

JPSS 2016 Annual Science Team Meeting 8-12 August 2016, College Park, MD, USA

ACSPO v2.50 & upcoming improvements in v2.60

Alexander Ignatov¹, Irina Gladkova^{2,3}, Yury Kihai^{1,3}, Boris Petrenko^{1,3}, Fazlul Shahriar²

¹STAR, NOAA Center for Weather and Climate Prediction (NCWCP), USA ²City College of New York, USA ³Global Science and Technology, Inc., USA

ACSPO 2.5:

- Improve brightness temperature (BT) and SST imagery in the full VIIRS swath, using special resampling algorithms to minimize geometrical distortions and fill in the bow-tie deleted pixels
- Revisit SST algorithms to provide improved sensitivity, and potentially utilize optional SST bands (e.g. 8.6 µm)

ACSPO 2.6:

- Improve clear sky identification in dynamic, coastal, and high-latitude areas of the ocean
- Derive Ocean Fronts and save in L2 and L3U ACSPO SST products

Original VIIRS SST in swath projection

Resampled VIIRS SST

Left: Example of bow-tie deletions when the Visible Infrared Imaging Radiometer Suite (VIIRS) sea surface temperature (SST) image is displayed in the original swath projection. Right: Corresponding resampled SST ACSPO v2.5 imagery

Number of clear sky observations for one day (18 October 2015) of global ACSPO SST data as a function of view zenith angle (VZA) for (**a**) S-NPP VIIRS; (**b**) Aqua MODIS; (**c**) Terra MODIS. Original data are shown in light gray and resampled in dark gray. Day and night data are combined together.

Corresponding percent increase for (**d**) S-NPP VIIRS; (**e**) Aqua MODIS and (**f**) Terra MODIS (separated by night and day).

Original (with onboard deletions)

Resampled

Original (with onboard deletions)

Resampled

Original (with onboard deletions)

NO ATMOSAY

Left: Difference between terrain-corrected and ellipsoid longitudes in the original scan order (from GMTCO and GMODO VIIRS geo files); Right: De-bowtized longitude difference after re-sampling.

Left: Difference between terrain-corrected and ellipsoid latitudes in the original scan order (from GMTCO and GMODO VIIRS geo files); Right: De-bowtized latitude difference after re-sampling.

Resampling for non-SST VIIRS bands

Original VIIRS band M4

Resampled band M4

400 by 400 crop taken from the end of the VIIRS swath for the 20:29:08.1 UTC pass on Sept 1, 2015 over Arctic Ocean. The crop includes Qikiqtaaluk Region (Nunavut, CA) showing part of the Northwestern with mountainous and glaciated terrain.

Resampling for non-SST VIIRS bands

Difference between VIIRS M4 (0.55 μ m) and M10 (1.6 μ m): Original (left), Resampled (right). The fine-scale details captured by VIIRS instrument are preserved during proposed resampling procedure.

Planned Improvements in 2.6:

- Improve clear sky identification in dynamic, coastal, and highlatitude areas of the ocean (to facilitate L3 and L4 improvements in these challenging regions, which are often missing in satellite data)
- Derive Ocean Fronts and save in L2 and L3U ACSPO SST products

NNO ATMOSPHER Example of misclassifications NOAA in dynamic regions (no cloud mask) L UP BERARTMENT OF CON 150°E 142°E 144°E 148°E 152°E 296 NO ATMOS NOA - 294 42°N 42°N - 292 Data courtesy of: NOAA/NESDIS/STAR Satellite: NPP - 290 Sensor: EA SURFACE TEM PERATURE (kelvin) VIIRS-L2P 40° Date: 2016/05/19 JD 140 402N 288 Time: 03:20:02 UTC 13:20:02 +1000 Scene time: DAY 286 Projection type: MAPPED 38" Map projection: 2.84 km/pixel MERCATOR 38°N 284 Latitude bounds: 33 N -> 45 N Longitude bounds: 140 E -> 155 E - 282 36°N 36°N - 280 150°E - 278

With current cloud mask (rendered in gray)

- External cloud masks are subject to 2 types of misclassifications: "false alarms" and "cloud leakages"
- False alarms mostly occur in dynamic areas (currents, eddies, upwellings), costal zones, and sea-ice transitions
- Misclassifications are often persistent from one overpass to another
- Results in loss of data in interesting areas and day/night inconsistency
- Cloud leakages can lead to false front detection
- Traditional front detection algorithms assume availability of external cloud mask

SST with current cloud mask

SST with corrected cloud mask

Albedo with thermal fronts overlaid

How reliable is sea ice mask?

SST with corrected cloud mask

SST with thermal fronts overlaid

- Gladkova, I., Y. Kihai, A. Ignatov, F. Shahriar, B. Petrenko, 2015: SST Pattern Test in ACSPO clear-sky mask for VIIRS. Remote Sens. Env., 160, 87-98.
- Gladkova, I., A. Ignatov, F. Shahriar, Y. Kihai, D. Hillger, B. Petrenko, 2016: Improved VIIRS and MODIS SST Imagery, Remote Sens., 8(1), 79

- Pending implementation of the bow-tie deletion & correction algorithms with VIIRS and MODIS (ACSPO v2.50), finalize the Ocean Fronts Algorithm and document
- Comprehensively test/evaluate the improved ACSPO clear-sky mask
- Implement pattern recognition and thermal front detection algorithms in ACSPO v2.60
- Work with L4, fisheries, marine biologists and other users to evaluate the effect on their analyses

Backup Slides

 $17^{\rm th}\,{\rm GHRSST}$ Meeting, Washington DC, June 6-10, 2016

17th GHRSST Meeting, Washington DC, June 6-10, 2016

17th GHRSST Meeting, Washington DC, June 6-10, 2016

17th GHRSST Meeting, Washington DC, June 6-10, 2016

Next question is: How reliable is sea ice mask?

NOAA

MENT OF

