explicitly set or initialized before use, including complex data types such
as arrays and structures. The KIND statement may be used to specify the type. Variables
of derived types (Fortran 90) may be declared as structures.

Constants should be given an uppercase name. If it is only used in one file, it should be
declared at the head of that file; if used in multiple files, it should be declared in an include
file.

Names can not be identical to Fortran reserved words or implementation supplied function
names.

Alphabetic case shall be used consistently to enhance readability throughout a program.

Common Block Variables shall be named the same in every program unit that uses the
common data. Common blocks shall be declared in a separate file and copied into the
source file.

Indentation shall be used consistently to enhance readability throughout a program.

• A comment line should be indented in the same way as the following
executable line of code.

• All statements in the same block should be indented by the same amount.

• Statements in inner blocks should be indented by a greater amount than
statements in outer blocks.

• No tabs.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 51 of 51

Hardcopy Uncontrolled

Line Continuation

• F77: Begin each continuation line with an ampersand (&) in column six (6),
and indent two (2) levels of indentation relative to the first statement line.

• F90: Insert one blank character and an ampersand (“ &”) at the end of the line
and begin the continuation line at an indentation so that the last character of
the continuation line lines up with the last character of the preceding line.

Blocking with blank lines shall be used consistently to enhance readability throughout a
program.

Compound Expressions shall have spaces before and after relational operators, Fortran
reserved words, identifiers, and arithmetic operators to enhance readability of compound
expressions.

Parentheses and spaces shall be used to help clarify evaluation of logical and arithmetic
expressions.

DO Statements shall not contain any statements that change the value of the loop-
controlling variable.

Return all called subroutines to the next executable statement of the calling routine, except
for error handling provisions. The use of an alternate return specifier as an argument in a
calling sequence in the event of an error (e.g., "CALL foo (a, b, *999)") is highly
discouraged.

Format Statements

• F77: Accompany each READ and WRITE statement with the corresponding
FORMAT statement.

• F90: Specify format with the FMT specifier in the argument list of a READ or
WRITE statement.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 52 of 52

Hardcopy Uncontrolled

F77 Only
• Avoid referencing statement numbers in comments (Fortran 77). Consistently

justify statement numbers in columns two (2) through five (5) in ascending
order throughout a program.

• All loops shall terminate with a unique CONTINUE statement (Fortran 77)

• Each GO TO statement shall target a unique CONTINUE statement (Fortran
77).

Standard Mathematical and Geophysical Constants shall be used (e.g. PI).

Dynamic Allocation of Memory shall be used wherever possible. Avoid COMMON blocks.
Do not allocate memory for local variables until they are used in a subprogram, and
deallocate the memory as soon as its use is finished.

Guidelines:
• Program units containing more than 200 lines of code should be examined to

see if they can be segmented.

• Nesting of statements shall be limited to five (5) levels.

• Computed GO TO (Fortran 77) or ELSE IF statements shall be acceptable in
lieu of a CASE statement. However, out of range conditions shall be included
in the statement.

• Indent the statements following the Fortran DO statement one (1) level of
indentation.

• Enclose the condition(s) following the Fortran reserved word IF in
parentheses.

• Use the IMSL Fortran Numerical Library. This library is usually available from
suppliers of Fortran compilers.

• Recursive routines should be avoided on efficiency grounds.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 53 of 53

Hardcopy Uncontrolled

Declarations:
• Fortran 77: Align each declaration type name in column seven (7).

• Avoid continuation lines in a declaration statement by using multiple
statements.

• List several variables of a single type on a line alphabetically.

• Use named common blocks for all global externally referenced common data.

Naming:
• Avoid names that look alike by differing only in characters that resemble each

other, as do 2 and z, 0 and O, 5 and S, or I and 1.

• Name programs, subroutines, and functions to indicate purpose.

• Familiarize yourself with the STAR Common Library of Fortran routines. This
serves two main purposes: 1) You may find a library routine that you can use
to implement your desired function, 2) You should avoid using names that are
similar to library routines.

• Name symbolic variables to indicate what they are, not what values they may
contain.

• Names should be as mnemonically descriptive as possible, subject to
constraints imposed by Fortran standards.

Error Trapping:
• Check for error return values, even from functions that "can't" fail.

• Include the system error text for every system error message.

• In I/O statements include an item of the form ERR=label.

• In READ statements include an item of the form END=label.

Comments:

• No more than 10 – 15 executable lines of code without a comment.

• The comment should be descriptive enough to explain the function of the
following block of code.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 54 of 54

Hardcopy Uncontrolled

• F77: Delimit comments with a 'C' in column one (1) and a blank line before
and after the comment line.

• F90: Delimit comments with a ‘!’ character and a blank line before and after
the comment line.

• Precede each major section of code with a block comment briefly describing
the processing involved.

• Precede each conditional statement (e.g., DO, IF) with a block comment
describing the condition being tested and the branching alternatives.

• Accompany each variable declaration with a comment.

• Accompany each program unit END statement with a comment indicating the
program unit name, unless the name is already included in the END
statement.

• A comment should precede all lines of code or blocks of code that represent a
significant revision of previously base-lined code. It is helpful to include a
reference to the reason for the code change.

NOAA NESDIS STAR
 TRAINING DOCUMENT

TD-11.1
 Version: 3.0

 Date: October 1, 2009
TITLE: Fortran Programming Standards and Guidelines

 Page 55 of 55

Hardcopy Uncontrolled

APPENDIX C. TRANSITION FROM FORTRAN 77 TO FORTRAN 90

Information to assist Fortran 77 (fixed form) programmers in the writing of free form Fortran
code (90 and later) is provided in an Appendix to this TD, “STAR_TD-11.1.A._v3r0.doc”.
This file will be available to authorized users in the STAR EPL PAR.

__

END OF DOCUMENT

	LIST OF TABLES
	LIST OF ACRONYMS
	 INTRODUCTION
	 Objective
	 Background
	 Fortran Versions
	 Benefits
	 Overview

	 REFERENCE DOCUMENTS
	 DEFINITIONS
	 Language Features
	 Readability
	 Naming Conventions
	 Compound Expressions
	 Preamble
	 Organization
	 Size
	 Declarations
	 Error Trapping
	 Statement Numbers (Fortran 77)
	 Subroutine Control
	 Statements
	 IMPLICIT NONE Statement
	 DO Statement
	 FORMAT Statement
	 IF Statement
	 SAVE Statement
	 EXIT/CYCLE Statement
	 EQUIVALENCE Statement
	 END Statement

	 Common Libraries
	 Use of Standard Constants
	 Efficient Use of Memory
	 Fortran/C Interoperability
	 Documentation
	 Grandfathering
	 COTS
	 Reuse

	APPENDIX A. FORTRAN PROGRAMMING EXAMPLES
	APPENDIX B. FORTRAN CODING STANDARDS - QUICK REFERENCE
	APPENDIX C. TRANSITION FROM FORTRAN 77 TO FORTRAN 90

