

Hardcopy Uncontrolled

NOAA NESDIS

CENTER for SATELLITE APPLICATIONS
and RESEARCH

TRAINING DOCUMENT

TD-11.1.A
TRANSITION FROM FORTRAN 77

 TO FORTRAN 90
Version 3.0

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 2 of 109

Hardcopy Uncontrolled

TITLE: TD-11.1.A: TRANSITION FROM FORTRAN 77 TO FORTRAN 90
VERSION 3.0

AUTHORS:

Ken Jensen (Raytheon Information Solutions)

VERSION HISTORY SUMMARY

Version Description Revised
Sections

Date

1.0

New Training Document TD-12.1 adapted from
“Fortran 90 for the Fortran 77 Programmer”
© 1993 and 1996, Bo Einarsson and Yurij Shokin
(copy permission granted -
http://www.nsc.liu.se/~boein/f77to90/f77to90.html).
Adaptation by Ken Jensen (Raytheon Information
Solutions).

New Document 03/31/2006

1.1
Revision by Ken Jensen (Raytheon Information
Solutions). STAR standard style applied to
document.

All 06/02/2006

2.0

Revision by Ken Jensen (Raytheon Information
Solutions). Renamed TD-12.1.2. Updated approvals
for version 2 of the STAR Enterprise Product
Lifecycle (EPL).

Pages 1, 3, 5.
Header 09/28/2007

3.0 Renamed TD-11.1.A and revised by Ken Jensen
(RIS) for version 3. 1 10/1/2009

http://www.nsc.liu.se/%7Eboein/f77to90/f77to90.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 3 of 109

Hardcopy Uncontrolled

TABLE OF CONTENTS

 Page

1. INTRODUCTION ...5
1.1 Fortran 90 for the Fortran 77 Programmer5
1.2 Preface ..6
1.3 Transition from Fortran 77 to Fortran 90 ..7

2. SPECIFICATIONS ...8

3. FREE FORM AND FIX FORM ...12

4. FORMAT ...14

5. USE OF THE SAME SOURCE CODE ...16

6. CONTROL STATEMENTS ..17

7. PROGRAM UNITS ...19

8. KEYWORD AND DEFAULT ARGUMENTS ...24

9. RECURSION ...27

11. ARRAYS AND ARRAY SECTIONS ...29

12. POINTERS...31
12.1 Introduction. ...31
12.2 Simple use of pointers. ...32
12.3 Pointers and arrays. ...33
12.4 Allocation of arrays using pointers..34

13. THE NEW PRECISION CONCEPT ...36

14. ADDITIONAL PROBLEMS AT THE TRANSITION38

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 4 of 109

Hardcopy Uncontrolled

15. USE OF PROGRAM LIBRARIES ..40
15.1 Using Old Libraries ...40

16. PECULIARITIES IN FORTRAN 90 ..43

17. FORTRAN 95 ...44
17.1 New features ..44
17.2 Deleted features ...45
17.3 Obsolescent features ...45
17.4 Description of the new features ..46
17.5 Different Fortran standards ..52

18. SUMMARY OF NEW FEATURES ...54

19. BACKWARD AND FORWARD COMPATIBILITY ..66
19.1 Backward ...66
19.2 Parallel extensions ...67
19.3 Forward ..67

20. INTRINSIC FUNCTIONS IN FORTRAN 90 ...68

21.ANSWERS AND COMMENTS TO THE USER EXERCISES88

22. REFERENCES ...103

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 5 of 109

Hardcopy Uncontrolled

1. INTRODUCTION

1.1 Fortran 90 for the Fortran 77 Programmer

The programming language FORTRAN is the principal language for scientific and
technical computations. It was developed originally in 1954 and has been revised several
times, to FORTRAN IV and Fortran 77. It has recently been carefully revised, resulting
in a modern and powerful language, Fortran 90.

The intent with this new standard is to make Fortran into a useful and efficient language
for the scientific and technical computations also towards the end of this decade. The new
version contains powerful new features for the treatment of vectors and matrices, several
new possibilities to specify the precision, access to environment parameters, intrinsic
functions for manipulating floating point numbers, internal procedures and new
specifications for storage and interfacing. In addition there is a new improved layout of
the source code, new conditional statements, recursion and dynamic memory allocation.
Nothing was removed, so Fortran 90 contains the whole of Fortran 77, but offers both
easier programming and improved security.

An important requirement at the introduction of a new language is nowadays that the
language should be efficient also on parallel systems. This tutorial therefore contains an
Appendix on the recent proposed addition to Fortran, High Performance Fortran.

This tutorial assumes that the reader is experienced in Fortran 77. Those parts of Fortran
90 that are already in Fortran 77 are not discussed here. The many programming
examples and user exercises illustrate the programming technique and available
commands, and makes it easy to get started with writing programs using the new
facilities in Fortran 90. All examples have been tested on Sun SPARC (UNIX) and DEC
Station (ULTRIX), and on IBM PC with MS-DOS 5 and 6.2.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 6 of 109

Hardcopy Uncontrolled

1.2 Preface
This tutorial is written in order to ease the transition from the very common and popular
programming language Fortran 77 to the more modern Fortran 90. This transition uses
the fact that Fortran 77 is a pure subset of Fortran 90. There are, however, two very
important reasons to go over to as much Fortran 90 as possible. One is that it includes
new and powerful constructs, the other is that Fortran 90 gives us more facilities for
correctness checking of the program. This means that more reliable programs are
obtained. During 1995 Fortran 90 will be offered by most computer manufacturers and
the language will be a success.

It is required that the reader is knowledgeable in Fortran 77. Those parts of Fortran 90
who already are parts of Fortran 77 are not treated systematically in full, they are
assumed known by the reader. Those who don't know Fortran 77, can read a tutorial book
on Fortran 77, or a complete textbook on Fortran 90. Note especially that Fortran 90 is
much larger than Fortran 77 in all respects. Therefore it is difficult to describe it as short
as we do it here. All examples in this tutorial have been run on a Sun SPARC, DEC
station Ultrix and the IBM PC with the Fortran 90 system from NAG. They were also
tested on the Power Macintosh using the Absoft Fortran 90 compiler. It is recommended
that the reader has access to a Fortran 90 system.

We assume that the reader can write programs in Fortran 77 and wishes to learn to use
the new facilities in Fortran 90. All statements in Fortran 77 are explained in Appendix 2
and the summary of the news in Fortran 90 are in Appendix 3.

The greater power in Fortran 90 means that the statements in many cases have a
combined effect, and it is therefore not so useful to only describe the language statement
for statement.

The examples in the tutorial are considered to illustrate the programming technology and
the statements being discussed.

The purpose is, however, not to give an optimized application program. This is especially
true for the sections supplying comments to the exercises. Please note that some of the
later examples are very complete with respect to interfaces and specifications that are
required at the use of functions and subroutines.

http://www.nsc.liu.se/%7Eboein/f77to90/a2.html
http://www.nsc.liu.se/%7Eboein/f77to90/a3.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 7 of 109

Hardcopy Uncontrolled

Permission is granted to copy and/or print this file as long as the copyright notice and this
permission is included on all copies.

1.3 Transition from Fortran 77 to Fortran 90

• Everything that is in Fortran 77 is also in Fortran 90.
• Many new statements have been added, some replacing older statements.
• Many new statements have been added and give new possibilities.
• There are now two forms of the source code. The old source code form, which is

based on the punched card, and now called fixed form and the new free form.

These two forms may not be mixed independently but must be separated at the
compilation; an old program, (one or several program units in the form of a main
program, subroutines or functions), which is compiled in free form, has the
possibility to give a different result compared with earlier when it was compiled
with fixed form, compilation errors are possible.

In the same program we can mix program units written in fixed form and free
form, but each unit must be only in one form and at the compilation both forms
may not usually be in the same source file. Some systems using a special directive
may permit program units in different form in the same file. The directive then
tells the compiler which form is valid.

• Some old statements are to be avoided.
• It is possible to mix old and new statements, but it is advised to try to be

consistent, which means using either the old or the new form for the statement.
• Note that when you switch from one compiler to another new errors may occur,

because the old compiler was not as strict as the new one. Normally, a new
compiler discovers some old errors that were not found earlier. In the
specification for Fortran 90 it is required that errors already be found at
compilation if this is at all possible.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 8 of 109

Hardcopy Uncontrolled

2. SPECIFICATIONS

The Fortran 90 statement IMPLICIT NONE means that the implicit declaration is no longer
used. This statement has been available in some implementations of Fortran 77. The use
of that statement means that the probability of errors because of incorrectly spelled
variable names is drastically reduced. The first difference regarding specification of
variables is that these can now be put together in one statement for each variable. Using
Fortran 77 you can declare, for example, as follows

 REAL A, B, C
 PARAMETER (A = 3.141592654)
 DIMENSION B(3)
 DATA B /1.0, 2.0, 3.0 /
 DIMENSION C(100)
 DATA C /100*0.0/

that is one variable can occur in several lines. Using Fortran 90 you can instead write

 REAL, PARAMETER :: A = 3.141592654
 REAL, DIMENSION(1:3) :: B = (/1.0, 2.0, 3.0 /)
 REAL, DIMENSION(1:100) :: C = (/ (0.0, I = 1, 100) /)

The difference is not so large here but it's much larger in more complicated examples
with many variables, especially since in Fortran 90 you have access to more properties. In
the last example an extra parenthesis () is required.

The last example can also be generalized to assign different values to different parts of
the vector.

 REAL, DIMENSION(5) :: D = (/ (4.0, I = 1, 3) , (17.0, I = 4, 5) /)

Since there are variables of different types there is an intrinsic function that shows the
exact subtype of the variable used. This function is called KIND(x). This function can
also be used for particular types of subtypes or kinds:

 KIND (0) integer
 KIND (0.0) floating point number
 KIND (.FALSE.) logical variable
 KIND ("A") string of characters

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 9 of 109

Hardcopy Uncontrolled

There is an intrinsic function SELECTED_REAL_KIND, which returns the kind of the type
REAL that has a representation with (at least) the precision and the exponential range
requested. For example, the function SELECTED_REAL_KIND (8,70) is that kind of REAL
that has at least 8 decimal digits accuracy and permits an exponent between 10**-70 and
10**70. The corresponding function for integers is called SELECTED_INT_KIND and of
course has only one argument. With the choice SELECTED_INT_KIND (5) all integers
between (but not including the limits) -100 000 and +100 000 are permitted. The kind
of a type can be given a name.

 INTEGER, PARAMETER :: K5 = SELECTED_INT_KIND(5)

This kind of integers can be used in constants according to the following line

 -12345_K5
 +1_K5
 2_K5

which is a rather unnatural specification, after the value we have to give an underscore _
followed by the name of the kind.

Use of variables of the new integer type can be declared in a nicer way

 INTEGER (KIND=K5) :: IVAR

The corresponding is true for floating-point variables, if we first introduce a high-
precision kind LONG with

 INTEGER, PARAMETER :: LONG = SELECTED_REAL_KIND(15,99)

then we get the floating-point kind with at least 15 decimal digits accuracy and with an
exponent range from 10**-99 to 10**+99. The corresponding constants are obtained as

 2.6_LONG
 12.34567890123456E30_LONG

and variables are declared with

 REAL (KIND=LONG) :: LASSE

The old type conversions INT, REAL and CMPLX have been extended with the functions

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 10 of 109

Hardcopy Uncontrolled

 INT(X, KIND = K5)

which converts a floating-point number X to an integer of the kind K5, if Z is a complex
number with

 REAL(Z, KIND(Z))

you get it converted to a floating-point number of the real type and of the same kind of Z
(that is of course the real part of Z).

Double precision is not included in the new Fortran 90 in any other way than in the "old"
Fortran 77, but it is assumed that the compiler supports the double or quadruple precision
that may be available in the hardware. You can then define a suitable kind of the REAL,
named DP or QP. You can of course use the old concept of DOUBLE PRECISION.

The reason for this rather cumbersome convention is that it is not desirable to have too
many compulsory precisions (for example single, double, quadruple, perhaps for both the
cases REAL and COMPLEX) and also that the old concept DOUBLE PRECISION did not give
a specified machine accuracy. Now you can relatively easily specify both which precision
and which range of exponent you wish to use. Additional information about the kind is
given in Appendix 6, where the different data types and their normal kinds for the NAG
compiler on DEC, SUN, and the IBM PC, the Cray compiler, and the Absoft compiler on
the Power Macintosh.

Exercises

(2.1) What does the specification LOGIC ALL mean?

(2.2) Specify a constant K with the value 0.75.

(2.3) Specify an integer matrix PELLE with 3 rows and 4 columns.

(2.4) Specify a floating-point number which corresponds to the double precision on an
IBM and a single precision on Cray.

http://www.nsc.liu.se/~boein/f77to90/nag.html#parameters
http://www.nsc.liu.se/~boein/f77to90/cray.html#parameters
http://www.nsc.liu.se/~boein/f77to90/absoft.html#parameters

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 11 of 109

Hardcopy Uncontrolled

(2.5) Specify some variables of the type above.

(2.6) Specify some constants of the type above.

(2.7) Is the following specification correct?

 REAL DIMENSION(1:3,2:3) :: AA

 (2.8) Is the following specification correct?

 REAL REAL

 (2.9) Is the following specification correct?

 COMMON :: A

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 12 of 109

Hardcopy Uncontrolled

3. FREE FORM AND FIX FORM

Sometimes we require more than one line for a statement

 Print *, 'This is a long output line',&
 ' this is the second part',&
 ' and this is the third part!'

Nowadays, in the free form, we continue a line with the symbol "&" (called ampersand),
i.e. with the sign & at the end of the old line instead of an almost arbitrary character in
column 6 of the new line. With the compiler we are now using it is possible to include the
Swedish characters in character strings and in comments.

Sometimes a certain identifier or a certain numerical number does not fit on one line. We
can then interrupt the identifier anywhere with the character "&" and then on the next line
give a new "&" as the first non-blank character. You continue then directly from this "&"
without any extra blank. The character "&" therefore works as a kind of delimiting or
syllabification sign. You can write

 PI = 3.141592653589793

or you can write equivalently

 PI = 3.14159265&
 &3589793

Please note that comment lines can not be continued. The reason for this is that in a
comment line the sign "&" is also treated as belonging to the comment. However, you
can also add comment lines inside the continuation lines. Note that it is the final "&" of a
line that indicates a continuation line, it is therefore possible to write a text string of
characters including the character "&".

Sometimes you may wish to do it in the opposite way, to have several statements on the
same line. This is done with the use of semicolon. And with the exclamation mark we can
include a comment on the same line.

 A = 0.0 ; B = 1.0 ; C = 2.0 ! Initialization

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 13 of 109

Hardcopy Uncontrolled

A line may include up to 132 characters, a statement may have up to 39 lines of
continuation.

Note that in the free form, blanks are significant, as can be seen in my favorite example:

 DO 25 I = 1. 25

This gives a compilation error since the compiler does not find a comma between the
lower and upper the limits, but the compressed version

 DO25I=1.25

gives the same result as the non-compressed form and as in Fortran 77 or using the old
form (fix form) of Fortran 90, namely that the variable DO25I is being assigned the value
1.25.

Comments are started with "!" (exclamation mark) and ended with the end of line. The
old types of comments introduced with C or * in column 1 are no longer permitted if you
use free form, but are, of course, if you use the fix form. Upper case and lower case
characters are equivalent except in character strings.

The above applies to the new free form. In the old, column-oriented or fix form, we can
also use a semicolon or exclamation mark between columns 7 and 72 but you can not
continue with "&" in columns 1 to 6 or 73 to 80 or write comments in columns 1 to 6.
Exclamation mark in column 1 of course means a comment line also in the old fix form.
Some possibilities of longer lines do exist within the old fix form (implementation
dependent).

Exercises

(3.1) What does the following line mean?
 A = 0.0 ; B = 370 ! First variables ; C = 17.0 ; D = 33.0

 (3.2) Are the following lines correct according to Fortran 90?

 Y = SIN(MAX(X1,X2)) * EXP(- COS(X3)**I) - TAN(AT&
 & AN(X4))

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 14 of 109

Hardcopy Uncontrolled

4. FORMAT

The old Fortran programs used numbering of the format statements. However, that
doesn't look very good in pure Fortran 90, where you don't use statement numbers except
in a few exceptional cases. In Fortran 77 there already was a facility, which however was
not used very much, to use a format variable (of type CHARACTER) instead of a numbered
format. The Format variable was put directly in the input/output statement. Now we will
show three different ways of doing this assignment. They both have their advantages and
disadvantages. The program follows

 PROGRAM FORMAT
 IMPLICIT NONE
 REAL :: X
 CHARACTER (LEN=11) :: FORM1
 CHARACTER (LEN=*), PARAMETER :: FORM2 = "(F12.3,A)"
 FORM1 = "(F12.3,A)"
 X = 12.0
 PRINT FORM1, X, ' HELLO '
 WRITE (*, FORM2) 2*X, ' HI '
 WRITE (*, "(F12.3,A)") 3*X, ' HI HI '
 END

In the PRINT statement we use the character string variable FORM1 with the length 11,
which is assigned its value in an explicit assignment statement. The difficulty with this
method is essentially that you have to manually count the number of characters, if it is
too small the NAG compiler will not give a compilation error, but the error will show up
at execution.

In the first WRITE statement we use a character string constant FORM2 instead. The
advantage is that with the PARAMETER statement it is not necessary to give an explicit
length of the constant, but it can be given the length with the statement LEN=*. The bad
thing is that we can not assign the constant a new value.

In the second WRITE statement we use an explicit character string directly. The difficulty
is that the string can not be reused.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 15 of 109

Hardcopy Uncontrolled

Exercises

(4.1) What does this statement give as its output?
 WRITE(*, "(HI)")

 (4.2) What does the following statement perform?

 CHARACTER (LEN=9) :: FILIP
 FILIP = '(1PG14.6)'
 WRITE(*,FILIP) 0.001, 1.0, 1000000.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 16 of 109

Hardcopy Uncontrolled

5. USE OF THE SAME SOURCE CODE

This is possible if you do it in the following way, that is if you use the new continuation
sign "&" at the end of the old line, but in position 73 so that it doesn't conflict with
Fortran 77, and also choose the "&" sign as the almost arbitrary character in column 6, in
order to get continuation according to Fortran 77. An introductory "&" is "in principle"
neglected by Fortran 90.

 program TEST ! column 73
! |
 write(*,*) &
 & ' test '
 end
! |
! column 6

This is really not standard Fortran 77 since neither "&" nor "!" are in the standardized
character set. On the other hand, these constructs are perfect for program segments that
are to be included in Fortran 90 program units using the INCLUDE statement (refer to
Appendix 3, section 1), sometimes using the old form and sometimes using the new form
of the source code. The program segment is then supposed to be written as if blanks were
significant.

Comments are an incompatibility problem between Fortran 77 and Fortran 90, but of
course not between fixed and free forms of Fortran 90 since the "!" is permitted in both.
The exclamation mark is also permitted in Sun and DEC Fortran 77 (both DEC Station
ULTRIX and VAX VMS), the Cray compiler CF77, and the Absoft Fortran 77 compiler.

Another important condition is of course that the program really obeys the standard.

http://www.nsc.liu.se/~boein/f77to90/a3.html#section1

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 17 of 109

Hardcopy Uncontrolled

6. CONTROL STATEMENTS

As conditional or control statements you have IF in many variants (but essentially not
changed from Fortran 77), DO (with some new variants) and the completely new
statement CASE.

The DO-loop should now be ended with the statement END DO and we no longer need
any statement number. In addition, we can use the statement EXIT to jump out of the DO-
loop and CYCLE in order to go to the next iteration of the present DO-loop. A DO-loop can
be assigned a name, which is done by giving the name before the DO and followed by a
colon. In addition the final END DO can be followed by the name of the DO-loop.

 SUMMA = 0.0
 ADAM : DO I = 1, 10
 X = TAB(I)
 EVA : DO J = 1, 20
 IF (X > TAB(J)) CYCLE ADAM
 X = X + TAB(J)
 END DO EVA
 SUMMA = SUMMA + X
 IF (SUMMA >= 17.0) EXIT ADAM
 END DO ADAM

In the example above, the execution of the inner loop will be interrupted with a jump to
the next cycle of the outer loop, and thus the variable sum or SUMMA will not be
increased, if X is greater than the given table value. As soon as the sum is at least 17 the
outer loop is also interrupted.

If no name is given in the EXIT or CYCLE statements the present inner loop is
automatically used. With the present inner loop I mean the one where the EXIT or CYCLE
statements being executed are. These statements then replace the GOTO to the final
statement, which was often used in the old DO-loop. This final statement usually was a
CONTINUE statement.

An IF statement can also be given a name. In that case the corresponding END IF ought
to be followed by that name.

A new construct in standard Fortran is CASE. It appeared, however, in many Fortran
dialects before. It can choose a suitable case for a scalar argument of type INTEGER,
LOGICAL or CHARACTER. A simple example is based on an integer IVAR.

http://www.nsc.liu.se/~boein/f77to90/a9.html#loop

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 18 of 109

Hardcopy Uncontrolled

 SELECT CASE (IVAR)
 CASE (:-1) ! all negative numbers
 WRITE (*,*) 'Negative number'
 CASE (0) ! zero case
 WRITE (*,*) ' Zero'
 CASE (1:9) ! one-digit number
 WRITE (*,*) ' Digit ', IVAR
 CASE (10:99) ! two-digit number
 WRITE (*,*) ' Number ', IVAR
 CASE DEFAULT ! all remaining cases
 WRITE (*,*) ' Number too big'
 END SELECT

It is not permitted with overlapping arguments. This means that one single argument may
not satisfy more than one of the cases of CASE. The default case does not have to be
included. If no valid case is found the execution will continue with the first statement
after the END SELECT. I recommend that you include a DEFAULT and then give an error
message if an argument has a not permitted value.

It is recommended to use the CASE instead of an assigned or computed GOTO statement,
or an arithmetic IF-statement.

Exercises

(6.1) Write a CASE-statement that performs three different calculations depending on
whether the variable is negative, zero or any of the first odd prime numbers (3, 5, 7, 11,
13) and performs nothing in all other cases.

(6.2) Write a DO-loop that adds the square roots of 100 given numbers, but skips negative
numbers and concludes the addition if the present value is zero.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 19 of 109

Hardcopy Uncontrolled

7. PROGRAM UNITS

In addition to the four old program units: PROGRAM (that is the main program),
SUBROUTINE, FUNCTION and BLOCK DATA, the new concept MODULE has been added, as
well as some new things in the old units. Once again, subprogram is the common concept
for both SUBROUTINE and FUNCTION.

Again I wish to emphasis that under Fortran 77 all program units are essentially on the
same level, even if the main program logically is superior to the subroutines and
functions that are called, and even though you could write a call map that looks like a
tree. In reality the BLOCK DATA is on a higher level and all the other program units are on
the same level, from the Fortran system viewpoint with the main program just a little
above. The exception are the so-called statement functions with definitions that have to
be first in a program unit, directly after the specification, and are internal to that unit and
therefore on a logically lower level. Regrettably, the typical Fortran 77 programmer does
not use statement functions.

The above means that all routine names are on the same logical level, which means that
two different routines, and two different parts of a big program are not permitted to have
the same name. Quite often numerical and graphical libraries include thousands of
functions and subroutines, and each routine name consists of at most six characters under
old Fortran standards. Therefore, there is a very great risk of a conflict of names. This
problem could be partially solved by the old statement functions, since these are internal
to the respective unit, and therefore different statement functions can have the same name
if they are in different units. The disadvantage is that they can only treat what is in only
one program line. But they can call each other in such a way that a later statement
function can call an earlier statement function, but of course not the opposite.

F90 adds internal functions and internal subroutines, providing greater flexibility. They
are specified at the end of each program unit (but not in the BLOCK DATA) after the new
command CONTAINS and before the END. An internal subprogram can have access to the
same variables as the unit it belongs to, including the possibility of calling the unit's other
internal subprograms. It is written as an ordinary subprogram, but it is not permitted to
have any internal functions or subroutines. The internal function is a modern replacement
for the statement function.

http://www.nsc.liu.se/~boein/f77to90/a9.html#program
http://www.nsc.liu.se/~boein/f77to90/a9.html#main
http://www.nsc.liu.se/~boein/f77to90/a9.html#subroutine
http://www.nsc.liu.se/~boein/f77to90/a9.html#function
http://www.nsc.liu.se/~boein/f77to90/a9.html#BLOCK
http://www.nsc.liu.se/~boein/f77to90/a9.html#module
http://www.nsc.liu.se/~boein/f77to90/a9.html#internal

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 20 of 109

Hardcopy Uncontrolled

The usual subroutines and functions remain the same as the earlier external subroutines
and external functions, but there is now a more compelling reason for this name (that is
calling them external) than earlier, since now you have also internal subprograms.
Previously you only had the built in (intrinsic) functions as an alternative. In addition, the
number of intrinsic functions has greatly increased, and a few intrinsic subroutines have
been added.

For every argument in the specification of variables for subprograms we can now give its
INTENT as IN, OUT or INOUT. If IN is valid, then the actual argument can be an
expression like X+Y or SIN(X) or a constant like 37, since the value is only to be
transferred to the subprogram, but a new value is not to be returned to the calling unit.
The variables in this case may not be assigned a new value in the subprogram. If OUT is
valid, on the other hand, the actual argument has to be a variable. At entry to the
subprogram the variable is at this stage considered to be not defined. The third case
covers both possibilities, one value on input and another on output, or possibly the same
value. In this case the actual argument must also be a variable. If a variable has a pointer
attribute then INTENT may not be given. The implementation of INTENT is not yet
complete in all compilers.

One use for the new program unit MODULE is to take care of global data. As such it
replaces the BLOCK DATA. Its other use is to make a package of new data types. A rather
long example would be a package for interval arithmetic. Corresponding to each value X
you have an interval (X_lower; X_upper). When using the package, you want to give
only the variable name X when you mean the interval. The variable X is then supposed to
be a new data type, interval. The following is in the file interval_arithmetics.f90 or
intv_ari.f90.

MODULE INTERVAL_ARITHMETICS
 TYPE INTERVAL
 REAL LOWER, UPPER
 END TYPE INTERVAL
 INTERFACE OPERATOR (+)
 MODULE PROCEDURE INTERVAL_ADDITION
 END INTERFACE
 INTERFACE OPERATOR (-)
 MODULE PROCEDURE INTERVAL_SUBTRACTION
 END INTERFACE
 INTERFACE OPERATOR (*)
 MODULE PROCEDURE INTERVAL_MULTIPLICATION
 END INTERFACE

http://www.nsc.liu.se/~boein/f77to90/a9.html#EXTERNAL
http://www.nsc.liu.se/~boein/f77to90/a9.html#intrinsic
http://www.nsc.liu.se/%7Eboein/f77to90/a5.html
http://www.nsc.liu.se/~boein/f77to90/a5.html#section21
http://www.nsc.liu.se/%7Eboein/f77to90/code/intv_ari.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 21 of 109

Hardcopy Uncontrolled

 INTERFACE OPERATOR (/)
 MODULE PROCEDURE INTERVAL_DIVISION
 END INTERFACE
CONTAINS
 FUNCTION INTERVAL_ADDITION(A, B)
 TYPE(INTERVAL), INTENT(IN) :: A, B
 TYPE(INTERVAL) :: INTERVAL_ADDITION
 INTERVAL_ADDITION%LOWER = A%LOWER + B%LOWER
 INTERVAL_ADDITION%UPPER = A%UPPER + B%UPPER
 END FUNCTION INTERVAL_ADDITION

 FUNCTION INTERVAL_SUBTRACTION(A, B)
 TYPE(INTERVAL), INTENT(IN) :: A, B
 TYPE (INTERVAL) :: INTERVAL_SUBTRACTION
 INTERVAL_SUBTRACTION%LOWER = A%LOWER - B%UPPER
 INTERVAL_SUBTRACTION%UPPER = A%UPPER - B%LOWER
 END FUNCTION INTERVAL_SUBTRACTION

 FUNCTION INTERVAL_MULTIPLICATION(A, B)
! POSITIVE NUMBERS ASSUMED
 TYPE(INTERVAL), INTENT(IN) :: A, B
 TYPE (INTERVAL) :: INTERVAL_MULTIPLICATION
 INTERVAL_MULTIPLICATION%LOWER = A%LOWER * B%LOWER
 INTERVAL_MULTIPLICATION%UPPER = A%UPPER * B%UPPER
 END FUNCTION INTERVAL_MULTIPLICATION
 FUNCTION INTERVAL_DIVISION(A, B)
! POSITIVE NUMBERS ASSUMED
 TYPE(INTERVAL), INTENT(IN) :: A, B
 TYPE(INTERVAL) :: INTERVAL_DIVISION
 INTERVAL_DIVISION%LOWER = A%LOWER / B%UPPER
 INTERVAL_DIVISION%UPPER = A%UPPER / B%LOWER
 END FUNCTION INTERVAL_DIVISION
END MODULE INTERVAL_ARITHMETICS

Compilation of the above results in the creation of the file interval_arithmetics.mod.
This file includes an interesting modified version of the code above. Any program that
makes use of this package, must contain the statement USE INTERVAL_ARITHMETICS at
the beginning of the specification statements. This makes the data type INTERVAL and the
four arithmetic calculations on this type directly available. In some cases it is desirable to
only include some of the facilities in a module. In this case you use the ONLY attribute
within the new USE statement.

 USE module_name, ONLY : list_of_chosen_routines

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 22 of 109

Hardcopy Uncontrolled

The following is an example of a very simple main program for the test of interval
arithmetics. It is from the file interval.f90 or intv.f90.

 USE INTERVAL_ARITHMETICS
 IMPLICIT NONE
 TYPE (INTERVAL) :: A, B, C, D, E, F
 A%LOWER = 6.9
 A%UPPER = 7.1
 B%LOWER = 10.9
 B%UPPER = 11.1
 WRITE (*,*) A, B
 C = A + B
 D = A - B
 E = A * B
 F = A / B
 WRITE (*,*) C, D
 WRITE (*,*) E, F
 END

Running this program on a Sun-computer with the NAG compiler results in the following
output:

 % f90 interval_arithmetics.f90 interval.f90
 interval_arithmetics.f90:
 interval.f90:
 % a.out
 6.9000001 7.0999999 10.8999996 11.1000004
 17.7999992 18.2000008 -4.2000003 -3.7999997
 75.2099991 78.8100052 0.6216216 0.6513762
 % exit

We compiled the program with the compiler f90, and the executable program was
automatically named a.out. With the order above (the module first) the compilation also
works with the SunSoft and Digital compilers!

In a module some concepts can be defined as PRIVATE, which means that the program
units outside of this module are not able to use this concept. Sometimes an explicit
PUBLIC declaration is used, normally PUBLIC is default. The following statements

 PRIVATE
 PUBLIC :: VAR1

http://www.nsc.liu.se/%7Eboein/f77to90/code/intv.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 23 of 109

Hardcopy Uncontrolled

result in all variables being local, except VAR1, which is global. Note that both these
concepts (PUBLIC and PRIVATE) either can be given as a statement, for example

 INTEGER :: IVAR
 PRIVATE :: IVAR

or as an attribute

 INTEGER, PRIVATE :: IVAR

Exercises

(7.1) Generalize the modules so that the package can accomodate both positive and
negative numbers even with multiplication and division.

(7.2) Generalize the modules so that the package produces a suitable error message when
it divides by an interval that contains zero.

(7.3) Extend the modules so that the local rounding error at the operation is also
appropriately dealt with. (This is not the case at the moment.)

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 24 of 109

Hardcopy Uncontrolled

8. KEYWORD AND DEFAULT ARGUMENTS

Routines can now be called with keyword arguments and can use default arguments. This
means that some arguments can be given with keywords instead of their position, and
some arguments do not have to be given at all, in which case a standard or default value
is used.

The use of keyword and default arguments is not just as simple as it appears in the
Appendix 3, section 6 program units, where an explicit interface is required. Therefore,
we give a complete example here. The formal parameters of the interface are used as
keywords. They need not be the same names as in the actual subprogram. They are not
specified in the calling program unit.

 IMPLICIT NONE
 INTERFACE
 SUBROUTINE SOLVE (A, B, N)
 INTEGER, INTENT (IN) :: N
 REAL, INTENT(OUT) :: A
 REAL, INTENT(IN), OPTIONAL :: B
 END SUBROUTINE SOLVE
 END INTERFACE

 REAL X
! Note that A, B and N are not specified as REAL
! or INTEGER in this unit.

 CALL SOLVE(B=10.0,N=50,A=X)
 WRITE(*,*) X
 CALL SOLVE(B=10.0,N=100,A=X)
 WRITE(*,*) X
 CALL SOLVE(N=100,A=X)
 WRITE(*,*) X
 END

 SUBROUTINE SOLVE(A, B, N)
 REAL, OPTIONAL, INTENT (IN) :: B
 IF (PRESENT(B)) THEN
 TEMP_B = B
 ELSE
 TEMP_B = 20.0
 END IF
 A = TEMP_B + N

http://www.nsc.liu.se/~boein/f77to90/a3.html#section6

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 25 of 109

Hardcopy Uncontrolled

 RETURN
 END

Note that the statement IMPLICIT NONE in the main program does not transfer
automatically to the subroutine SOLVE. This subroutine, therefore, ought to be given its
own IMPLICIT NONE statement and all variables used (A, B, N, and TEMP_B) specified.

The program is compiled and run with the following statements

 % f90 program.f90
 % a.out
 60.0000000
 1.1000000E+02
 1.2000000E+02
 %

In the last call above, where the variable B is not given explicitly, the default argument is
used. This means that the default value 20 is added to the actual argument N = 100,
which results in A = 120.

It is convenient to place the interface INTERFACE in a module so the user does not have
to worry so much about it. The interface is a natural complement to the routine library.
Fortran 90 looks automatically for modules in the present directory, in the directories
given in the I-list and also in /usr/local/lib/f90: the standard library for Fortran 90
using UNIX. The concept I-list can be used to introduce a directory where various
modules may be located, as explained in some of the system oriented sub-pages of
Appendix 6. If you forget INTERFACE or have an incorrect interface, usually compilation
or execution gives the error message "Segmentation error", and nothing more.

Note that if an output variable is given as OPTIONAL and INTENT(OUT), then you have to
have it included in the argument list, if when the program is executed, it assigns a value
to this variable. You can not therefore use only OPTIONAL in order to choose whether you
wish to have a certain variable outputted or not. The solution to this problem is to use the
PRESENT statement also.

Exercises

http://www.nsc.liu.se/%7Eboein/f77to90/a6.html
http://www.nsc.liu.se/~boein/f77to90/a5.html#section1

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 26 of 109

Hardcopy Uncontrolled

(8.1) Write a routine for the calculation of an integral of a function. You will use
keyword arguments and default arguments so that

• if there is no left integration limit A, the value zero will be used.
• if there is no right integration limit B, the value one will be used.
• if there is no tolerance keyword TOL, the value 0.001 will be used for the absolute

error.

 (8.2) Write the interface that is required in the calling routine in order to use the above
integration routine.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 27 of 109

Hardcopy Uncontrolled

9. RECURSION

A completely new capability of Fortran 90 is recursion. Note that it requires that you
assign a new property RESULT to the output variable in the function declaration. This
output variable is required inside the function as the "old" function name in order to store
the value of the function. At the actual call of the function, both externally and internally,
you use the outer or "old" function name. The user can therefore ignore the output
variable.

Here follows two examples: first the recursive calculation of factorials, then the recursive
calculations of the Fibonacci-numbers. The later is very inefficient. Brainerd, Goldberg
and Adams (1990), page 226, propose an efficient, but non-recursive method.

The listings of the routines follow. The output variables are called FAC_RESULT and
FIBO_RESULT, respectively.

 RECURSIVE FUNCTION FACTORIAL(N) RESULT (FAC_RESULT)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: N
 INTEGER :: FAC_RESULT
 IF (N <=1) THEN
 FAC_RESULT = 1
 ELSE
 FAC_RESULT = N * FACTORIAL(N-1)
 END IF
 END FUNCTION FACTORIAL

 RECURSIVE FUNCTION FIBONACCI(N) RESULT (FIBO_RESULT)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: N
 INTEGER :: FIBO_RESULT
 IF (N <= 2) THEN
 FIBO_RESULT = 1
 ELSE
 FIBO_RESULT = FIBONACCI(N-1) + FIBONACCI(N-2)
 END IF
 END FUNCTION FIBONACCI

The reason that the above calculation of the Fibonacci-numbers is so inefficient is that
each call with a certain value of N generates two calls for the routine, which in its turn
generates four calls, and so on. Old values (or calls) are not re-used.

http://www.nsc.liu.se/~boein/f77to90/references.html#bga
http://www.nsc.liu.se/~boein/f77to90/references.html#bga

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 28 of 109

Hardcopy Uncontrolled

On page 222 Brainerd, Goldberg and Adams (1990) demonstrate an interesting use of
recursive technique for the calculation of an exponential function of a matrix. They give
the immediate (straight forward) expression, with the successive multiplication with a
matrix, as well as a recursive variant, which can pick out the suitable squares to optimize
the calculation. Recursion is also excellent to code an adaptive algorithm, see exercise 9.2
below.

Another very important usage of the RESULT property and the output variable is with
array valued functions. It is very easy to specify an output variable so that it can store all
the values of such a function. Actually, it is the combination of recursive functions and
array valued functions that have forced the committee to introduce the RESULT property.

We note that not only functions, but subroutines too, can be recursive.

Exercises

(9.1) Write a routine for the calculation of Tribonacci numbers. These are formed like the
Fibonacci-numbers, but you start with three numbers (all 1 at the start). At each step you
then add the last three numbers to get the next one. Run and calculate TRIBONACCI(15).
Note that the calculation time increases very quickly with the argument.

(9.2) Write an adaptive routine for quadrature, i.e. calculation of a definite integral on a
certain interval.

http://www.nsc.liu.se/~boein/f77to90/references.html#bga

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 29 of 109

Hardcopy Uncontrolled

11. ARRAYS AND ARRAY SECTIONS

The English word "array" is translated into Swedish as "fält", which, retranslated into
English, is "field". It is possible therefore, that we may use the word field either by
mistake, or as a suitable name of a specific array.

A new feature of Fortran 90 is that you can work directly with a whole array or an array
section without explicit (or implicit) DO-loops. In the old Fortran you could in some
circumstances work directly with a whole array, but then only during I/O processing.

An array is defined to have a shape, given by its number of dimensions, called "rank",
and the extent of each dimension. Two arrays agree if they have the same shape.
Operations are normally done element by element. Please note that the rank of an array is
the number of dimensions and has nothing to do with the mathematical rank of a matrix!

In the following simple example I show how you can assign matrices with simple
statements like B = A, how you can use the intrinsic matrix multiplication MATMUL and
the addition SUM, and how you can use the array sections (in the example below I use
array sections which are vectors).

PROGRAM ARRAY_EXAMPLE
 IMPLICIT NONE
 INTEGER :: I, J
 REAL, DIMENSION (4,4) :: A, B, C, D, E
 DO I = 1, 4 ! calculate a test matrix
 DO J = 1, 4
 A(I, J) = (I-1.2)**J
 END DO
 END DO

 B = A*A ! element for element multiplication
 CALL PRINTF(A,4) ; CALL PRINTF(B,4)
 C = MATMUL(A, B) ! internal matrix multiplication
 DO I = 1, 4 ! explicit matrix multiplication
 DO J = 1, 4
 D(I, J) = SUM(A(I,:)*B(:,J))
 END DO
 END DO
 CALL PRINTF(C,4) ; CALL PRINTF(D,4)
 E = C - D ! comparison of the two methods

http://www.nsc.liu.se/~boein/f77to90/a9.html#array
http://www.nsc.liu.se/~boein/f77to90/a9.html#shape
http://www.nsc.liu.se/~boein/f77to90/a9.html#rank
http://www.nsc.liu.se/~boein/f77to90/a9.html#extent
http://www.nsc.liu.se/~boein/f77to90/a9.html#section

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 30 of 109

Hardcopy Uncontrolled

 CALL PRINTF(E,4)
CONTAINS
 SUBROUTINE PRINTF(A, N) ! print an array
 IMPLICIT NONE
 INTEGER :: N, I
 REAL, DIMENSION (N, N) :: A
 DO I = 1, N
 WRITE(*,' (4E15.6)') A(I,:)
 END DO
 WRITE(*,*) ! write the blank line
 END SUBROUTINE PRINTF
END PROGRAM ARRAY_EXAMPLE

As mentioned in chapter 9 about recursion, functions in Fortran 90 can be array valued.
In that case the use of the RESULT property is recommended to specify a result variable
that is supposed to store the array.

Fortran 90 has many more possibilities than Fortran 77 permitting the dynamic allocation
of memory. In Fortran 77 this could only could be done when a sufficient storage area
had been allocated in the calling program unit, and both the array name and the required
dimension(s) had to be included as parameters in the call of the subprogram. This is the
adjustable array concept. A very simple case is where the last dimension is given simply
with a *, or assumed-size array.

Now we also have allocatable arrays, automatic arrays, and assumed-shape arrays.
Dynamic allocation using pointers is discussed in a section of the next chapter. An
overview is given in Appendix 3 (section 10). Also see Appendix 9 for an explanation of
certain terms.

Exercise

(11.1) Write a routine for the solution of a system of linear equations using Gaussian
elimination with partial pivoting.

http://www.nsc.liu.se/%7Eboein/f77to90/c9.html
http://www.nsc.liu.se/~boein/f77to90/a9.html#recursive
http://www.nsc.liu.se/~boein/f77to90/a9.html#result
http://www.nsc.liu.se/~boein/f77to90/a9.html#adjustable
http://www.nsc.liu.se/~boein/f77to90/a9.html#assumed-size
http://www.nsc.liu.se/~boein/f77to90/a9.html#allocatable
http://www.nsc.liu.se/~boein/f77to90/a9.html#automatic
http://www.nsc.liu.se/~boein/f77to90/a9.html#assumed-shape
http://www.nsc.liu.se/~boein/f77to90/c12.html#section4
http://www.nsc.liu.se/~boein/f77to90/a3.html#section10
http://www.nsc.liu.se/%7Eboein/f77to90/a9.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 31 of 109

Hardcopy Uncontrolled

12. POINTERS

12.1 Introduction.

Pointers have been included in Fortran 90, but not in the usual way as in most other
languages, with pointer as a specific data type. Here they are rather understood as an
attribute to the other data types. The reason for this new way to introduce them is that by
having a special data type for pointers, the risk of erroneous use of the pointer is very
large. A variable with a pointer attribute can be used as a usual variable and in some new
ways. Pointers in Fortran 90 are thus not memory addresses as in other programming
languages (and in certain Fortran implementations) but rather an extra name (alias).

The increased security is obtained not only through that each variable, which shall be
used as a pointer, must be given an attribute POINTER, but also that all variables, that will
be pointed to, must be given an attribute TARGET. An example explaining how to do this
follows.

 REAL, TARGET :: B(10,10)
 REAL, POINTER :: A(:,:)
 A => B

The matrix B has been specified completely, i.e. with the dimensions given explicitly. In
addition, it has been stated that it can be the target of a pointer. The matrix A, which can
be used as a pointer, has to be declared as a matrix, i.e. to be given a correct number of
dimensions, a correct rank, but the extent for this is decided later, at the assignment (and
in reality the assignment is a pointer-association) which is done with the symbols =>.
Please note that the pointer assignment does not mean that the data in the matrix B is
copied over to the matrix A (which would have taken relatively large resources), but it is
merely a new address that is generated. To "move" data with the pointer concept will
therefore be very efficient. As an alternative the pointer can become associated with the
statement ALLOCATE, and be disassociated with DEALLOCATE, as in the following example.

 ALLOCATE (A(5,5))
 DEALLOCATE (A)

There is also an internal function ASSOCIATED in order to investigate if a pointer is
associated (and if it is associated with a certain target) and a statement NULLIFY in order
to terminate the association.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 32 of 109

Hardcopy Uncontrolled

IF (ASSOCIATED (A)) WRITE(*,*) ' A is associated '
IF (ASSOCIATED (A, B)) WRITE(*,*) ' A is associated with B'
NULLIFY (A)

Please remember that a pointer in Fortran 90 has both type and rank, and that these must
agree with the corresponding target. This increases the security at the use of pointers, it is
therefore not possible by mistake to let a pointer change values of variables of other
(different) data types. The fact that you have to specify that a variable can be a target also
increases both security and efficiency of the compilation.

Important application of pointers are lists and trees, and especially dynamic arrays.

12.2 Simple use of pointers.

You have to be careful when you use pointers. In the following simple example we look
at ordinary scalar floating-point numbers.

 REAL, TARGET :: A
 REAL, POINTER :: P, Q
 A = 3.1416
 P => A
 Q => P
 A = 2.718
 WRITE(*,*) Q

Here the value of Q equals 2.718 since both P and Q point towards the same variable A
and that one has just changed its value from 3.1416 to 2.718. We now make a simple
variation.

 REAL, TARGET :: A, B
 REAL, POINTER :: P, Q
 A = 3.1416
 B = 2.718
 P => A
 Q => B

Now both the values of A and P are equal to 3.1416 and the values of both B and Q are
2.718. If we now give the statement

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 33 of 109

Hardcopy Uncontrolled

 Q = P

all four variables will get the value 3.1416, which means that an ordinary assignment of
pointer variables has the same effect as the conventional assignment

 B = A

If we instead give a pointer association

 Q => P

then the three variables A, P and Q all have the value 3.1416, while B contains the value
2.718. In the second case Q only points to the same variable as P while in the first case Q
becomes the same as P, and the value addressed by Q becomes equal to the value
addressed by P.

12.3 Pointers and arrays.

A simple use of pointers is to give a name to an array section.
 REAL, TARGET :: B(10,10)
 REAL, POINTER :: A(:), C(:)
 A => B(4,:) ! vector A becomes the fourth row
 C => B(:,4) ! and vector C becomes the fourth
 ! column of the matrix B
It is not necessary to take the whole section, you can take only a partial section. In the
following example you can take a partial matrix WINDOW of a large matrix MATRIX.
 REAL, TARGET :: MATRIX(100,100)
 REAL, POINTER :: WINDOW(:,:)
 INTEGER :: N1, N2, M1, M2
 WINDOW => MATRIX(N1:M1, N2:M2)
If you later wish to change a dimension of the partial matrix WINDOW you only need to
make a new pointer association. Please note that the indices in WINDOW are not from N1
to M1 and from N2 to M2 but from 1 to M1-N1+1 and from 1 to M2-N2+1.

There does not exist arrays of pointers directly in Fortran 90, but you can construct such
facilities by creating a new data type. An example is to store a lower (or left) triangular
matrix with rows with varying length. First introduce a new data type ROW

 TYPE ROW
 REAL, POINTER :: R(:)

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 34 of 109

Hardcopy Uncontrolled

 END TYPE
and then specify the two lower triangular matrices V and L as vectors of rows with
varying length
 INTEGER :: N
 TYPE(ROW) :: V(N), L(N)
after which you can allocate the matrix V as below (and in the corresponding way you
can allocate the matrix L)
 DO I = 1, N
 ALLOCATE (V(I)%R(1:I))
 ! Various length of rows
 END DO
The statement
 V = L
then becomes equivalent with
 V(I)%R => L(I)%R
for all the components, i.e. all values of I. Please note that in this application there is no
TARGET required.

12.4 Allocation of arrays using pointers.

One implementation of dynamic memory allocation is to use pointers to specify an array.
In the following example we specify a vector in such a way, that it can be given its size
(its extent) in a subroutine, but can be used in the main program. It is the only way we
have found to move an actual dimension upwards.

An alternative method has however been suggested by Arie ten Cate, using a module
with an ALLOCATEd and SAVEd array. An example is available.

We however use an INTERFACE with pointers in the main program and allocate, also
using pointers, a vector in the subroutine. In this way we get a dynamically allocated
vector.

 PROGRAM MAIN_PROGRAM
 INTERFACE
 SUBROUTINE SUB(B)
 REAL, DIMENSION (:), POINTER :: B
 END SUBROUTINE SUB
 END INTERFACE
 REAL, DIMENSION (:), POINTER :: A
 CALL SUB(A)

http://www.nsc.liu.se/~boein/f77to90/a9.html#extent
http://www.nsc.liu.se/%7Eboein/f77to90/code/test_dyn.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 35 of 109

Hardcopy Uncontrolled

! Now we can use the vector A.
! Its dimension was determined in the subroutine,
! the number of elements is available as SIZE(A).
 END PROGRAM MAIN_PROGRAM

 SUBROUTINE SUB(B)
 REAL, DIMENSION (:), POINTER :: B
 INTEGER M
! Now we can assign a value to M, for example
! through an input statement.
! When M has been assigned we can allocate B
! as a vector.
 ALLOCATE (B(M))
! Now we can use the vector B.
 END SUBROUTINE SUB
Note: The method above is even more useful for allocating matrices, see exercise 12.3.

Exercises

(12.1) Use pointers in order to assign all even elements of a vector the value 13 and all
odd elements of a vector the value 17.

(12.2) Specify two pointers, and let one of them point to a whole vector and the other one
point to the seventh element of the same vector.

(12.3) Use pointers to specify a matrix in such a way, that it is given its size (its extent) in
a subroutine but can be used in the main program.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 36 of 109

Hardcopy Uncontrolled

13. THE NEW PRECISION CONCEPT

The problem with the older versions of Fortran was that simple precision on one
computer could correspond to a higher precision or DOUBLE precision on another
computer and that the data type DOUBLE PRECISION COMPLEX or COMPLEX*16 was not
available in all systems (and of course not in the standard).

In Fortran 90 there are standard functions to check the precision of variables (see
Appendix 5, section 8, where for example PRECISION(X) gives the number of significant
digits in numbers of the same kind as the variable X). In Fortran 90 there are also
possibilities to specify for each variable how many significant digits can be used with the
floating-point numbers of this kind. The two common precisions single precision (SP)
and double precision (DP) on a system based on IEEE 754 can specified with

 INTEGER, PARAMETER :: SP = SELECTED_ REAL_ KIND(6,37)
 INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15,307)

 REAL(KIND=SP) :: single_precision_variables
 REAL(KIND=DP) :: double_precision_variables

If we wish to work with at least 14 decimal digits accuracy and at least decimal
exponents between - 300 and + 300 we can choose the following integer parameters

 INTEGER, PARAMETER :: WP = SELECTED_REAL_KIND(14,300)

 REAL(KIND=WP) :: working_precision_variables

Regrettably now we have to give all floating point constants with the additional suffix
_WP, for example

 REAL(KIND=WP) :: PI
 PI = 3.141592653589793_WP

while since the intrinsic functions are generic, they will automatically use the correct data
type and kind, which means that the argument determines which kind the result should
have (usually the same as the argument).

With this method you will in practice obtain double precision on systems based on IEEE
754 and single precision on computers like Cray or computers based based on the Digital

http://www.nsc.liu.se/~boein/f77to90/a5.html#section8

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 37 of 109

Hardcopy Uncontrolled

Equipment Alpha-processor, which in all cases means a precision of about 15 significant
digits.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 38 of 109

Hardcopy Uncontrolled

14. ADDITIONAL PROBLEMS AT THE TRANSITION

• Removal of automatic generation of new lines at input

A problem, that can arise when moving from Fortran 77 to Fortran 90, is
dependent on a usual deviation from the standard, and has to do especially with
user programs. What we consider here, is the use in the FORMAT of the dollar
symbol $ in order to remove the generation of a new line (Line Feed/Carriage
Return), before the user gives a new value to a variable. This is a common
extension of Fortran 77, but it generates a compilation error in Fortran 90 for the
dollar symbol and therefore another solution has to be found.

With many Fortran 77 implementations we wrote

 PROGRAM TEST
 REAL X
 WRITE(*,10)
10 FORMAT('Give X = ',$)
 READ(*,*) X
 WRITE(*,*) X
 END

In Fortran 90 we use "non-advancing I/O" instead. We therefore write the
following

 PROGRAM TEST
 IMPLICIT NONE
 REAL X
 WRITE(*,'(A)',ADVANCE='NO') 'Give X = '
 READ(*,*) X
 WRITE(*,*) X
 END

Both those programs give the same result, you may give the value of the variable
on the same row as the text "Give X = ". Non-advancing I/O can not be used
with list-directed I/O or on NAMELIST.

• Varying system for the treatment of matrices

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 39 of 109

Hardcopy Uncontrolled

In Fortran 77 there is no dynamic memory allocation, you therefore have to give a
sufficiently large dimension in the calling program and keep in mind the "leading
dimension" in the called program unit. Now when you use Fortran 90 you prefer
to have an array of the same shape and size as the logical size of a matrix. An
assignment that performs this transformation is easy to achieve. We assume that a
quadratic matrix from the calling program unit is available in the subprogram
under consideration as the array A with the dimensions A(IA, *) and that we
wish to move this to an array B with the dimension specification B(N, N), where
N at the same time is the mathematical dimension of the matrix. The following
assignment statement gives what you want, provided IA is not less than N.

 B = A(1:N, 1:N)

• Differences in the use of logical variables

The new standard contains many more words and is more explicit, while some of
the compiler or rather the compiler writer is much greater. An example is
comparison of a logical variables, which under Fortran 90 has to be done with
.EQV. or .NEQV. while this in practice often was possible in Fortran 77 also with
.EQ. and .NE. If you try to perform such a comparison in Fortran 90 with the
new equality symbol = = you can get a confusing error message, complaining
that .EQ. may not be used in this context. The reason is of course that = = is just
an alternative spelling of .EQ.

• Small things of importance

It has been rather common to use the variable name SUM in order to store the
temporary value at the summation in a DO-loop. This name is now less convenient
to use, since SUM is also the name of an automatic summation, see Appendix 5,
section 14 (on array functions). Other dangerous variable names can be ALL,
HUGE, INDEX, INT, KIND, MASK, SCALE, SIZE, TINY and TRIM. If you use a
name that is being used by the Fortran language, the normal effect is that the
intrinsic function is no longer available.

In some old Fortran dialects the statement TYPE was used to write on a typewriter
terminal and PRINT was used to write on the line printer. The concept TYPE now
has a completely new meaning in Fortran 90, to declare user-defined data types.

http://www.nsc.liu.se/~boein/f77to90/a5.html#section14
http://www.nsc.liu.se/~boein/f77to90/a5.html#section14

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 40 of 109

Hardcopy Uncontrolled

15. USE OF PROGRAM LIBRARIES

The two main numerical libraries in Fortran 90 are

• NAG Numerical Libraries for Fortran 90 Users
• IMSL Fortran 90 MP Library

Both of these offer both a modified version of the Fortran 77 library, recompiled for
Fortran 90, and a completely new library, using all the new facilities of Fortran 90.

15.1 Using Old Libraries

A problem with Fortran 90 is that so far not so many programs or program libraries are
available in the language. We can therefore be forced to use "old" program libraries
usually from Fortran 77. This can be done in two ways.

1. Recompile the library with a Fortran 90 compiler
2. Use the Fortran 77 library directly

Method 1.

A simple method is to recompile the Fortran 77 routines with the Fortran 90 compiler
using fixed form. This should work since Fortran 77 is a pure subset of Fortran 90. The
problem is that the library does not always exactly follow the standard. NAG recognizes
specifically that although the data type DOUBLE PRECISION COMPLEX or COMPLEX*16 is
not in the standard, it is in many implementations of Fortran 77. A subprogram which
uses this extension therefore has to be modified. Also possible assignments of binary,
octal or hexadecimal constants is difficult since they are standardized only in Fortran 90.
Also note that the very common notation REAL*8 for DOUBLE PRECISION is not
permitted in Fortran 90.

http://www.nag.co.uk/numeric/FN/FNdescription.asp
http://www.vni.com/products/imsl/imslf90.html
http://www.nsc.liu.se/~boein/f77to90/c15.html#m1#m1
http://www.nsc.liu.se/~boein/f77to90/c15.html#m2#m2

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 41 of 109

Hardcopy Uncontrolled

Method 2.

The second method is to link the Fortran 77 library directly with the Fortran 90 programs.
The practical problem was previously that the NAG's Fortran 90 system f90 under
version 1.1 did not include support for linkage of libraries, therefore you first had to
compile with the Fortran compiler using f90 -c and then link with the C compiler using
cc. NAG recommended the following commands

 f90 -c test.f

cc test.o -lnag -o a.out /usr/local/lib/f90/f90rt0.o\
 /usr/local/lib/f90/libf90.a -lI77 -lF77 – lm

which worked on Sun after that we had removed -lI77 since we did not find this library
on the system here in Linköping.

From version 1.2 it is much simpler because linkage support is now included and on the
Sun you only give the following command

 f90 test.f -lnag - lF77

while on DEC ULTRIX (MIPS) you give the command

 f90 test.f lnag -lfor -lutil -li –lots

Thus a few more libraries have to be included on the DEC.

In addition to the problems mentioned above we can also note that Fortran allows routine
names as arguments, which may be treated differently in the NAG's Fortran 90 compiler
based on translation to C and in the existing Fortran 77 compiler. There is therefore a
danger for linkage errors.

On the Sun using Sun OS 4.2.1 we also got completely wrong results when using library
functions in single precision, since the C system on Sun converted all function calls into
double precision. NAG has solved this problem in release 2.1.

The method can thus be used when neither complex variables in double precision nor
routine names are used as arguments, and provided that you are not using single precision
library functions on a system which incorrectly converts the calls to double precision.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 42 of 109

Hardcopy Uncontrolled

It is very essential to get all the required libraries at the linkage process, those are for
example the mathematical libraries in Fortran 77, Fortran 90 and C. Sometimes the
libraries have to be given in the correct order.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 43 of 109

Hardcopy Uncontrolled

16. PECULIARITIES IN FORTRAN 90

• Using the free source form it is not permitted to have comments starting with a C
or a * in column 1. This would be a violation of the free format. The new
character ! (exclamation mark) has to be used.

• An advantage compared with earlier Fortran standards is that the standard now
requires that the compiler can signal if the user deviates from the permitted
standard.

It is required that a Fortran 90 compiler can signal

o use of syntax not defined in the standard.
o violation of the syntax rules.
o use of kinds not available.
o use of obsolete constructs (or statements).
o use of non-Fortran characters (for example, Swedish or Cyrillic

characters) outside of character strings or comments.
o violation of the area of validity for variable names, names of the DO-loops

and the corresponding names like IF, CASE and operators.
o the reason that a program is not accepted by the compiler.

The above means that it is permitted to include extensions to Fortran 90. It has to
be possible to ask the program to signal for any extensions outside the Fortran 90
standard.

• The compiler often performs some data flow analysis.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 44 of 109

Hardcopy Uncontrolled

17. FORTRAN 95

Fortran 95 was published as ISO/IEC 1539-1:1997 on December 15, 1997.

The preliminary revision has been published as "Special Issue, Fortran 95, Committee
Draft, May 1995" in the Fortran Forum, Vol. 12, No. 2, June 1995. The draft is
available on the net, see my Fortran page.

Two important issues, exception handling, especially for floating point, and
interoperability between languages (mixed language programming) are not addressed
in Fortran 95. Exception handling is discussed in some papers by John Reid, see the
proceedings of the Kyoto Workshop on Current Directions in Numerical Software and
High Performance Computing.

Fortran 2003 was published as ISO/IEC 1539-1:2004 on November 18, 2004.

Work on the next version of Fortran is going well, see the official home of Fortran
Standards.

17.1 New features

1. The statement FORALL as an alternative to the DO-statement
2. Partial nesting of FORALL and WHERE statements
3. Masked ELSEWHERE
4. Pure procedures
5. Elemental procedures
6. Pure procedures in specification expressions
7. Revised MINLOC and MAXLOC
8. Extensions to CEILING and FLOOR with the KIND keyword argument
9. Pointer initialization
10. Default initialization of derived type objects
11. Increased compatibility with IEEE arithmetic
12. A CPU_TIME intrinsic subroutine
13. A function NULL to nullify a pointer

http://www.nsc.liu.se/~boein/f77to90/fortran.html#2
http://www.nsc.liu.se/%7Eboein/vita/mlp.html
http://www.nsc.liu.se/~boein/ifip/kyoto/kyoto.html#reid
http://www.nag.co.uk/sc22wg5/
http://www.nag.co.uk/sc22wg5/
http://www.nsc.liu.se/~boein/f77to90/a8.html#execution
http://www.nsc.liu.se/~boein/f77to90/a9.html#nested
http://www.nsc.liu.se/~boein/f77to90/a8.html#intrinsic
http://www.nsc.liu.se/~boein/f77to90/a8.html#intrinsic
http://www.nsc.liu.se/~boein/f77to90/a8.html#intrinsic
http://www.nsc.liu.se/~boein/f77to90/a8.html#intrinsic

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 45 of 109

Hardcopy Uncontrolled

14. Automatic deallocation of allocatable arrays at exit of scoping unit
15. Comments in NAMELIST at input
16. Minimal field at input
17. Complete version of END INTERFACE

Pure functions are functions without side effects, and elemental functions are pure
functions with only scalar arguments and with scalar result.

17.2 Deleted features

Five features are deleted from Fortran 90.

1. real and double precision DO loop index variables
2. branching to END IF from an outer block
3. PAUSE statements
4. ASSIGN statements and assigned GO TO statements and the use of an assigned

integer as a FORMAT specification
5. Hollerith editing in FORMAT

These are all from the list of obsolescent features of Fortran 90 (but not the complete
list).

It is permitted for a compiler to have extensions to the standard, provided that these can
be flagged by the system. It is very common for compilers to include the two features
(see Appendix 4) that were removed from Fortran when Fortran 77 was introduced, and it
is expected that this tradition will continue.

17.3 Obsolescent features

In the obsolescence list below those items that were not in the corresponding list of
Fortran 90 are indicated . All items in the list below are being considered for
removal at the next revision, and should therefore be avoided.

The most probable candidates, in our opinion, for removal at the next revision are the
first six.

http://www.nsc.liu.se/~boein/f77to90/a4.html#obsolescent
http://www.nsc.liu.se/~boein/f77to90/a4.html#removed
http://www.nsc.liu.se/~boein/f77to90/a4.html#obsolescent
http://www.nsc.liu.se/~boein/f77to90/a4.html#obsolescent

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 46 of 109

Hardcopy Uncontrolled

1. Arithmetic IF-statement
2. Terminating several DO-loops on the same statement or terminating the DO-loop in

some other way than with CONTINUE or END DO
3. Alternate return
4. Computed GO TO statement
5. Statement functions
6. DATA statements among executable statements
7. Assumed character length functions
8. Fixed form source code
9. CHARACTER* form of CHARACTER declaration

To replace CHARACTER*LENGTH with CHARACTER(LEN=LENGTH) or CHARACTER(LENGTH)
is simple, as are the other items above. For example, item 6 is just to move all DATA
statements to the top of the program unit, before the executable statements. Statement
functions are of course replaced with internal functions.

17.4 Description of the new features

An explanation of the new features follows.

• The statement FORALL

The statement FORALL is introduced as an alternative to the DO-statement. The
main difference is that while the execution order of the various parts of the DO-
loop is very strict, the execution order of the FORALL is less strict, thus permitting
parallel execution. For further information we refer to our HPF Appendix or
directly to the HPFF home page.

• Partial nesting of FORALL and WHERE statements

A FORALL statement can include a WHERE statement.

• Masked ELSEWHERE

It is now permitted to mask not only the WHERE statement of the WHERE construct,
but also its ELSEWHERE, which now may be repeated.

http://www.nsc.liu.se/~boein/f77to90/a9.html#statement
http://www.nsc.liu.se/~boein/f77to90/a9.html#statement
http://www.nsc.liu.se/~boein/f77to90/a9.html#internal
http://www.nsc.liu.se/~boein/f77to90/a8.html#execution
http://www.nsc.liu.se/~boein/f77to90/a8.html#execution
http://www.nsc.liu.se/%7Eboein/f77to90/a8.html
http://www.crpc.rice.edu/HPFF/
http://www.nsc.liu.se/~boein/f77to90/a9.html#nested

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 47 of 109

Hardcopy Uncontrolled

 WHERE (condition_1)
 ...
 ELSEWHERE (condition_2)
 ...
 ELSEWHERE
 ...
 END WHERE

• Pure procedures

Pure functions are functions without side effects. That a function has no side
effects can be indicated with the new PURE prefix.

A long list of constraints is given in the standard proposal, section 12.6.

Pure subroutines are defined in a similar way. The only major difference is that
"side effects" are of course permitted for arguments associated with dummy
arguments specified INTENT(OUT) or INTENT(INOUT).

The advantage with knowing that a function is pure is that this fact simplifies
parallel execution.

• Elemental procedures

Elemental functions are pure functions with only scalar dummy arguments (not
pointers or procedures) and with scalar result (not pointer). That a function is
elemental can be indicated with the new ELEMENTAL prefix. The RECURSIVE
prefix my not be combined with the ELEMENTAL prefix. The PURE prefix is
automatically implied by the ELEMENTAL prefix.

An elemental function may be used with arrays as actual arguments. These must
then be conformable. The result is the same array as if the function had been used
individually with each of the array elements, in any order.

Elemental subroutines are defined in a similar way. The only major difference is
that "side effects" are of course permitted for arguments associated with dummy
arguments specified INTENT(OUT) or INTENT(INOUT).

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 48 of 109

Hardcopy Uncontrolled

The advantage with knowing that a function is elemental is that this fact
simplifies parallel execution, even more than if it is only pure.

• Pure procedures in specification expressions

Pure functions can be used in specification expressions if certain conditions are
fulfilled, see the standard proposal, section 7.1.6.2.

Specification expressions can be used to specify array bounds and character
lengths of data objects in a subprogram.

• Revised MINLOC and MAXLOC

The array location functions MINLOC and MAXLOC are extended with the optional
argument DIM corresponding to those for the array functions MINVAL and MAXVAL.

• Extensions to CEILING and FLOOR

The new numerical functions CEILING and FLOOR are extended with the KIND
keyword argument, in the same way as for INT and NINT. The result is an integer,
but of the specified KIND or subtype, not necessarily the standard (default) integer
subtype.

• Pointer initialization

The new function NULL can be used at specification to define a pointer to be
initially disassociated, see below.

• Default initialization of derived type objects

Means are now available to specify default initial values for derived type
components. It is the usual way of using the equal sign (or pointer assignment)
followed by the value (perhaps an array constructor). Initialization does not have
to apply to all components of a certain derived type.

A simple example. In Appendix 3, section 12, we introduced a sparse matrix.

http://www.nsc.liu.se/~boein/f77to90/a8.html#intrinsic
http://www.nsc.liu.se/~boein/f77to90/a5.html#section19
http://www.nsc.liu.se/~boein/f77to90/a5.html#section14
http://www.nsc.liu.se/~boein/f77to90/a5.html#section14
http://www.nsc.liu.se/~boein/f77to90/a5.html#section14
http://www.nsc.liu.se/~boein/f77to90/a5.html#section14
http://www.nsc.liu.se/~boein/f77to90/a5.html#section2
http://www.nsc.liu.se/~boein/f77to90/f95.html#17.5.NULL#17.5.NULL
http://www.nsc.liu.se/~boein/f77to90/a3.html#section12

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 49 of 109

Hardcopy Uncontrolled

A numerically interesting example is a sparse matrix A with at most one hundred
non-zero elements, which can be specified with the following statement, where
now initialization is done to 2.0 for all elements.

 TYPE NONZERO
 REAL :: VALUE = 2.0
 INTEGER :: ROW, COLUMN
 END TYPE

and

 TYPE (NONZERO) :: A(100)

You then get the value (which will be 2.0) of A(10) by writing A(10)%VALUE.
The default value can be individually changed with an assignment, for example

 A(15) = NONZERO(17.0,3,7)

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 50 of 109

Hardcopy Uncontrolled

• Increased compatibility with IEEE arithmetic

The IEEE arithmetic has for floating point numbers one bit pattern for plus zero
and another one for minus zero. Processors that distinguish between them shall
treat them as identical

o In all relational operations
o As input arguments to all intrinsics except SIGN
o As the scalar expression in the arithmetic IF-statement

In order to distinguish between the two cases, the function SIGN has to be used. It
is generalized so that the sign of the second argument is considered also if the
value is a floating-point zero.

• A CPU_TIME intrinsic subroutine

The subroutine CPU_TIME(TIME) belongs of course to intrinsic subroutines. In
the scalar real variable TIME the present processor time is returned in seconds. If
the processor is unable to provide a timing, a negative value is returned instead.
As usual, the time for a certain computation is obtained by subtracting two
different calls to the timing routine.

The exact nature of the timing is implementation dependent, a parallel processor
might reurn an array of times corresponding to the various processors. The
difference between CPU-time and system time is also implementation dependent.

• A function NULL to nullify a pointer

This function can be used at specification to define a pointer to be initially
disassociated, in the example below the array VECTOR.

 REAL, POINTER, DIMENSION(:) :: VECTOR => NULL()
The argument is not necessary, if present it determines the characteristics of the
pointer, if not present, the characteristics are determined from context.

The function belongs to section 20, pointer inquiry functions, which is now
renamed "Pointer association status functions".

http://www.nsc.liu.se/~boein/f77to90/a5.html#section2
http://www.nsc.liu.se/~boein/f77to90/a5.html#section21
http://www.nsc.liu.se/~boein/f77to90/a5.html#section20

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 51 of 109

Hardcopy Uncontrolled

• Automatic deallocation of allocatable arrays at exit of scoping unit
If the user has not explicitly deallocated local allocatable arrays at the exit of the
scoping unit, this deallocation is now performed automatically, thus decreasing
the memory required.

• Comments in NAMELIST at input

It is now permitted to use comments in the usual way with !

• Minimal field at output

In order to obtain an optimized use of the available positions it is now possible to
only give the number of decimals, if any, and not the total field width, at the
FORMATs B, F, I, O, and Z. Examples are I0 and F0.6. The result is of course
not a field with zero digits, but with a suitable number of digits.

• Complete version of END INTERFACE

Also END INTERFACE can now be given in a complete variant, so the second
interface in chapter 10 can be given either in the old version as

INTERFACE SWAP
 MODULE PROCEDURE SWAP_R, SWAP_I, SWAP_C
 END INTERFACE

or in the new preferred way as

 INTERFACE SWAP
 MODULE PROCEDURE SWAP_R, SWAP_I, SWAP_C
 END INTERFACE SWAP

This can also include an optional generic specification.

http://www.nsc.liu.se/%7Eboein/f77to90/c10.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 52 of 109

Hardcopy Uncontrolled

17.5 Different Fortran standards

Properties
Fortran 66 Fortran 77 Fortran 90 Fortran 95

Fixed
form

Fixed
form Fixed Free (Fixed) Free

Whole Fortran 66 = -2 -2 -2 -5 -5
Whole Fortran 77 - = = = -5 -5
Whole Fortran 90 - - = = -5 -5
Whole Fortran 95 - - -14 -14 = =
Continuation line indicated in
column 6
on the next line

+ + + - + -

Continuation line indicated with &
at the end of the present line - - - + - +

Blank line as comment - + + + + +
Significant blanks - - - + - +
Generic functions - + + + + +
User-defined generic functions - - + + + +
REAL*8 - - - - - -
Comment symbol C C * C * ! ! C * ! !
Extension in Unix .f .f .f .f90 .f .f90
Extension in DOS .FOR .FOR .FOR .F90 .FOR .F90

Above, for example, -2 in the position Whole Fortran 66 / Fortran 90 means that two
properties have disappeared at the transition from Fortran 66 to Fortran 90. This applies
to both fixed form and free form source code.

In the first four lines an equality sign = indicates that nothing has changed, a minus - that
several properties are missing.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 53 of 109

Hardcopy Uncontrolled

In the following seven lines a plus + indicates that the property is present, a minus - that
it is absent.

Fixed form of the source code is discouraged in Fortran 95!

REAL*8 is an alternative to DOUBLE PRECISION, introduced by IBM and used also by
Digital. Several variants exist.

As comment symbol the exclamation mark ! is recommended, it is valid also in several
implementations of Fortran 77.

In UNIX there is no concept called extension, and the extensions are not specified in the
Fortran standard, but in informal manufacturer standards.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 54 of 109

Hardcopy Uncontrolled

18. SUMMARY OF NEW FEATURES
Summary of the new features in Fortran 90

Below follows a short summary of the new standard. Please note that only some more
essential parts and not the whole new standard are discussed here.

Source code form:

As an alternative to the old source-code (punched card oriented) form, there is a free
form, which does not take any consideration to columns and where blanks are significant.
Comments can be given on the line if preceded by an exclamation mark !, several
statements can be given on the same line if using the semicolon ; as a separator, and
statements that continue on the next line are continued on the present line (not the next
line) with an ampersand &.

The underline symbol _ is permitted inside the names of variables, and the length of
variables must have at most 31 characters (instead of at most 6 in the Fortran 77
standard).

Blanks become significant in the free form of the source code. Old commands like ENDIF
and GOTO can also in the future be written either as END IF or GO TO respectively, but of
course not like EN DIF or GOT O. To permit significant blanks in the old (fixed) form of
the source code would not be possible, since it for example is permitted to write END in
the following silly way

 E N D

INCLUDE can be used to include source code from an external file. The construct is a line
where there is INCLUDE and a character string and, perhaps, some concluding comments.
Interpretation is implementation-dependent, normally the character string is treated as the
name of the file that holds the source code that should be included. Nesting is permitted
(and the number of levels is implementation-dependent), but recursion is not permitted
for the INCLUDE statement.

As in most Algol-type languages the word END can be complemented with the name of
the routine or function like END FUNCTION GAMMA.

Alternative representations:

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 55 of 109

Hardcopy Uncontrolled

The special characters < and > can now be used
 < .LT. > .GT.
 <= .LE. >= .GE.
 == .EQ. /= .NE.

Specifications:

These can now be written on one line

 REAL, DIMENSION (3), PARAMETER :: &
 a = (/ 0.0, 0.0, 0.0 /), b = (/ 1.0, 1.0, 1.0 /)

 COMPLEX, DIMENSION(10) :: john

while the variables a and b become constant vectors with 3 elements and the floating-
point values 0.0 and 1.0, respectively, while john becomes a complex vector with 10
complex elements, not yet assigned any values.

If you wish to use the Algol principle to specify all variables, this is simplified by the
command IMPLICIT NONE which switches off the implicit-type rules.

Double precision has been implemented with a more general method to give the desired
precision, namely the parameter KIND for which precision we wish, useful on all variable
types.

 INTEGER, PARAMETER :: LP = SELECTED_REAL_KIND(20)
 REAL (KIND = LP) :: X, Y, Z

The above two statements thus declare the variables X, Y and Z to be REAL floating-
point variables with at least 20 decimal digits accuracy with a data type that is called LP
(where LP stands for LONG PRECISION).

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 56 of 109

Hardcopy Uncontrolled

Conditional statement:

The new command is

 SELECT CASE (expression)
 CASE block-switch
 block
 CASE block-switch
 block
 CASE DEFAULT
 default block
 END SELECT

Typical construct:

 SELECT CASE(3*I-J) ! the control variable is 3*i-j
 CASE(0) ! for the value zero
 : ! you execute the code here
 CASE(2,4:7) ! for the variables 2, 4, 5, 6, 7
 : ! you execute the code here
 CASE DEFAULT ! and for all other values
 ! you execute the code here
 : !
 END SELECT

If the CASE DEFAULT is missing and none of the alternatives is valid, the execution
continues directly with the next statement following the END SELECT, without any error
message.

Another example:

 INTEGER FUNCTION SIGNUM(N)
 SELECT CASE (N)
 CASE (:-1)
 SIGNUM = -1
 CASE (0)
 SIGNUM = 0
 CASE (1:)
 SIGNUM = 1
 END SELECT
 END

DO-loop:

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 57 of 109

Hardcopy Uncontrolled

Three new constructs are included. The first one gives in principle an infinite loop, which
however can be terminated with a conditional GOTO-statement.

 name: DO
 executable statements
 END DO name

The usual DO-loop has the following new simplified form without statement number,

 name: DO i = integer_expr_1, integer_expr_2 ,integer_expr_3
 executable statements
 END DO name

where i is called control variable, and where ,integer_expr_3 is optional. Finally
there is also the DO WHILE loop

 name: DO WHILE (logical_expression)
 executable statements
 END DO name

The name is optional but can be used for nested loops in order to indicate which one that
is to be iterated once again with the CYCLE statement or terminated with the EXIT
statement.

 S1: DO
 IF (X > Y) THEN
 Z = X
 EXIT S1
 END IF
 CALL NEW(X)
 END DO

 N = 0
 LOOP1: DO I = 1, 10
 J= I
 LOOP2: DO K =1, 5
 L = K
 N = N +1
 END DO LOOP2
 END DO LOOP1
In the latter case the final values from the variables will be as follows, in full accordance
with the standard, I = 11, J = 10, K = 6, L = 5, and N = 50.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 58 of 109

Hardcopy Uncontrolled

To name the loop is completely optional. Also note that this type of name is limited to
DO-loop, CASE or IF...THEN...ELSE...ENDIF constructs. The old possibilities with
statement numbers are still available, also in the free form.

Program units:

Routines can be called with keyword arguments and can use default arguments

 SUBROUTINE solve (a, b, n)
 REAL, OPTIONAL, INTENT (IN) :: b

can be called with

 CALL solve (n = i, a = x)

where two of the arguments are given with keywords instead of position and where the
third one has a default value. If SOLVE is an external routine it requires making use of an
INTERFACE block in the calling program. Routines can be specified to be recursive.

 RECURSIVE FUNCTION factorial (n) RESULT (fac)

but must then have a special RESULT name in order to return the result.

Character string variables:

CHARACTER has been expanded to include also an empty string

 a = ''

and assignment of an overlapping string is now permitted

 a(:5) = a(3:7)

The new intrinsic function TRIM which removes concluding blanks is an important
addition. You can now make a free choice between the apostrophe ' and the quotation
mark " in order to indicate a character string. This can among other things be used in such
a way that if you wish to write an apostrophe inside the text, then you use the quotation
mark as indicators, and in the opposite case if you wish to have a quotation mark inside
the text you use the apostrophe as the indicator.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 59 of 109

Hardcopy Uncontrolled

Input:

At last the NAMELIST is included in the standard! This statement, however, has to be
among the specifications. In the example below list2 is the name of the list, a and b
are real variables and i is an integer variable.

 NAMELIST /list2 / a, i, x
 :
 READ (unit, NML = list2)

which wishes to get input data of the following form, but all variables do not have to
given, and they can be given in any order.

 &list2 X = 4.3, A = 1.E20, I = -4 /

Vector and matrix management:

This is one of the most important parts of the new standard. An array is defined to have a
shape given by its number of dimensions, called "rank", and the extent for each one of
these. Two arrays agree if they have the same shape. Operations are normally done
element by element. Please remember that the rank for an array is the number of
dimensions and has nothing at all to do with the mathematical rank of a matrix!

 REAL, DIMENSION(5,20) :: x, y
 REAL, DIMENSION(-2:2,20) :: z
 :
 z = 4.0*y*sgrt(x)

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 60 of 109

Hardcopy Uncontrolled

We perhaps here wish to protect against negative elements of X. This is done with the
following construct

 WHERE (x >= 0.0)
 z = 4.0*y*sgrt(x)
 ELSEWHERE
 z = 0.0
 END WHERE

Please note that ELSEWHERE has to be in one word! Compare also with the function SUM
which is discussed at the end of the next section.

You can pick out a part of an array. Assume that the array A is specified in the following
way.

 REAL, DIMENSION(-4:0, 7) :: A

With A(-3, :) you pick the second row, while with A(0:-4:-2, 1:7:2) you pick (in
reverse order) its each other element in each other column. Just as variables can form
arrays, also constants can form arrays.

 REAL, DIMENSION(6) :: B
 REAL, DIMENSION(2,3) :: C
 B = (/ 1, 1, 2, 3, 5, 8 /)
 C = RESHAPE(B, (/ 2,3 /))

where the first argument to the intrinsic function RESHAPE gives the value and the second
argument gives the new shape. Two additional, but optional, arguments are available to
this function.

The above can also be written in a more compressed form using the PARAMETER attribute.
In the first line below the PARAMETER attribute is compulsory (if the assignment is to be
made on the same line), but in the second line it is optional. Remember that the
PARAMETER attribute means that the quantity can not be changed during execution of the
program.

 REAL, DIMENSION(6), PARAMETER :: B = (/ 11, 12, 13, 14, 15, 16 /)
 REAL, DIMENSION(2,3), PARAMETER :: C = RESHAPE(B, (/ 2, 3 /))

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 61 of 109

Hardcopy Uncontrolled

Any statements for real parallel computation are not included in Fortran 90. The
committee believes it is necessary with additional experience before the standardization
of parallelization. See also HPF discussed in the Appendix 8.

Dynamic storage:

Fortran 90 contains four different ways to make dynamical access. The first one is to use
a pointer. See an example on a vector and for an example on a matrix see exercise 12.3

The second is to use an "allocatable array", i.e. with the statements ALLOCATE and
DEALLOCATE you get and return a storage area for an array with type, rank and name (and
possible other attributes) which had been specified earlier with the additional attribute
ALLOCATABLE.

 REAL, DIMENSION(:), ALLOCATABLE :: x
 :
 Allocate(x(N:M)) ! N and M are the integer expressions here.
 :
 x(j) = q ! Some assignment of the array.
 CALL sub(x) ! Use of the array in a subroutine.
 :
 DEALLOCATE (x)

Deallocation occurs automatically (if the attribute SAVE has not been given) when you
reach RETURN or END in the same program unit.

The third variant is an "automatic array", it is almost available in the old Fortran, where x
in the example below has to be in the list of arguments. This is not required any more.

 SUBROUTINE sub (i, j, k)
 REAL, DIMENSION (i, j, k) :: x

Dimensions for x are taken from the integers in the calling program. Finally there is an
"assumed-shape array" where the storage is defined in the calling procedure and for
which only the type, rank and name are given.

 SUBROUTINE sub(a)
 REAL, DIMENSION (:,:,:) :: a

http://www.nsc.liu.se/%7Eboein/f77to90/a8.html
http://www.nsc.liu.se/~boein/f77to90/c12.html#section4

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 62 of 109

Hardcopy Uncontrolled

According to Metcalf and Reid (1990, 1992), section 6.3 you here require an explicit
interface. This has to look as follows

 INTERFACE
 SUBROUTINE SUB(A)
 REAL, DIMENSION (:,:,:) :: A
 END SUBROUTINE SUB
 END INTERFACE

If you forget the INTERFACE or if you have an erroneous interface, then you will usually
get "segmentation error", it means that a program unit may be missing.

Some intrinsic functions are available to determine the actual dimension limits

 DO (i = LBOUND(a,1), UBOUND(a,1))
 DO (j = LBOUND (a,2), UBOUND (a,2))
 DO (k = LBOUND(a,3),UBOUND (a,3))

where LBOUND gives the lower limit for the specified dimension and UBOUND gives the
upper one.

The sum of the positive value of a number of elements in an array is written

 SUM (X, MASK = X .GT. 0.0)

These statements can not be used in order to avoid division by zero at for example
summation of 1/X, that is the mask works only with determining which numbers that are
to be included in the summation, and not whether a certain value has to be calculated or
not. But in this later case you can use the construct WHERE, see section 9.

Intrinsic functions:

Fortran 90 defines about 100 intrinsic functions and a few intrinsic subroutines. Many of
these functions can be used for arrays, e.g. for reduction (SUM), construct (SPREAD),
manipulation (TRANSPOSE). Other functions permit attributes or available parameters in
the programming environment to be determined, as the largest positive floating-point
number and the largest positive integer, as well as access to the system clock. The
random numbers generator is included. Finally, the function TRANSFER permits a certain
physical area to be transmitted to another area without type conversion.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 63 of 109

Hardcopy Uncontrolled

The function SPREAD is discussed more fully in the solution of exercise (11.1).

All intrinsic functions and subroutines are discussed in Appendix 5.

Use of the user-defined data type:

Fortran had earlier not permitted use of any user-defined type. This has now become
possible.

 TYPE staff_member
 CHARACTER(LEN=20) :: first_name, last_name
 INTEGER :: identification, department
 END TYPE

which can be used in order to describe an individual. A combination of individuals can
also be formed

 TYPE(staff_member), DIMENSION(100) :: staff

Individuals can be referred to as staff(number) and a field can be referred as
staff(number)%first_name. You can also nest definitions

 TYPE company
 CHARACTER(LEN=20) :: company_name
 TYPE(staff_member), DIMENSION(100) :: staff
 END TYPE
 :
 TYPE(company), DIMENSION(10) :: several_companies

A numerically more interesting example is a sparse matrix A with at most one hundred
non-zero elements, which can be specified with the following statement

 TYPE NONZERO
 REAL VALUE
 INTEGER ROW, COLUMN
 END TYPE

and

 TYPE (NONZERO) :: A(100)

http://www.nsc.liu.se/%7Eboein/f77to90/a5.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 64 of 109

Hardcopy Uncontrolled

You then get the value of A(10) by writing A(10)%VALUE. Assignment can be done, for
example with

 A(15) = NONZERO(17.0,3,7)

In order to use user-defined data types in for example COMMON, or to make sure that two
data types which look the same are treated as identical, you can use the SEQUENCE
statement, in the latter case it is also required that no variable is specified PRIVATE.

Modules:

Modules are collections of data, type definitions and procedure definitions, which give a
more secure and general replacement for the COMMON concept.

The data type "bit":

The data type "bit" is not included in the standard, but there are available various bit
operations of integers according to an earlier military standard MIL-STD 1753. In
addition, binary, octal and hexadecimal constants are included, as well as the possibility
to use these quantities in input/output through the three new format-letters. In a DATA
statement you can use an assignment to

 B'01010101010101010101010101010101'

for binary,

 O'01234567'

for octal, and

 Z'ABCDEF'

for hexadecimal numbers.

Pointers:

Pointers have been included, but not in the usual way as a new data type but as an
attribute to the other data types. A variable with a pointer attribute can be used as an
ordinary variable and in a number of new ways. Pointers in Fortran 90 are not memory

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 65 of 109

Hardcopy Uncontrolled

addresses as in many languages or in certain Fortran variants (dialects), but are more like
extra names (aliases).

Pointers are discussed in chapter 12.

User extensions:

The new language contains a possibility for the user to extend it with his own concepts,
for example interval arithmetics, rational arithmetics or dynamic character strings. By
defining a new data type or operator, and overloading operations and procedures (so that
you can also use the plus + as the symbol of addition of intervals and not only of ordinary
numbers), we can create a package (a module) without using a preprocessor. We can soon
expect a number of extensions for different applications in the form of modules from
different manufacturers. Some are already available from NAG.

http://www.nsc.liu.se/%7Eboein/f77to90/c12.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 66 of 109

Hardcopy Uncontrolled

19. BACKWARD AND FORWARD COMPATIBILITY
Very important in the introduction of a new programming language standard is that old
programs (at least those who obey the outgoing standard) can be used once again, with
the new standard.

19.1 Backward

When we went from Fortran 66 to Fortran 77 the extended DO-loop was removed (the
extended DO-loop means that if you do not change any of the DO-loop parameters you can
jump out of the loop and then jump in again (this is somewhat contrary to the concept of
structured programming). In addition Hollerith constants were removed (except in
FORMAT). That means that there are some programs that obey Fortran 66 but do not obey
Fortran 77. Most manufacturers have, however, chosen to let these two concepts be
included as extensions in their Fortran implementations. For Fortran 90 nothing has been
removed from Fortran 77. An interesting practical question is however manufacturers still
continue to include those old things that really should have been thrown away when
Fortran 77 came. It is permitted to have these old concepts as extensions.

There is one further incompatibilty between Fortran 66 and Fortran 77, which is related
to assumed-size allocation of dummy arrays.

On the other hand, the concept "obsolescence" is introduced. This means that some
constructs may be removed at the next change of Fortran. These constructs are:

• Arithmetic IF-statement
• Control variables in a DO-loop which are floating point or double-precision

floating-point
• Terminating several DO-loops on the same statement
• Terminating the DO-loop in some other way than with CONTINUE or END DO
• Alternate return
• Jump to END IF from an outer block
• PAUSE
• ASSIGN and assigned GOTO and assigned FORMAT , that is the whole

"statement number variable" concept.
• Hollerith editing in FORMAT.

http://www.nsc.liu.se/~boein/f77to90/a9.html#assumed-size

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 67 of 109

Hardcopy Uncontrolled

Further information on obsolescence is available in Status of Fortran 95, which describes
the present suggestions for the next standard. See especially the new list of deleted
features and the revised list of obsolescent features.

19.2 Parallel extensions
A group "High Performance Fortran Forum" has worked at the development of an
extension to Fortran 90 with parallel extensions. The purpose of this project is to offer a
portable language which can be used efficiently on different parallel systems. The project
was ready, with a complete proposal, in May 1993 and aims at a de facto standard (and
not at a formal standard). See Appendix 8 for a summary.

Somewhat simplified you can say that Fortran 90 works effectively on vector processors
but not on parallel processors.

19.3 Forward
Among the new things that are being considered for the next version of Fortran are
improved parallel treatment, interrupt handling, parametrized data types, and data types
with inherited properties. It is the aim of the committee to have a slight revision available
in 1996, with some carefully chosen new properties.

In addition, a few corrections have been accepted earlier, especially some explanations of
ambitious parts of the standard. An early version of these corrections appeared in a
special issue of the Fortran Forum, Vol. 11, No. 1, March 1993, with the title "Fortran 90;
Errata, Amendments, and Interpretations, progress to date". Some updates to this special
issue appeared in No. 2, June 1993, page 1.

Two revisions have been officially adopted, see the official ISO page on Fortran 90.

http://www.nsc.liu.se/%7Eboein/f77to90/f95.html
http://www.nsc.liu.se/~boein/f77to90/f95.html#17.2
http://www.nsc.liu.se/~boein/f77to90/f95.html#17.2
http://www.nsc.liu.se/~boein/f77to90/f95.html#17.3
http://www.nsc.liu.se/%7Eboein/f77to90/a8.html
http://www.nsc.liu.se/%7Eboein/f77to90/f95.html
http://www.iso.ch/cate/d6128.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 68 of 109

Hardcopy Uncontrolled

20. INTRINSIC FUNCTIONS IN FORTRAN 90

There is a large a number of intrinsic functions and five intrinsic subroutinesin Fortran
90. I treat the numeric and mathematical routines very shortly, since they are not changed
from Fortran 77 and therefore should be well-known.

This section is based on section 13 of the ISO standard (1991), which contains a more
formal treatment. We follow the arrangement of the different functions and subroutines in
the standard, but explain directly in the list. For a more detailed treatment we refer to
Metcalf and Reid (1990, 1993).

When a parameter below is optional it is given in lower case characters. When an
argument list contains several arguments the function can be called either by position
related arguments or by a keyword. Keyword must be used if some previous argument is
not included. Keywords are normally the names that are given below.

We have not always given all the natural limitations to the variables, for example that the
rank is not permitted to be negative.

Function which determines if a certain argument is in an actual argument list:

The function PRESENT(A) returns .TRUE. if the argument A is in the calling list,
.FALSE. in the other case. The use is illustrated in the example program in chapter 8 of
the main text.

Numerical functions:

The following are available from Fortran 77: ABS, AIMAG, AINT, ANINT, CMPLX,
CONJG, DBLE, DIM, DPROD, INT, MAX, MIN, MOD, NINT, REAL and SIGN.

In addition, CEILING, FLOOR and MODULO have been added to Fortran 90. Only the last
one is difficult to explain, which is most easily done with the examples from ISO (1991)

 MOD (8,5) gives 3 MODULO (8,5) gives 3
 MOD (-8,5) gives -3 MODULO (-8,5) gives 2
 MOD (8,-5) gives 3 MODULO (8,-5) gives -2
 MOD (-8,-5) gives -3 MODULO (-8,-5) gives -3

http://www.nsc.liu.se/~boein/f77to90/a5.html#section21#section21
http://www.nsc.liu.se/%7Eboein/f77to90/c8.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 69 of 109

Hardcopy Uncontrolled

The following functions from Fortran 77 can use a kind-parameter like in AINT(A,
kind), namely AINT, ANINT, CMPLX, INT, NINT and REAL.

A historic fact is that the numerical functions in Fortran 66 had to have specific
(different) names in different precisions, and these explicit names are still the only ones
which can be used when a function name is passed as an argument.

A complete table of all the numerical functions follow. Those names that are indicated
with a star * are not permitted to be used as arguments. Some functions, like INT and
IFIX have two specific names, either can be used. On the other hand, some functions do
not have any specific name. Below I use C for complex floating point values, D for
floating point values in double precision, I for integers, and R for floating point values
in single precision.

Function Generic Specific Data type
 name name Arg Res

Conversion INT - I I
 to integer * INT R I
 * IFIX R I
 * IDINT D I
 (of the real part) - C I

Conversion REAL * REAL I R
 to real * FLOAT I R
 - R R
 * SNGL D R
 (real part) - C R

Conversion DBLE - I D
 to double - R D
 precision - D D
 (real part) - C D

Conversion CMPLX - I (2I) C
 to complex - R (2R) C
 - D (2D) C
 - C C

Truncation AINT AINT R R
 DINT D D

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 70 of 109

Hardcopy Uncontrolled

Rounding ANINT ANINT R R
 DNINT D D
 NINT NINT R I
 IDNINT D I

Absolute ABS IABS I I
 value ABS R R
 DABS D D
 CABS C R

Remainder MOD MOD 2I I
 AMOD 2R R
 DMOD 2D D
 MODULO - 2I I
 - 2R R
 - 2D D

Floor FLOOR - I I
 - R R
 - D D

Ceiling CEILING - I I
 - R R
 - D D

Transfer SIGN ISIGN 2I I
 of sign SIGN 2R R
 DSIGN 2D D

Positive DIM IDIM 2I I
 difference DIM 2R R
 DDIM 2D D

Inner product - DPROD R D

Maximum MAX * MAX0 I I
 * AMAX1 R R
 * DMAX1 D D
 - * AMAX0 I R
 - * MAX1 R I

Minimum MIN * MIN0 I I
 * AMIN1 R R
 * DMIN1 D D
 - * AMIN0 I R
 - * MIN1 R I

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 71 of 109

Hardcopy Uncontrolled

Imaginary part - AIMAG C R

Conjugate - CONJG C C
Truncation is towards zero, INT(-3.7) becomes -3, but rounding is correct, NINT(-
3.7) becomes -4. The new functions FLOOR and CEILING truncate towards minus and
plus infinity, respectively.

The function CMPLX can have one or two arguments, if two arguments are present these
must be of the same type but not COMPLEX.

The function MOD(X,Y) calculates X - INT(X/Y)*Y.

The sign transfer function SIGN(X,Y) takes the sign of the second argument and puts it
on the first argument, ABS(X) if Y >= 0 and -ABS(X) if Y < 0.

Positive difference DIM is a function I have never used, but DIM(X,Y) gives X-Y if this
is positive and zero in the other case.

Inner product DPROD on the other hand is a very useful function which gives the product
of two numbers in single precision as a double precision number. It is both fast and
accurate.

The two functions MAX and MIN are unique in that they may have an arbitrary number of
arguments, but at least two. The arguments have to be of the same type, but are not
permitted to be of type COMPLEX.

Mathematical functions:

Same as in Fortran 77. All trigonometric functions work in radians. The following are
available: ACOS, ASIN, ATAN, ATAN2, COS, COSH, EXP, LOG, LOG10, SIN, SINH,
SQRT, TAN and TANH.

A historic fact is that the mathematical functions in Fortran 66 had to have specific
(different) names in different precisions, and these explicit names are still the only ones
which can be used when a function name is passed as an argument.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 72 of 109

Hardcopy Uncontrolled

A complete table of all the mathematical functions follow. Below I use C for complex
floating point values, D for floating point values in double precision, I for integers, and R
for floating point values in single precision.

Function Generic Specific Data type
 name name Arg Res

Square root SQRT SQRT R R
 DSQRT D D
 CSQRT C C

Exponential EXP EXP R R
 DEXP D D
 CEXP C C

Natural LOG ALOG R R
 logarithm DLOG D D
 CLOG C C

Common LOG10 ALOG10 R R
 logarithm DLOG10 D D

Sine SIN SIN R R
 DSIN D D
 CSIN C C

Cosine COS COS R R
 DCOS D D
 CCOS C C

Tangent TAN TAN R R
 DTAN D D

Arcsine ASIN ASIN R R
 DASIN D D

Arccosine ACOS ACOS R R
 DCOS D D

Arctangent ATAN ATAN R R
 DATAN D D
 ATAN2 ATAN2 2R R
 DATAN2 2D D

Hyperbolic SINH SINH R R

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 73 of 109

Hardcopy Uncontrolled

 sine DSINH D D

Hyperbolic COSH COSH R R
 cosine DCOSH D D

Hyperbolic TANH TANH R R
 tangent DTANH D D
The purpose of most of these functions is obvious. Note that they are all only defined for
floating point numbers, and not for integers. You can therefore not calculate the square
root of 4 as SQRT(4), but instead you can use NINT(SQRT(REAL(4))). Please also note
that all complex functions return the principal value.

The square root gives a real result for a real argument in single or double precision, and a
complex result for a complex argument. So SQRT(-1.0) gives an error message (usually
already at compile time), while you can get the complex square root using the following
statements.

COMPLEX, PARAMETER :: MINUS_ONE = -1.0
COMPLEX :: Z
Z = SQRT(MINUS_ONE)
The argument for the usual logarithms has to be positive, while the argument for CLOG
must be different from zero.

The modulus for the argument to ASIN and ACOS has to be at most 1. The result will be
within [-pi/2, pi/2] and [0, pi], respectively.

The function ATAN will return a value in [-pi/2, pi/2].

The function ATAN2(Y,X) = arctan(y,x) will return a value in (-pi, pi]. If Y is
positive the result will be positive. If Y is zero the result will be zero if X is positive, and
pi if X is negative. If Y is negative the result will be negative. If X is zero the result will
be plus or minus pi/2. Both X and Y are not permitted to be zero simultaneously. The
purpose of the function is to avoid division by zero.

A natural limitation for the mathematical functions is the limited accuracy and range,
which means that for example EXP can cause underflow or overflow at rather common
values of the argument. The trigonometric functions will get very low accuracy for large
arguments. These limitations are implementation dependent, and should be given in the
vendor's manual.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 74 of 109

Hardcopy Uncontrolled

Character string functions:

The functions below perform operations from and to character strings. Please note that
ACHAR works with the standard ASCII character set while CHAR works with the
representation in the computer you are using.

ACHAR(I) Returns the ASCII character which has number I
ADJUSTL(STRING) Adjusts to the left
ADJUSTR(STRING) Adjusts to the right
CHAR(I, kind) Returns the character that has the number I
IACHAR(C) Returns the ASCII number of the character C
ICHAR(C) Returns the number of character C

INDEX(STRING, SUBSTRING, back) Returns the starting position for a
 substring within a string. If BACK is true then you get the
 last starting position, in the other case, the first one.

LEN_TRIM(STRING) Returns the length of the string without the possibly
 trailing blanks.

 LGE(STRING_A, STRING_B)
 LGT(STRING-A, STRING_B)
 LLE(STRING_A, STRING_B)
 LLT(STRING_A, STRING_B)

The above routines compare two strings using sorting according to ASCII. If a string is
shorter than the other, blanks are added at the end of the short string. If a string contains a
character outside the ASCII character set, the result is implementation-dependent.

REPEAT(STRING, NCOPIES) Concatenates a character string NCOPIES
 times with itself.
SCAN(STRING, SET, back) Returns the position of the first occurrence
 of any character in the string SET in the
string
 STRING. If BACK is true, you will get
 the rightmost such character.
TRIM(STRING) Returns the character string STRING without
 trailing blanks.
VERIFY(STRING, SET, back) Returns the position of the first character
 in STRING which is not in SET. If BACK
 is TRUE, you get the last one!
 The result is zero if all characters are
 included!

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 75 of 109

Hardcopy Uncontrolled

Character string function for request:

LEN(STRING) returns the length of a character string. There does not have to be assigned
a value to the variable STRING.

Kind functions:

KIND(X)
SELECTED_INT_KIND(R)
SELECTED_REAL_KIND(p, r)

The first returns the kind of the actual argument, which can be of the type INTEGER,
REAL, COMPLEX, LOGICAL or CHARACTER. The argument X does not have to be assigned
any value. The second returns an integer kind with the requested number of digits, and
the third returns the kind for floating-point numbers with numerical precision at least P
digits and one decimal exponent range between -R and +R. The parameters P and R must
be scalar integers. At least one of P and R must be given.

The result of SELECTED_INT_KIND is an integer from zero and upward, if the desired
kind is not available you will get -1. If several implemented types satisfy the condition,
the one with the least decimal range is used. If there still are several types or kinds that
satisfy the condition, the one with the smallest kind number will be used.

The result of SELECTED_REAL_KIND is also an integer from zero and upward; if the
desired kind is not available, then -1 is returned if the precision is not available, -2 if the
exponent range is not available and -3 if no one of the requirements are available. If
several implemented types satisfy the condition, the one with the least decimal precision
is returned, and if there are several of them, the one with the least kind number is
returned.

Examples are given in chapter 2 of the main text. Examples of kinds in a few different
implementations (NAG and Cray) are given in Appendix 6.

http://www.nsc.liu.se/%7Eboein/f77to90/c2.html
http://www.nsc.liu.se/~boein/f77to90/nag.html#parameters
http://www.nsc.liu.se/~boein/f77to90/cray.html#parameters

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 76 of 109

Hardcopy Uncontrolled

Logical function:

LOGICAL(L, kind) converts between different kinds of logical variables. Logical
variables can be implemented in various ways, for example with a physical representation
occupying one bit (not recommended), one byte, one word or perhaps even one double
word. This difference is important if COMMON and EQUIVALENCE with logical variables
have been misused in a program in the traditional way of Fortran 66 programming.

Numerical inquiry functions:

These functions work with a certain model of integer and floating-point arithmetics, see
ISO (1991), section 13.7.1. The functions return properties of numbers of the same kind
as the variable X, which can be real and in some cases integer. Functions that return
properties of the actual argument X are available in section 12 below, floating-point
manipulation functions.
DIGITS(X) The number of significant digits
EPSILON(X) The least positive number that added
 to 1 returns a number that is greater than 1
HUGE(X) The largest positive number
MAXEXPONENT(X) The largest exponent
MINEXPONENT The smallest exponent
PRECISION(X) The decimal precision
RADIX(X) The base in the model
RANGE(X) The decimal exponent
TINY(X) The smallest positive number

Bit inquiry function:

BIT_SIZE(I) returns the number of bits according to the model of bit representation in
the standard ISO (1991), section 13.5.7. Normally we get the number of bits in a (whole)
word.

Bit manipulation functions:

The model for bit representation in the standard ISO (1991), section 13.5.7 is used.

BTEST(I, POS) .TRUE. if the position number POS of I is 1
IAND(I, J) logical addition of the bit characters in
 variables I and J

IBCLR(I, POS) puts a zero in the bit in position POS
IBITS(I, POS, LEN) uses LEN bits of the word I with

http://www.nsc.liu.se/~boein/f77to90/a5.html#section12#section12

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 77 of 109

Hardcopy Uncontrolled

 beginning in position POS, the additional bits
 are set to zero. It requires that
 POS + LEN <= BIT_SIZE(I)
IBSET(I, POS) puts the bit in position POS to 1
IEOR(I, J) performs logical exclusive OR
IOR(I, J) performs logical OR
ISHIFT(I, SHIFT) performs logical shift (to the right if the
number
 of steps SHIFT < 0 and to the left if SHIFT > 0).
 Positions that are vacated are set to zero.
ISHIFTC(I, SHIFT, size) performs logical shift a number of steps
 circularly to the right if SHIFT < 0,
 circularly to the left if SHIFT > 0. If SIZE
 is given, it is required that 0 < SIZE <=
 BIT_SIZE(I). Shift is only done for the bits
 that are in the SIZE rightmost positions, but
 for all positions if SIZE is not given.
NOT(I) returns a logical complement

Transfer functions:

TRANSFER(SOURCE, MOULD, size) specifies that the physical representation of the first
argument SOURCE shall be treated as if it had type and parameters as the second argument
MOULD, but without converting it. The purpose is to give a possibility to move a quantity
of a certain type via a routine that does not have exactly that data type.

Floating-point manipulation functions:

These functions work in a certain model of integer and floating-point arithmetic, see the
standard ISO(1991), section 13.7.1. The functions return numbers related to the actual
variable X of the type REAL. Functions that return properties for the numbers of the same
kind as the variable X are under section 8 (Numerical inquiry functions).

EXPONENT(X) exponent of the number
FRACTION(X) the fractional part of the number
NEAREST(X, S) returns the next representable number in
 the direction of the sign of S
RRSPACING(X) returns the inverted value of the distance
 between the two nearest possible numbers
SCALE(X, I) multiplies X by the base to the power I
SET_EXPONENT(X, I) returns the number that has the fractional
 part of X and the exponent I
SPACING(X) the distance between the two nearest
 possible numbers

http://www.nsc.liu.se/~boein/f77to90/a5.html#section8#section8

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 78 of 109

Hardcopy Uncontrolled

Vector- and matrix-multiplication functions:

DOT_PRODUCT(VECTOR_A, VECTOR_B) makes a scalar product of two vectors, which
must have the same length (same number of elements). Please note that if VECTOR_A is of
type COMPLEX the result is SUM(CONJG(VECTOR_A)*VECTOR_B).

MATMUL(MATRIX_A, MATRIX_B) makes the matrix product of two matrices, which must
be consistent, i.e. have the dimensions like (M, K) and (K, N). Used in chapter 11 of
the main text.

Array functions:

ALL(MASK, dim) returns a logical value that indicates whether all relations in MASK are
.TRUE., along only the desired dimension if the second argument is given.

ANY(MASK, dim) returns a logical value that indicates whether any relation in MASK is
.TRUE., along only the desired dimension if the second argument is given.

COUNT(MASK, dim) returns a numerical value that is the number of relations in MASK
who are .TRUE., along only the desired dimension if the second argument is given.

MAXVAL(ARRAY, dim, mask) returns the largest value in the array ARRAY, of those that
obey the relation in the third argument MASK if that one is given, along only the desired
dimension if the second argument DIM is given.

MINVAL(ARRAY, dim, mask) returns the smallest value in the array ARRAY, of those that
obey the relation in the third argument MASK if that one is given, along only the desired
dimension if the second argument DIM is given.

PRODUCT(ARRAY, dim, mask) returns the product of all the elements in the array ARRAY,
of those that obey the relation in the third argument MASK if that one is given, along only
the desired dimension if the second argument DIM is given.

SUM (ARRAY, dim, mask) returns the sum of all the elements in the array ARRAY, of
those that obey the relation in the third argument MASK if that one is given, along only the
desired dimension if the second argument DIM is given. An example is given in
Appendix 3, section 10.

http://www.nsc.liu.se/%7Eboein/f77to90/c11.html
http://www.nsc.liu.se/~boein/f77to90/a3.html#section10

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 79 of 109

Hardcopy Uncontrolled

Array inquiry functions:

See also Appendix 3, section 10.

ALLOCATED(ARRAY) is a logical function which indicates if the array is allocated.

LBOUND(ARRAY, dim) is a function which returns the lower dimension limit for the
ARRAY. If DIM (the dimension) is not given as an argument, you get an integer vector, if
DIM is included, you get the integer value with exactly that lower dimension limit, for
which you asked.

SHAPE(SOURCE) is a function which returns the shape of an array SOURCE as an integer
vector.

SIZE(ARRAY, dim) is a function which returns the number of elements in an array
ARRAY, if DIM is not given, and the number of elements in the relevant dimension if DIM
is included.

UBOUND(ARRAY, dim) is a function similar to LBOUND which returns the upper
dimensional limits.

Array construct functions:

MERGE(TSOURCE, FSOURCE, MASK) is a function which joins two arrays. It gives the
elements in TSOURCE if the condition in MASK is .TRUE. and FSOURCE if the condition in
MASK is .FALSE. The two fields TSOURCE and FSOURCE have to be of the same type and
the same shape. The result is also of this type and this shape. Also MASK must have the
same shape.

I here give a rather complete example of the use of MERGE which also uses RESHAPE
from the next section in order to build suitable test matrices.

Note that the two subroutines WRITE_ARRAY and WRITE_L_ARRAY are test routines to
write matrices which in the first case are of a REAL type, in the second case of a LOGICAL
type.

IMPLICIT NONE

http://www.nsc.liu.se/~boein/f77to90/a3.html#section10

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 80 of 109

Hardcopy Uncontrolled

INTERFACE
 SUBROUTINE WRITE_ARRAY (A)
 REAL :: A(:,:)
 END SUBROUTINE WRITE_ARRAY
 SUBROUTINE WRITE_L_ARRAY (A)
 LOGICAL :: A(:,:)
 END SUBROUTINE WRITE_L_ARRAY
END INTERFACE

REAL, DIMENSION(2,3) :: TSOURCE, FSOURCE, RESULT
LOGICAL, DIMENSION(2,3) :: MASK
TSOURCE = RESHAPE((/ 11, 21, 12, 22, 13, 23 /), &
 (/ 2, 3 /))
FSOURCE = RESHAPE((/ -11, -21, -12, -22, -13, -23 /), &
 (/ 2,3 /))
MASK = RESHAPE((/ .TRUE., .FALSE., .FALSE., .TRUE., &
 .FALSE., .FALSE. /), (/ 2,3 /))

RESULT = MERGE(TSOURCE, FSOURCE, MASK)
CALL WRITE_ARRAY(TSOURCE)
CALL WRITE_ARRAY(FSOURCE)
CALL WRITE_L_ARRAY(MASK)
CALL WRITE_ARRAY(RESULT)
END

SUBROUTINE WRITE_ARRAY (A)
REAL :: A(:,:)
DO I = LBOUND(A,1), UBOUND(A,1)
 WRITE(*,*) (A(I, J), J = LBOUND(A,2), UBOUND(A,2))
END DO
RETURN
END SUBROUTINE WRITE_ARRAY

SUBROUTINE WRITE_L_ARRAY (A)
LOGICAL :: A(:,:)
DO I = LBOUND(A,1), UBOUND(A,1)
 WRITE(*,"(8L12)") (A(I, J), J= LBOUND(A,2), UBOUND(A,2))
END DO
RETURN
END SUBROUTINE WRITE_L_ARRAY
The following output is obtained

 11.0000000 12.0000000 13.0000000
 21.0000000 22.0000000 23.0000000

 -11.0000000 -12.0000000 -13.0000000

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 81 of 109

Hardcopy Uncontrolled

 -21.0000000 -22.0000000 -23.0000000

 T F F
 F T F

 11.0000000 -12.0000000 -13.0000000
 -21.0000000 22.0000000 -23.0000000

PACK(ARRAY, MASK, vector) packs an array to a vector with the control of MASK. The
shape of the logical array MASK has to agree with the one for ARRAY or MASK must be a
scalar. If VECTOR is included, it has to be an array of rank 1 (i.e. a vector) with at least as
many elements as those that are true in MASK and have the same type as ARRAY. If MASK
is a scalar with the value .TRUE. then VECTOR instead must have the same number of
elements as ARRAY.

The result is a vector with as many elements as those in ARRAY that obey the conditions if
VECTOR is not included (i.e. all elements if MASK is a scalar with value .TRUE.). In the
other case the number of elements of the result will be as many as in VECTOR. The values
will be the approved ones, i.e. the values which fulfill the condition, and will be in the
ordinary Fortran order. If VECTOR is included and the number of its elements exceeds the
number of approved values, the lacking values required for the result are taken from the
corresponding locations in VECTOR.

The following example is based on the modification of the one for MERGE , but I give
now only the results.

 ARRAY
 11.0000000 12.0000000 13.0000000
 21.0000000 22.0000000 23.0000000

 VECTOR
 -11.0000000
 -21.0000000
 -12.0000000
 -22.0000000
 -13.0000000
 -23.0000000

 MASK
 T F F
 F T F

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 82 of 109

Hardcopy Uncontrolled

 PACK(ARRAY, MASK)
 11.0000000
 22.0000000

 PACK(ARRAY, MASK, VECTOR)
 11.0000000
 22.0000000
 -12.0000000
 -22.0000000
 -13.0000000
 -23.0000000

SPREAD(SOURCE, DIM, NCOPIES) returns an array of the same type as the argument
SOURCE with the rank increased by one. The parameters DIM and NCOPIES are integer. If
NCOPIES is negative the value zero is used instead. If SOURCE is a scalar, then SPREAD
becomes a vector with NCOPIES elements that all have the same value as SOURCE. The
parameter DIM indicates which index is to be extended. It has to be within the range 1
and 1+(rank of SOURCE), if SOURCE is a scalar then DIM has to be one. The parameter
NCOPIES is the number of elements in the new dimensions. Additional discussion is
given in the solution to exercise (11.1).

UNPACK(VECTOR, MASK, ARRAY) scatters a vector to an array under control of MASK. The
shape of the logical array MASK has to agree with the one for ARRAY. The array VECTOR
has to have the rank 1 (i.e. it is a vector) with at least as many elements as those that are
true in MASK, and also has to have the same type as ARRAY. If ARRAY is given as a scalar
then it is considered to be an array with the same shape as MASK and the same scalar
elements everywhere.

The result will be an array with the same shape as MASK and the same type as VECTOR.
The values will be those from VECTOR that are accepted (i.e. those fulfilling the condition
in MASK), taken in the ordinary Fortran order, while in the remaining positions in ARRAY
the old values are kept.

ARRAY reshape function.

RESHAPE(SOURCE, SHAPE, pad, order) constructs an array with a specified shape
SHAPE starting from the elements in a given array SOURCE. If PAD is not included then the
size of SOURCE has to be at least PRODUCT (SHAPE). If PAD is included it has to have the
same type as SOURCE. If ORDER is included, it has to be an INTEGER array with the same

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 83 of 109

Hardcopy Uncontrolled

shape as SHAPE and the values must be a permutation of (1,2,3,...,N), where N is the
number of elements in SHAPE , it has to be less than, or equal to 7.

The result has of course a shape SHAPE and the elements are those in SOURCE, possibly
complemented with PAD. The different dimensions have been permuted at the assignment
of the elements if ORDER was included, but without influencing the shape of the result.

A few simple examples are given in the previous and the next section and also in
Appendix 3, section 9. A more complicated example, illustrating also the optional
arguments, follows.

! PROGRAM TO TEST THE OPTIONAL ARGUMENTS TO RESHAPE
 INTERFACE
 SUBROUTINE WRITE_MATRIX(A)
 REAL, DIMENSION(:,:) :: A
 END SUBROUTINE WRITE_MATRIX
 END INTERFACE

 REAL, DIMENSION (1:9) :: B = (/ 11, 12, 13, 14, 15, 16, 17, 18, 19 /)
 REAL, DIMENSION (1:3, 1:3) :: C, D, E
 REAL, DIMENSION (1:4, 1:4) :: F, G, H

 INTEGER, DIMENSION (1:2) :: ORDER1 = (/ 1, 2 /)
 INTEGER, DIMENSION (1:2) :: ORDER2 = (/ 2, 1 /)
 REAL, DIMENSION (1:16) :: PAD1 = (/ -1, -2, -3, -4, -5, -6, -7, -8,
&
 & -9, -10, -11, -12, -13, -14, -15,
-16 /)

 C = RESHAPE(B, (/ 3, 3 /))
 CALL WRITE_MATRIX(C)

 D = RESHAPE(B, (/ 3, 3 /), ORDER = ORDER1)
 CALL WRITE_MATRIX(D)

 E = RESHAPE(B, (/ 3, 3 /), ORDER = ORDER2)
 CALL WRITE_MATRIX(E)

 F = RESHAPE(B, (/ 4, 4 /), PAD = PAD1)
 CALL WRITE_MATRIX(F)

 G = RESHAPE(B, (/ 4, 4 /), PAD = PAD1, ORDER = ORDER1)
 CALL WRITE_MATRIX(G)

http://www.nsc.liu.se/~boein/f77to90/a3.html#section9

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 84 of 109

Hardcopy Uncontrolled

 H = RESHAPE(B, (/ 4, 4 /), PAD = PAD1, ORDER = ORDER2)
 CALL WRITE_MATRIX(H)

 END

 SUBROUTINE WRITE_MATRIX(A)
 REAL, DIMENSION(:,:) :: A
 WRITE(*,*)
 DO I = LBOUND(A,1), UBOUND(A,1)
 WRITE(*,*) (A(I,J), J = LBOUND(A,2), UBOUND(A,2))
 END DO
 END SUBROUTINE WRITE_MATRIX

The output from the above program is as follows.

 11.0000000 14.0000000 17.0000000
 12.0000000 15.0000000 18.0000000
 13.0000000 16.0000000 19.0000000

 11.0000000 14.0000000 17.0000000
 12.0000000 15.0000000 18.0000000
 13.0000000 16.0000000 19.0000000

 11.0000000 12.0000000 13.0000000
 14.0000000 15.0000000 16.0000000
 17.0000000 18.0000000 19.0000000

 11.0000000 15.0000000 19.0000000 -4.0000000
 12.0000000 16.0000000 -1.0000000 -5.0000000
 13.0000000 17.0000000 -2.0000000 -6.0000000
 14.0000000 18.0000000 -3.0000000 -7.0000000

 11.0000000 15.0000000 19.0000000 -4.0000000
 12.0000000 16.0000000 -1.0000000 -5.0000000
 13.0000000 17.0000000 -2.0000000 -6.0000000
 14.0000000 18.0000000 -3.0000000 -7.0000000

 11.0000000 12.0000000 13.0000000 14.0000000
 15.0000000 16.0000000 17.0000000 18.0000000
 19.0000000 -1.0000000 -2.0000000 -3.0000000
 -4.0000000 -5.0000000 -6.0000000 -7.0000000

ARRAY manipulation functions.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 85 of 109

Hardcopy Uncontrolled

The shift functions return the shape of an array unchanged, but move the elements. They
are rather difficult to explain so I recommend to study also the standard ISO (1991).

CSHIFT(ARRAY, SHIFT, dim) performs circular shift by SHIFT positions to the left if
SHIFT is positive and to the right if it is negative. If ARRAY is a vector the shift is being
done in a natural way, if it is an array of a higher rank then the shift is in all sections
along the dimension DIM. If DIM is missing it is considered to be 1, in other cases it has to
be a scalar integer number between 1 and n (where n equals the rank of ARRAY). The
argument SHIFT is a scalar integer or an integer array of rank n-1 and the same shape as
the ARRAY, except along the dimension DIM (which is removed because of the lower
rank). Different sections can therefore be shifted in various directions and with various
numbers of positions.

EOSHIFT(ARRAY, SHIFT, boundary, dim) performs shift to the left if SHIFT is
positive and to the right if it is negative. Instead of the elements shifted out new elements
are taken from BOUNDARY. If ARRAY is a vector the shift is being done in a natural way, if
it is an array of a higher rank, the shift on all sections is along the dimension DIM. If DIM
is missing, it is considered to be 1, in other cases it has to have a scalar integer value
between 1 and n (where n equals the rank of ARRAY). The argument SHIFT is a scalar
integer if ARRAY has rank 1, in the other case it can be a scalar integer or an integer array
of rank n-1 and with the same shape as the array ARRAY except along the dimension DIM
(which is removed because of the lower rank).

The corresponding applies to BOUNDARY which has to have the same type as the ARRAY. If
the parameter BOUNDARY is missing you have the choice of values zero, .FALSE. or
blank being used, depending on the data type. Different sections can thus be shifted in
various directions and with various numbers of positions. A simple example of the above
two functions for the vector case follows, both the program and the output.

REAL, DIMENSION(1:6) :: A = (/ 11.0, 12.0, 13.0, 14.0, &
 15.0, 16.0 /)
REAL, DIMENSION(1:6) :: X, Y
WRITE(*,10) A
X = CSHIFT (A, SHIFT = 2)
WRITE(*,10) X
Y = CSHIFT (A, SHIFT = -2)
WRITE(*,10) Y
X = EOSHIFT (A, SHIFT = 2)
WRITE(*,10) X
Y = EOSHIFT (A, SHIFT = -2)

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 86 of 109

Hardcopy Uncontrolled

WRITE(*,10) Y
10 FORMAT(1X,6F6.1)
END

 11.0 12.0 13.0 14.0 15.0 16.0
 13.0 14.0 15.0 16.0 11.0 12.0
 15.0 16.0 11.0 12.0 13.0 14.0
 13.0 14.0 15.0 16.0 0.0 0.0
 0.0 0.0 11.0 12.0 13.0 14.0

A simple example of the above two functions in the matrix case follows. I have here used
RESHAPE in order to create a suitable matrix to start work with. The program is not
reproduced here, only the main statements.

B = (/ 11.0, 12.0, 13.0, 14.0, 15.0, 16.0 /)

 11.0 12.0 13.0 Z = RESHAPE(B, (/3,3/))
 14.0 15.0 16.0
 17.0 18.0 19.0

 17.0 18.0 19.0 X = CSHIFT (Z, SHIFT = 2)
 11.0 12.0 13.0
 14.0 15.0 16.0

 13.0 11.0 12.0 X = CSHIFT (Z, SHIFT = 2, DIM = 2)
 16.0 14.0 15.0
 19.0 17.0 18.0

 14.0 15.0 16.0 X = CSHIFT (Z, SHIFT = -2)
 17.0 18.0 19.0
 11.0 12.0 13.0

 17.0 18.0 19.0 X = EOSHIFT (Z, SHIFT = 2)
 0.0 0.0 0.0
 0.0 0.0 0.0

 13.0 0.0 0.0 X = EOSHIFT (Z, SHIFT = 2, DIM = 2)
 16.0 0.0 0.0
 19.0 0.0 0.0

 0.0 0.0 0.0 X = EOSHIFT (Z, SHIFT = -2)
 0.0 0.0 0.0
 11.0 12.0 13.0

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 87 of 109

Hardcopy Uncontrolled

TRANSPOSE (MATRIX) transposes a matrix, which is an array of rank 2. It replaces the
rows and columns in the matrix.

Array location functions:

MAXLOC(ARRAY, mask) returns the position of the greatest element in the array ARRAY, if
MASK is included only for those which fulfill the conditions in MASK. The result is an
integer vector! It is used in the solution of exercise (11.1).

MINLOC(ARRAY, mask) returns the position of the smallest element in the array ARRAY ,
if MASK is included only for those which fulfill the conditions in MASK. The result is an
integer vector!

Pointer inquiry functions:

ASSOCIATED(POINTER, target) is logical function that indicates if the pointer POINTER
is associated with some target, and if a specific TARGET is included it indicates if it is
associated with exactly that target. If both POINTER and TARGET are pointers, the result is
.TRUE. only if both are associated with the same target. I refer the reader to chapter 12
of the main text, Pointers.

http://www.nsc.liu.se/~boein/f77to90/c11.html#exercise
http://www.nsc.liu.se/%7Eboein/f77to90/c12.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 88 of 109

Hardcopy Uncontrolled

21. ANSWERS AND COMMENTS TO THE USER EXERCISES
It is assumed that when nothing else is stated, the implicit rules about integers and
floating-point numbers are used, i.e. IMPLICIT NONE has not been used. In those cases
where runs on computers shall be done, I refer the reader to Appendix 6, NAG's Fortran
90, for MS-DOS and UNIX computers. For IBM PC there is a very complete
documentation in the booklet "NAGware FTN90 compiler". In all other cases please try
the manuals from the computer or compiler manufacturer.

(1.1) If the compilation or the execution run fails it is probably an error already in the
Fortran 77 program, or you have used some extension to standard Fortran 77.

(1.2) If this fails it probably depends on that some incorrect commands were interpreted
as variables when using fixed form, but now when blanks are significant these syntax
errors are discovered. Also note that with fix form text in positions 73 to 80 was
considered to be a comment.

(1.3) Fortran 77 does not give any error either on the compilation or execution.
Compilation in Fortran 90 fixed form may give a warning from the compiler that the
variable ZENDIF is used without being assigned any value. The program is interpreted in
such a way that THENZ, ELSEY, and ZENDIF becomes ordinary floating-point variables.
Compilation in Fortran 90 free form, however, gives a number of syntax errors. The
correct version of the program shall contain three extra carriage returns as below.

 LOGICAL L
 L = .FALSE.
 IF (L) THEN
 Z = 1.0
 ELSE
 Y=Z
 END IF
 END

REMARK: Also certain Fortran 77 compilers give a warning about the variable ZENDIF,
which has not been assigned any value.

http://www.nsc.liu.se/~boein/f77to90/nag.html#compilation
http://www.nsc.liu.se/~boein/f77to90/nag.html#compilation

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 89 of 109

Hardcopy Uncontrolled

(2.1) Using fixed form it means LOGICAL L, i.e. the variable L is specified as logical.
Using free form you will get a syntax error.

(2.2) REAL, PARAMETER :: K = 0.75

(2.3) INTEGER, DIMENSION(3,4) :: PELLE

(2.4)

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15,99)

(2.5) REAL (KIND=DP) :: E, PI

(2.6)

REAL (KIND=DP), PARAMETER :: E = 2.718281828459045_DP, PI =
3.141592653589793_DP

(2.7) No, it is not correct since a comma is missing between REAL and DIMENSION. In the
form it has been written, the statement is interpreted as a specification of the old type of
the floating-point matrix DIMENSION (with the specified dimensions), and an implicit
specification of the new type of a scalar floating-point number AA. Formally, it is a
correct specification. The variable name DIMENSION is permitted in Fortran 90, just as
the variable name REAL is permitted in both Fortran 77 and Fortran 90, but both should
be avoided. The variable name DIMENSION is of course too long in standard Fortran 77.

(2.8) Yes, it is correct, but it is not suitable since it kills the intrinsic function REAL for
explicit conversion of a variable of another type to the type REAL. It is however nothing
that prevents you from using a variable of the type REAL with the name REAL, since
Fortran does not have reserved words.

(2.9) No, it is not correct, at COMMON you do not use the double colon at the specification.
The correct specification is the old familiar one: COMMON A

(3.1) Variables A and B are assigned the specified values, but the whole rest of the line
becomes a comment.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 90 of 109

Hardcopy Uncontrolled

(3.2) No, on the second row the blank space after the ampersand (&) is not permitted. It
interrupts the identifier ATAN into two identifiers AT and AN. If the blank is removed the
two lines become correct. Free form is assumed, since & is not a continuation character
in fixed form.

(4.1) The statement is not permitted, but might not be detected until execution time. You
can instead write

 WRITE(*,*) ' HI '
or
 WRITE(*,'(A)') ' HI '
which both write out the text HI on the standard unit for output. If you wish to give the
text, which you wish to print, directly where the output format is to be given, this can be
done with either apostrophe editing as
 WRITE(*, "(' HI ')")
or with the obsolescent Hollerith editing
 WRITE(*, "(4H HI)")

(4.2) They write large and small numbers with an integer digit, six decimals and an
exponent, while numbers in between are written in the natural way. In this case we thus
get

 1.000000E-03
 1.00000
 1.000000E+06
Numbers from 0.1 to 100 000 are written in the natural way and with six significant
digits.

(6.1)

 SELECT CASE (N)
 CASE(:-1)
 ! Case 1
 CASE(0)
 ! Case 2
 CASE(3,5,7,11,13)
 ! Case 3
 END SELECT
(6.2)
 SUMMA = 0.0
 DO I = 1, 100

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 91 of 109

Hardcopy Uncontrolled

 IF (X(I) == 0.0) EXIT
 IF (X(I) < 0.0) CYCLE
 SUMMA = SUMMA + SQRT (X(I))
 END DO

The English word sum is not suited as the variable name in this case, since this is also an
intrinsic function. Summa is the Swedish word for sum.

(7.1) Use the functions MIN and MAX to find the smallest and largest values of all the
combinations

A%LOWER * B%LOWER, A%LOWER * B%UPPER, A%UPPER * B%LOWER, A%UPPER *
B%UPPER

at multiplication and the corresponding at division.

(7.2) Test if B%LOWER <= 0 <= B%UPPER in which case an error message shall be given.

(7.3) Since we do not have direct access to machine arithmetics (i.e. commands of the
type round down or round up) you can get a reasonable simulation through subtraction
and addition with the rounding constant. In principle the effect of rounding is then
doubled.

(8.1)

 SUBROUTINE SOLVE(F, A, B, TOL, EST, RESULT)
 REAL, EXTERNAL :: F
 REAL, OPTIONAL, INTENT (IN) :: A
 REAL, OPTIONAL, INTENT (IN) :: B
 REAL, OPTIONAL, INTENT (IN) :: TOL
 REAL, INTENT(OUT), OPTIONAL :: EST
 REAL, INTENT(OUT) :: RESULT
 IF (PRESENT(A)) THEN
 TEMP_A = A
 ELSE
 TEMP_A = 0.0
 END IF
 IF (PRESENT(B)) THEN
 TEMP_B = B
 ELSE
 TEMP_B = 1.0
 END IF

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 92 of 109

Hardcopy Uncontrolled

 IF (PRESENT(TOL)) THEN
 TEMP_TOL = TOL
 ELSE
 TEMP_TOL = 0.001
 END IF

! Here the real calculation should be, but it is here replaced
! with the simplest possible approximation, namely the middle
! point approximation without an error estimate.

 RESULT = (TEMP_B - TEMP_A)&
 * F(0.5*(TEMP_A+TEMP_B))
 IF (PRESENT(EST)) EST = TEMP_TOL

 RETURN
 END SUBROUTINE SOLVE

The very simple integral calculation above can be replaced by the adaptive quadrature in
exercise (9.2).

(8.2)

 INTERFACE
 SUBROUTINE SOLVE (F, A, B, TOL, EST, RESULT)
 REAL, EXTERNAL :: F
 REAL, INTENT(IN), OPTIONAL :: A
 REAL, INTENT(IN), OPTIONAL :: B
 REAL, INTENT(IN), OPTIONAL :: TOL
 REAL, INTENT(OUT), OPTIONAL :: EST
 REAL, INTENT(OUT) :: RESULT
 END SUBROUTINE SOLVE
 END INTERFACE

(9.1)

 RECURSIVE FUNCTION TRIBONACCI (N) RESULT (T_RESULT)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: N
 INTEGER :: T_RESULT
 IF (N <= 3) THEN
 T_RESULT = 1
 ELSE
 T_RESULT = TRIBONACCI(N-1)+ &
 TRIBONACCI(N-2) + TRIBONACCI(N-3)
 END IF

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 93 of 109

Hardcopy Uncontrolled

 END FUNCTION TRIBONACCI

The calling program or main program can be written

 IMPLICIT NONE
 INTEGER :: N, M, TRIBONACCI
 N = 1
 DO
 IF (N <= 0) EXIT
 WRITE (*,*) ' GIVE N '
 READ(*,*) N
 M = TRIBONACCI (N)
 WRITE(*,*) N, M
 END DO
 END

and gives the result TRIBONACCI(15) = 2209.

(9.2) The file quad.f90 below contains a function for adaptive numerical quadrature
(integration). We use the trapezoidal formula, divide the step size with two, and perform
Richardson extrapolation. The method is therefore equivalent to the Simpson formula. As
an error estimate we use the model in Linköping, where the error is assumed less than the
modulus of the difference between the two not extrapolated values. If the estimated error
is too large, the routine is applied once again on each of the two subintervals, in that case
the permitted error in each one of the subintervals becomes half of the error previously
used.

RECURSIVE FUNCTION ADAPTIVE_QUAD (F, A, B, TOL, ABS_ERROR) &
 RESULT (RESULT)
IMPLICIT NONE

 INTERFACE
 FUNCTION F(X) RESULT (FUNCTION_VALUE)
 REAL, INTENT(IN) :: X
 REAL :: FUNCTION_VALUE
 END FUNCTION F
 END INTERFACE

 REAL, INTENT(IN) :: A, B, TOL
 REAL, INTENT(OUT) :: ABS_ERROR
 REAL :: RESULT

 REAL :: STEP, MIDDLE_POINT

http://www.nsc.liu.se/%7Eboein/f77to90/code/quad.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 94 of 109

Hardcopy Uncontrolled

 REAL :: ONE_TRAPEZOIDAL_AREA,
TWO_TRAPEZOIDAL_AREAS
 REAL :: LEFT_AREA, RIGHT_AREA
 REAL :: DIFF, ABS_ERROR_L, ABS_ERROR_R

 STEP = B-A
 MIDDLE_POINT= 0.5 * (A+B)

 ONE_TRAPEZOIDAL_AREA = STEP * 0.5 * (F(A)+ F(B))
 TWO_TRAPEZOIDAL_AREAS = STEP * 0.25 * (F(A) + F(MIDDLE_POINT))+&
 STEP * 0.25 * (F(MIDDLE_POINT) + F(B))
 DIFF = TWO_TRAPEZOIDAL_AREAS - ONE_TRAPEZOIDAL_AREA

 IF (ABS (DIFF) < TOL) THEN
 RESULT = TWO_TRAPEZOIDAL_AREAS + DIFF/3.0
 ABS_ERROR = ABS(DIFF)
 ELSE
 LEFT_AREA = ADAPTIVE_QUAD (F, A, MIDDLE_POINT, &
 0.5*TOL, ABS_ERROR_L)
 RIGHT_AREA = ADAPTIVE_QUAD (F, MIDDLE_POINT, B, &
 0.5*TOL, ABS_ERROR_R)
 RESULT = LEFT_AREA + RIGHT_AREA
 ABS_ERROR = ABS_ERROR_L + ABS_ERROR_R
 END IF
END FUNCTION ADAPTIVE_QUAD

The file test_qua.f90 for the test of the above routine for adaptive numerical
quadrature requires an INTERFACE both for the function F and for the quadrature routine
ADAPTIVE_QUAD. Note that for the latter you must specify the function both REAL and
EXTERNAL and that routine follows.

PROGRAM TEST_ADAPTIVE_QUAD
IMPLICIT NONE
 INTERFACE
 FUNCTION F(X) RESULT (FUNCTION_VALUE)
 REAL, INTENT(IN) :: X
 REAL :: FUNCTION_VALUE
 END FUNCTION F
 END INTERFACE
 INTERFACE
 RECURSIVE FUNCTION ADAPTIVE_QUAD &
 (F, A, B, TOL, ABS_ERROR) RESULT (RESULT)
 REAL, EXTERNAL :: F
 REAL, INTENT (IN) :: A, B, TOL
 REAL, INTENT (OUT) :: ABS_ERROR

http://www.nsc.liu.se/%7Eboein/f77to90/code/test_qua.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 95 of 109

Hardcopy Uncontrolled

 REAL :: RESULT
 END FUNCTION ADAPTIVE_QUAD
 END INTERFACE
 REAL :: A, B, TOL
 REAL :: ABS_ERROR
 REAL :: RESULT, PI
 INTEGER :: I

 PI = 4.0 * ATAN(1.0)
 A= -5.0
 B = +5.0
 TOL =0.1

 DO I = 1, 5
 TOL = TOL/10.0
 RESULT = ADAPTIVE_QUAD (F, A, B, TOL, ABS_ERROR)
 WRITE(*,*)
 WRITE(*,"(A, F15.10, A, F15.10)") &
 "The integral is approximately ", &
 RESULT, "with approximate error estimate ", &
 ABS_ERROR
 WRITE(*,"(A, F15.10, A, F15.10)") &
 "The integral is more exactly ", &
 SQRT(PI), " with real error ", &
 RESULT - SQRT(PI)
 END DO
END PROGRAM TEST_ADAPTIVE_QUAD

We are of course not permitted to forget the integrand, which we prefer to put in the same
file as the main program. Declarations are of the new type especially with respect to that
the result is returned in a special variable.

 FUNCTION F(X) RESULT (FUNCTION_VALUE)
 IMPLICIT NONE
 REAL, INTENT(IN) :: X
 REAL :: FUNCTION_VALUE
 FUNCTION_VALUE = EXP(-X**2)
 END FUNCTION F
Now it is time to do the test on the Sun computer. I have adapted the output a little in
order to get it more compact. The error estimated is rather realistic, at least with this
integrand, which is the unnormalized error function.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 96 of 109

Hardcopy Uncontrolled

If you wish to test the program yourself the source code is directly available in two files.
The first test_qua.f90 contains the main program and the function f(x), while the
second quad.f90 contains the recursive function.

% f90 test_qua.f90 quad.f90
test_quad.f90:
quad.f90:
% a.out
The integral is 1.7733453512 with error estimate 0.0049186843
 with real error 0.0008914471
The integral is 1.7724548578 with error estimate 0.0003375171
 with real error 0.0000009537
The integral is 1.7724541426 with error estimate 0.0000356939
 with real error 0.0000002384
The integral is 1.7724540234 with error estimate 0.0000046571
 with real error 0.0000001192
The integral is 1.7724539042 with error estimate 0.0000004876
 with real error 0.0000000000
%

In the specification above of the RECURSIVE FUNCTION ADAPTIVE_QUAD you may
replace the line

 REAL, EXTERNAL :: F

with a complete repetition of the interface for the integrand function,

 INTERFACE
 FUNCTION F(X) RESULT (FUNCTION_VALUE)
 REAL, INTENT(IN) :: X
 REAL :: FUNCTION_VALUE
 END FUNCTION F
 END INTERFACE

With this method an explicit EXTERNAL statement is no longer required, but you get a
nested INTERFACE.

Remark.

The program above was written to illustrate the use of recursive functions and adaptive
techniques, and was therefore not optimized. The main problem is that the function f(x) is
evaluated three (or even four) times at each call, once for each of the present boundary

http://www.nsc.liu.se/%7Eboein/f77to90/code/test_qua.f90
http://www.nsc.liu.se/%7Eboein/f77to90/code/quad.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 97 of 109

Hardcopy Uncontrolled

points and twice for the middle point. Please note that the function values at each of the
boundary points were evaluated already in the previous step.

Thus the obvious change is to include the boundary function values in the list of
arguments, and to evaluate the middle point function value only once. In this way the
execution time is reduced by a factor of about three.

The revised program is also directly available in two files. The first test_qu2.f90
contains the main program and the function f(x), while the second quad2.f90 contains
the recursive function.

(11.1)

SUBROUTINE SOLVE_SYSTEM_OF_LINEAR_EQNS(A, X, B, ERROR)
IMPLICIT NONE
! Array specifications
REAL, DIMENSION (:, :), INTENT (IN) :: A
REAL, DIMENSION (:), INTENT (OUT):: X
REAL, DIMENSION (:), INTENT (IN) :: B
LOGICAL, INTENT (OUT) :: ERROR

! The working area M is A expanded with B
REAL, DIMENSION (SIZE (B), SIZE (B) + 1) :: M
INTEGER, DIMENSION (1) :: MAX_LOC
REAL, DIMENSION (SIZE (B) + 1) :: TEMP_ROW
INTEGER :: N, K, I

! Initializing M
N = SIZE (B)
M (1:N, 1:N) = A
M (1:N, N+1) = B

! Triangularization
ERROR = .FALSE.
TRIANGULARIZATION_LOOP: DO K = 1, N - 1
 ! Pivoting
 MAX_LOC = MAXLOC (ABS (M (K:N, K)))
 IF (MAX_LOC(1) /= 1) THEN
 TEMP_ROW (K:N+1) =M (K, K:N+1)
 M (K, K:N+1)= M (K-1+MAX_LOC(1), K:N+1)
 M (K-1+MAX_LOC(1), K:N+1) = TEMP_ROW(K:N+1)
 END IF

 IF (M (K, K) == 0) THEN

http://www.nsc.liu.se/%7Eboein/f77to90/code/test_qu2.f90
http://www.nsc.liu.se/%7Eboein/f77to90/code/quad2.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 98 of 109

Hardcopy Uncontrolled

 ERROR = .TRUE. ! Singular matrix A
 EXIT TRIANGULARIZATION_LOOP
 ELSE
 TEMP_ROW (K+1:N) = M (K+1:N, K) / M (K, K)
 DO I = K+1, N
 M (I, K+1:N+1) = M (I, K+1:N+1) - &
 TEMP_ROW (I) * M (K, K+1:N+1)
 END DO
 M (K+1:N, K) =0 ! These values are not used
 END IF
END DO TRIANGULARIZATION_LOOP

IF (M(N, N) == 0) ERROR = .TRUE. ! Singular matrix A

! Re-substitution
IF (ERROR) THEN
 X = 0.0
ELSE
 DO K = N, 1, -1
 X (K) = (M (K, N+1) - &
 SUM (M (K, K+1:N)* X (K+1:N))) / M (K, K)
 END DO
END IF
END SUBROUTINE SOLVE_SYSTEM_OF_LINEAR_EQNS

The input matrix A and the vectors B and X are specified as assumed-shape arrays, i.e.
type, rank and name are given here, while the extent is given in the calling program unit,
using an explicit interface.

Please note that the intrinsic function MAXLOC as a result gives an integer vector, with the
same number of elements as the rank (number of dimensions) of the argument. In our
case the argument is a vector and therefore the rank is 1 and MAXLOC is a vector with only
1 element. This is the reason why the local variable MAX_LOC has been declared as a
vector with 1 element. If you declare MAX_LOC as a scalar you get a compilation error.
The value of course is the index for the largest element (the first of the largest if there are
several of these).

Also note that the numbering starts with 1, in spite of that we are looking at the vector
with the elements running from K to N. I prefer not to perform the pivoting process (that
is the actual exchange of rows) in the special case that the routine finds that the rows
already are correctly located, i.e. when MAX_LOC(1) is 1.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 99 of 109

Hardcopy Uncontrolled

The calculation is interrupted as soon as a singularity is found. Please note that this can
occur so late that it is not noted inside the loop, thus the extra check immediately after the
loop, for the final element M(N, N).

At the pivoting process we use the vector TEMP_ROW first at the exchange of lines, then
also to store the multipliers in the Gauss elimination.

In this first version we only use array sections of vector type at the calculations, but we
will now introduce the function SPREAD in order to use array sections of matrix type, and
in this case the explicit inner loop disappears (DO I = K+1, N) .

The function SPREAD(SOURCE, DIM, NCOPIES) returns an array of the same type as the
argument SOURCE, but with the rank increased by one. The parameters DIM and NCOPIES
are integers. If NCOPIES is negative the value zero is used instead. If SOURCE is a scalar,
SPREAD becomes a vector with NCOPIES elements which all have the same value as
SOURCE. The parameter DIM gives which index is to be increased. That must be a value
between 1 and 1+(rank of SOURCE). If SOURCE is a scalar, then DIM has to be 1. The
parameter NCOPIES gives the total number of elements in the new dimension, thus not
only the number of new copies but also the original.

If the variable A corresponds to the following array
(/ 2, 3, 4 /) we get

SPREAD (A, DIM=1, NCOPIES=3) SPREAD (A, DIM=2, NCOPIES=3)

 2 3 4 2 2 2
 2 3 4 3 3 3
 2 3 4 4 4 4

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 100 of 109

Hardcopy Uncontrolled

I now use array sections of matrix type through replacing the inner loop,

 DO I = K+1, N
 M (I, K+1:N+1) = M (I, K+1:N+1) - &
 TEMP_ROW (I) * M (K, K+1:N+1)
 END DO

with

 M (K+1:N, K+1:N+1) = M (K+1:N, K+1:N+1) &
 - SPREAD(TEMP_ROW (K+1:N), 2, N-K+1) &
 * SPREAD(M (K, K+1:N+1), 1, N-K)

The reason that we have to make it almost into a muddle with the function SPREAD is that
in the explicit loop (at a fixed value of I) the variable TEMP_ROW(I) is a scalar constant,
which is multiplied by N-K+1 different elements of the matrix M, or a vector of M. On the
other hand, the same vector of M is used for all N-K values of I. The rearrangement of
the matrices has to be done to obtain two matrices with the same shape as the submatrix
M(K+1:N, K+1:N+1), that is N-K rows and N-K+1 columns, since all calculations on
arrays in Fortran 90 are element by element.

Unfortunately it is rather difficult to get the parameters to the intrinsic function SPREAD
absolutely correct. In order to get them correct you can utilize the functions LBOUND and
UBOUND in order to obtain the lower and upper dimension limits, and you can also write
the new array with the following statement

 WRITE(*,*) SPREAD (SOURCE, DIM, NCOPIES)

Please note that the output is done column by column (i.e. the first index is varying
fastest, as it is usual in Fortran). You can use the lower and upper dimension limits for
more explicit output statements that give an output which is better suited to how the array
looks. However, here you have to first make an assignment to an array, specified in the
usual way with the correct shape, in order to use the indices in the ordinary way. Please
remember that the indices in a construct like SPREAD automatically go from one as the
lower limit. Even when you give something like A(4:7) as SOURCE then the result will
have the index going or ranging from 1 to 4.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 101 of 109

Hardcopy Uncontrolled

The DO-loop

 DO K = N, 1, -1
 X (K) = (M (K, N+1) - &
 SUM (M (K, K+1:N)* X (K+1:N))) / M (K, K)
 END DO

may cause a signal on out-of-bound index from an empty sum when K = N and index
checking (not standard) is on. With the following slight change this potential problem is
avoided.

 X (N) = M (N, N+1) / M (N, N)
 DO K = N-1, 1, -1
 X (K) = (M (K, N+1) - &
 SUM (M (K, K+1:N)* X (K+1:N))) / M (K, K)
 END DO

This version is now included in the single precision and double precision routines stored
as Fortran files.

(12.1) We assume that the vector has a fixed dimension, and we perform a control output
of a few of the values.

 REAL, TARGET, DIMENSION(1:100) :: VECTOR
 REAL, POINTER, DIMENSION(:) :: ODD, EVEN

 ODD => VECTOR(1:100:2)
 EVEN => VECTOR(2:100:2)

 EVEN = 13
 ODD = 17

 WRITE(*,*) VECTOR(11), VECTOR(64)

 END

(12.2) We assume that the given vector has a fixed dimension.
 REAL, TARGET, DIMENSION(1:10) :: VECTOR
 REAL, POINTER, DIMENSION(:) :: POINTER1
 REAL, POINTER :: POINTER2

 POINTER1 => VECTOR

http://www.nsc.liu.se/%7Eboein/f77to90/code/solve1.f90
http://www.nsc.liu.se/%7Eboein/f77to90/code/solve.f90

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 102 of 109

Hardcopy Uncontrolled

 POINTER2 => VECTOR(7)

(12.3) We use an INTERFACE with pointers in the main program and allocate, using
pointers, a matrix in the subroutine. In this way we get a dynamically allocated matrix.

 PROGRAM MAIN_PROGRAM
 INTERFACE
 SUBROUTINE SUB(B)
 REAL, DIMENSION (:,:), POINTER :: B
 END SUBROUTINE SUB
 END INTERFACE
 REAL, DIMENSION (:,:), POINTER :: A
 CALL SUB(A)
! Now we can use the matrix A.
! Its dimensions were determined in the subroutine,
! the number of elements is available as SIZE(A),
! the extent in each direction as SIZE(A,1) and
! as SIZE(A,2).
!
 END PROGRAM MAIN_PROGRAM

 SUBROUTINE SUB(B)
 REAL, DIMENSION (:,:), POINTER :: B
 INTEGER M, N
! Here we can assign values to M and N, for example
! through an input statement.
! When M and N have been assigned we can allocate B
! as a matrix.
 ALLOCATE (B(M,N))
! Now we can use the matrix B.
 END SUBROUTINE SUB

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 103 of 109

Hardcopy Uncontrolled

22. REFERENCES
The Fortran Market contains a listing of selected books and free online tutorials on
Fortran 90.

The comments below are by Bo Einarsson.

• Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith and
Jerrold L. Wagener: Fortran 90 Handbook, Complete ANSI/ISO Reference,
McGraw-Hill, New York 1992. ISBN 0-07-000406-4. $79.95.
Complete guide to Fortran 90 and its use. Written by persons that were involved
in the development of Fortran 90. Contains hundreds of examples. However, most
of these are very short and not complete program units. Much more readable and
easier to use than the formal standards, but in spite of this it is not suitable as the
only aid to a beginner in Fortran 90.

• Ed Akin: Object-Oriented Programming via Fortran 90/95, Cambridge
University Press, Cambridge 2003. ISBN 0-521-52408-3.

• ANSI: Programming Language Fortran, X3.9-1978, American National Standard.
$24.00.
The official standard for Fortran 77. It is possible to use for reference, but it
requires that you know the basics of the language.
It is now also available in an HTML version of the Fortran 77 Standard.

• ANSI: Programming Language Fortran 90, X3.198-1992, American National
Standard.
The official American standard for Fortran 90. The same book as ISO below.

• Katarina Blom: Fortran 90 - en introduktion, Studentlitteratur, Lund 1994. ISBN
91-44-47881-X
A tutorial in Swedish on Fortran 90. The book also describes some basic
programming practices and numerical methods. No previous programming
experience is required.

• Walter S. Brainerd, Charles H. Goldberg and Jeanne C. Adams:
Programmer's Guide to Fortran 90, Third Edition, Springer, 1995. DEM 58.00.
ISBN 0-387-94570-9
One of the first books about Fortran 90. Easy to read. Each new concept that is
presented is given a simple example and therefore you can easily see how each

http://www.fortran.com/fortran/
http://www.fortran.com/fortran/books.html
http://www.fortran.com/fortran/tutorials.html
http://www.fortran.com/fortran/F77_std/rjcnf0001.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 104 of 109

Hardcopy Uncontrolled

concept is used. The book is written by persons that were involved in the
development of Fortran 90. The book is recommended.

• Stephen J Chapman: Introduction to Fortran 90/95, McGraw-Hill, Boston 1998.
ISBN 0-07-011969-4.

• Thomas F. Coleman and Charles Van Loan: Handbook for Matrix
Computations, Frontiers in Applied Mathematics, Vol. 4, SIAM, Philadelphia
1988. ISBN 0-89871-227-0.
The first chapter is an excellent introduction to Fortran 77. Very easy to read.
Also treats BLAS, LINPACK and MATLAB.

• Martin Counihan: Fortran 90, Pitman, London 1990. ISBN 0-273-03073-6.
I have not seen this book, but it is rumoured to be easy to understand and it gives
a lot of examples.

• Martin Counihan: Fortran 95, UCL Press, London 1996. ISBN 1-85728-367-8.
• Cray: Fortran Language Reference Manual, Volume 1, SR-3902 3.0, Volume 2,

SR-3903 3.0, Volume 3, SR-3905 3.0,
Treats not only the whole language Fortran 90 but also how it is used on the
Cray, with some extensions.

• DEC: DEC Fortran, Language Reference Manual, AA-PNU0A-TK, March 1992.
This is a complete manual which also treats Fortran 77 and all the extensions
made by Digital. Necessary for DEC-programmers. Very expensive.

• DEC: DEC Fortran for ULTRIX RISC Systems, User Manual, AA-PNU1A-TE,
March 1992.
Auxiliary manual on the ULTRIX - environment for Fortran 77. Necessary book
for the serious DEC-programmer. Is usually bought together with the book above.

• Zane Dodson: A Fortran 90 Tutorial, Computer Science Department, University
of New Mexico, 27 June 1994.
PostScript, 56 pages.

• Stacey L. Edgar: FORTRAN for the '90s, Problem Solving for Scientists and
Engineers, Computer Science Press, New York, 1992. ISBN 0-7167-8247-2.
$19.95.
Complete textbook in both programming in Fortran 77 and in Fortran 90. Many
examples from many different areas from science and technology. In each chapter
new features of Fortran 90 are discussed and Fortran 90 is also more fully
discussed in the concluding chapter. The book is recommended.

• Bo Einarsson: Lärobok i Fortran 90/95, Linus & Linnea, Linköping 1994.
Fortran 90 Tutorial in Swedish, PostScript version. Available according to
instructions on my Fortran page.

ftp://mycroft.plk.af.mil/pub/Fortran_90/Tutorial/tutorial.ps
http://www.nsc.liu.se/~boein/f77to90/fortran.html#1S

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 105 of 109

Hardcopy Uncontrolled

• Bo Einarsson: Lärobok i Fortran 90, Linköping 1995.
Fortran 90 Tutorial in Swedish, hypertext version.

• Bo Einarsson and Yurij Shokin: FORTRAN-90, Kniga dlja
programmiruyushchikh na yazyke Fortran-77, Izdatel'stvo Sibirskogo Otdeleniya
Rossijskaya Akademiya Nauk, Novosibirsk 1995. ISBN 5-85826-013-6.
Fortran 90 for the Fortran 77 programmer, Textbook in Russian, published by the
Siberian Division of the Russian Academy of Sciences, Novosibirsk 1995.
Cover and Title page are available as pictures.

• Bo Einarsson: Some Experiences from Teaching Fortran 90, Fortran Journal,
Volume 8, Number 1, 1996 January/February, pp. 2, 4-6.

• Torgil Ekman and Göran Eriksson: Programmering i Fortran 77, Third edition,
Studentlitteratur, Lund 1984. ISBN 91-44-16663-X
An excellent tutorial on Fortran 77. Describes all the commands of Fortran. It is
recommended to previously have read a book on another language, like Pascal.
Appendix C is both well-done and very important. The book is recommended to
those who are fluent in Swedish.

• T. M. R. Ellis: Fortran 77 Programming, Second Edition, Addison-Wesley
Publishing Company, Reading, Massachusetts 1990. ISBN 0-201-41638-7.
Complete book in both programming in general and in Fortran 77. Many
examples and good exercises. The last chapter treats Fortran 90.

• T. M. R. Ellis, I. R. Philips and T. M. Lahey: Fortran 90 Programming,
Addison-Wesley Publishing Company, Reading, Massachusetts 1994. ISBN 0-
201-54446-6.
Complete book in both programming in general and in Fortran 90. Many
examples and good exercises. The book is recommended.

• M. Etzel, K. Dickinson: Digital Visual Fortran 90 Programmer's Guide, Digital
Press, Boston, Massachusetts 1999. ISBN 1-55558-218-4.
Complete book on programming with the very popular Visual Fortran, now from
HP (COMPAQ). The book is recommended.

• High Performance Fortran Forum: High Performance Fortran Language
Specification, Version 1.0, 3 May 1993. Technical Report CRPC-TR 92225,
Center for Research on Parallel Computation, Rice University, Houston, Texas
77251.
Available via anonymous ftp from titan.cs.rice.edu as the file
/public/HPFF/draft/hpf-v10-final.ps.Z. Includes 12 + 184 pages. Also
available here. It has also been published in the Fortran Forum, Vol. 12, No. 4
(December 1993), Vol. 13, No. 2, (June 1994), and Vol. 13, No. 3, (September
1994).

http://www.nsc.liu.se/%7Eboein/f90/
http://www.nsc.liu.se/%7Eboein/f77to90/yurij.html
http://www.ras.ru/
http://www.nsc.liu.se/%7Eboein/photos/cover.gif
http://www.nsc.liu.se/%7Eboein/photos/title.gif
ftp://ftp.nsc.liu.se/pub/bibliotek/hpf_final.ps

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 106 of 109

Hardcopy Uncontrolled

Very easy to read compared with most other standards, and has many good
examples.
The latest versions are now available both in PostScript and HTML from Rice
University or from the mirror at Vienna University.

• Wilhelm Gehrke: Fortran 90 Referenz-Handbuch, Hanser, München 1991. ISBN
3-446-16321-2. DM 168.00.
Complete description in German of Fortran 90. The book can be used as a
textbook but it is mainly for reference use. I find it rather easy to read. It treats
and explains everything. It is very similar to the book of Adams et al.

• Wilhelm Gehrke (editor): Fortran 90 Language Guide, Springer, 1995, ISBN 3-
540-19926-8. DM 68.00.

• Wilhelm Gehrke: Fortran 95 Language Guide, Springer, 1996, ISBN 3-540-
76062-8. DM 64.00.

• ISO: ISO/IEC 1539:1991, Information Technology - Programming Languages -
Fortran, Second Edition, 1991-07-01, ISO Publications Department, Case Postale
56, CH-1211 Geneva 20, Switzerland. SFR 185.
The standard can also be available in electronic form both in ASCII and
PostScript for a certain charge from Walt Brainerd, Unicomp Inc., 235 Mt.
Hamilton Avenue, Los Altos, CA 94022, Fax + 1 415 949 4058, E-mail
walt@fortran.com. Further information is available.
The official standard for Fortran 90. Rather difficult as a dictionary. Requires
that you have read a textbook on Fortran 90. The book is recommended.

• ISO: ISO/IEC 1539-2:1994, Information Technology - Programming Languages -
Fortran - Part 2: Varying length characater strings, ISO Publications Department,
Case Postale 56, CH-1211 Geneva 20, Switzerland.
The complete text is available electronically, see further information on Bo
Einarsson's Fortran page.

• James F. Kerrigan: Migrating to Fortran 90, O'Reilly & Associates, Sebastopol,
CA 1993, 389 pages, ISBN 1-56592-049-X. $27.95.
It is a practical guide to Fortran 90 for the current Fortran 77 programmer.

• Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele
and Mary E. Zosel:The High Performance Fortran Handbook, The MIT Press,
Cambridge, Massachusetts 1994. ISBN-0-262-61094-9. $ 24.95.
A very good book, not only about HPF but also with very good explanations of
various parts of Fortran 90. The book is recommended.

• Elliot B. Koffman and Frank L. Friedman: Problem Solving and Structured
Programming in Fortran 77, Fourth Edition, Addison-Wesley Publishing
Company, Reading, Massachusetts 1990. ISBN 0-201-51216-5.

http://www.fortran.com/iso1539_1_1997.html
http://www.nsc.liu.se/~boein/f77to90/fortran.html#2
http://www.nsc.liu.se/~boein/f77to90/fortran.html#2

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 107 of 109

Hardcopy Uncontrolled

A complete textbook in both programming in general and in Fortran 77. Many
examples and good exercises. Appendix D treats Fortran 8X (the previous version
of Fortran 90). I find this look a little more easy to read than the one of Ellis. The
book is recommended.

• Erasmus Langer: Programmieren in Fortran, Springer, Vienna 1993, ISBN 3-
211-82446-4. DEM 45.
Tutorial in German on Fortran 90. Contains a unique appendix on the floating
point representation on the most commonly used computers.

• Norman Lawrence: Compaq Visual Fortran, A Guide to Creating Windows
Applications, Digital Press, Boston, Massachusetts 2002. ISBN 1-55558-249-4.

• John M. Levesque and Joel W. Williamson: A Guidebook to Fortran on
Supercomputers, Academic Press, San Diego, CA, 1989. ISBN 0-12-444760-0.
This book treats a lot of tricks in order to vectorize Fortran 77 programs,
especially on the Cray. Many of these tricks are however already included in the
Cray compiler. The book also describes some supercomputer architectures.

• Mike Loukides: UNIX for Fortran Programmers, Nutshell Handbooks, O'Reilly
& Associates, Sebastopol, CA 1990, ISBN 0-937175-51-X. $24.95.
An excellent UNIX textbook in Fortran programming. It has taught me how
libraries are used in UNIX. The book is recommended.

• Michael Metcalf: Fortran Optimization, Academic Press, London and New York
1982. ISBN 0-12-492480-8.
A classical book how you get efficient Fortran 77 programs on a conventional
computer.

• Michael Metcalf and John Reid: Fortran 90 Explained, Oxford University Press,
Oxford, 1990. ISBN 0-19-853772-7. $29.95.
This book was reprinted with corrections in 1993. A good and rather easy to read
textbook written by persons involved in the development of Fortran 90. The 1993
printing contains a very complete application example.

• Michael Metcalf and John Reid: Fortran 90/95 Explained, Second edition,
Oxford University Press, Oxford and New York, 1999. ISBN 0-19-850558-2.
This book is appended with Fortran 95, and is highly recommended. The second
edition also contains one chapter on floating-point exception handling and one on
allocatable dummy arguments, functions, and derived-type components. These
chapers correspond to ISO-approved extensions that will be part of Fortran 2000.

• Michael Metcalf: Fortran 90 CNL Articles
• NAG: NAGWare f95 Compiler (Unix), Release 5.0, NP3655, November 2003.

ISBN 1-85206-203-7.
A short description of the NAG compiler with the listing of all Fortran 90

http://wwwinfo.cern.ch/asdoc/f90.html

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 108 of 109

Hardcopy Uncontrolled

commands and the intrinsic functions. It also contains some extensions to the
standard, three complete modules, and information on mixing Fortran 90 and C.

• NAG: FTN90 User's Guide, July 1995. ISBN 1-85206-118-9.
A description of NAG's compiler, linker and other utilities. In addition
input/output and modules in Fortran 90 are discussed. This PC version handbook
is much more complete than the one for UNIX.

• Rama N. Reddy and Carol A. Ziegler: FORTRAN 77 with 90: Applications for
Scientists and Engineers, Second Edition, West Publishing Company,
Minneapolis, 1994. ISBN 0-314-02861-7.
Basically a textbook on Fortran 77 with Fortran 90 extensions at the end of each
chapter.

• C. Redwine: Upgrading to Fortran 90, Springer, New York 1995, ISBN-0-387-
97995-6, $ 39.95.

• Patrick D. Terry: FORTRAN From Pascal, Addison-Wesley, Wokingham,
England, 1987. ISBN 0-201-17821-4.
The purpose of this book is to be a textbook in Fortran 77 for the one who knows
Pascal. Regrettably, it has more become a book on how to write such programs,
that are in reality more suited for Pascal, in Fortran 77, e.g. simulation of
recursion. Fortran ought to be used at what it is good for, large numerical or
technical calculations.

• Christoph Überhuber and Peter Meditz: Software-Entwicklung in Fortran 90,
Springer, Vienna 1993, ISBN 3-211-82450-2. DEM 60.
The first part of this book in German discusses the foundations of numerical
computing, and the second part describes Fortran 90.

David R. Wille: Advanced Scientific Fortran, John Wiley and Sons Ltd, 1995, ISBN 0-
471-95383-0.
Author's comments: Aimed at the general numerical community as a whole, it seeks to
provide a stepping stone to better, more efficient and more portable programming for
readers who already have a basic knowledge of Fortran. Topics covered include
programming style, portability, arrays, memory management, the BLAS and LAPACK,
and code optimisation. Also included are NAG, High Performance Fortran and an
extensive introduction to Fortran 90.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-11.1.A
 Version: 3.0

Date: October 1, 2009
TITLE: Transition from Fortran 77 to Fortran 90

 Page 109 of 109

Hardcopy Uncontrolled

Author's addresses:

Bo Einarsson
Mathematics Department
University of Linköping
SE-581 83 LINKÖPING
SWEDEN
Tel. Home + 46 13 151896
Email: boein@nsc.liu.se
WWW: http://www.nsc.liu.se/~boein/

Yurij I Shokin
Institute of Computational Technologies
Prospekt Lavrentyeva 6
Russian Academy of Sciences
Siberian Division
SU-630090 NOVOSIBIRSK 90
RUSSIA
Tel: + 7 383 235 00 50, Fax: + 7 383 235 12 42
Email: shokin@adm.ict.nsc.ru

http://www.mai.liu.se/index-e.html
http://www.liu.se/en/
mailto:boein@nsc.liu.se
http://www.nsc.liu.se/%7Eboein/
http://www.ict.nsk.su/eng/shokin/
http://www.ict.nsk.su/eng/
http://www.ras.ru/
http://www-sbras.ict.nsk.su/eng/
mailto:shokin@adm.ict.nsc.ru

	1. INTRODUCTION
	1.1 Fortran 90 for the Fortran 77 Programmer
	1.2 Preface
	1.3 Transition from Fortran 77 to Fortran 90

	2. SPECIFICATIONS
	3. FREE FORM AND FIX FORM
	4. FORMAT
	5. USE OF THE SAME SOURCE CODE
	6. CONTROL STATEMENTS
	7. PROGRAM UNITS
	8. KEYWORD AND DEFAULT ARGUMENTS
	9. RECURSION
	11. ARRAYS AND ARRAY SECTIONS
	12. POINTERS
	12.1 Introduction.
	12.2 Simple use of pointers.
	12.3 Pointers and arrays.
	12.4 Allocation of arrays using pointers.

	13. THE NEW PRECISION CONCEPT
	14. ADDITIONAL PROBLEMS AT THE TRANSITION
	15. USE OF PROGRAM LIBRARIES
	15.1 Using Old Libraries

	16. PECULIARITIES IN FORTRAN 90
	17. FORTRAN 95
	17.1 New features
	17.2 Deleted features
	17.3 Obsolescent features
	17.4 Description of the new features
	17.5 Different Fortran standards

	18. SUMMARY OF NEW FEATURES
	19. BACKWARD AND FORWARD COMPATIBILITY
	19.1 Backward
	19.2 Parallel extensions
	19.3 Forward

	20. INTRINSIC FUNCTIONS IN FORTRAN 90
	21. ANSWERS AND COMMENTS TO THE USER EXERCISES
	22. REFERENCES

