

# Understanding Emissions and Tropospheric Chemistry using NUCAPS and VIIRS

A JPSS Proving Ground/Risk Reduction Project

NOAA OAR ESRL: G. Frost, S. McKeen, S.-W. Kim, R. Ahmadov, M. Trainer, Y. Cui, W. Angevine, T. Ryerson, J. Roberts, C. Warneke, C. Granier, K. Rosenlof, J. Brioude
STC: C. Barnet, N. Smith, A. Gambacorta
NOAA NESDIS STAR: R. B. Pierce
NOAA NESDIS NCEI: C. Elvidge

### **Project Overview**

**Goal:** Use aircraft data and atmospheric models to characterize NUCAPS CH<sub>4</sub> and CO retrievals

### **Objectives:**

- Validate atmospheric chemical-transport models with aircraft observations
- Simulate spatial and temporal variability of CH<sub>4</sub> and CO
- Evaluate NUCAPS CH<sub>4</sub> and CO retrievals with validated model
- Assess ability of JPSS datasets to constrain modeled CH<sub>4</sub> and CO

End Users: Researchers and forecasters at NOAA and elsewhere

**Close collaboration** of NOAA ESRL team with STC NUCAPS retrieval team and NESDIS STAR analysis team is absolutely critical to this project's success and adds value to PGRR investment



### **ESRL Research Assets**



ESRL employs unique combination of observational platforms, analysis approaches, and human expertise



http://www.esrl.noaa.gov



## SENEX 2013 NOAA WP-3 Flights



http://www.esrl.noaa.gov/csd/projects/senex/

### **Detecting Source Signatures with Aircraft Data**



CrIS CH<sub>4</sub> Vertical Sensitivity



Xiaozhen Xiong et al., CrIS Trace Gas Data Users Workshop, 18 Sept 2014

### **NUCAPS vs. WRF-Chem Model Comparison**



Brad Pierce, Stuart McKeen

## NUCAPS CH<sub>4</sub> Science Retrievals: Initial Data Processing Issues

- Many granules not processed due to failures in pre-processor code, possibly from too stringent ATMS QC threshold
- "Acceptable" QC (QC = 0): Daytime data rejection >> nighttime over land, likely from too stringent CrIS QC threshold
- Very noisy CH<sub>4</sub> signal. Noise filter or averaging may be needed.
- CrIS averaging kernels not initially available

## Improved NUCAPS Science Code Quality Control Thresholds

**Before QC Changes** After QC Changes CH4<sub>RET</sub> (at P=496.6) (130616 17UT) CH4<sub>RFT</sub> (at P=496.6) (130616 17UT) Latitude (deg) Latitude (deg) Longitude (deg) Longitude (deg)

#### Nadia Smith

## CrIS Averaging Kernels Now Available in Science Code Output



Brad Pierce

### **Analyzing Scale Dependence of Variance**

Compare SENEX-2013 aircraft and WRF-Chem model CO



Stuart McKeen

#### **Comparing Average Power Spectra: Aircraft and Model**

SENEX 2013 flights within the boundary layer and at high altitude (~500mb)



14 transects, 10:00am-6:00pm EDT, with N > 4096 for 1-Hz data

21.6 Hours of flight time

7 transects, day and night, with N > 2048 for 1-Hz data

5.4 Hours of flight time

#### **Comparing Average Power Spectra: Aircraft and Model**

CH<sub>4</sub> and H<sub>2</sub>O mixing ratios within the boundary layer and at high altitude (~500mb)



Power spectra for  $CH_4^{km^-}$  and  $H_2O$  show similar slopes and tendencies. At high altitude the slope is about -5/3 for longer (>50 km) length scales.

Normalized Power

Model  $H_2O$  vapor captures variability for length scales > 3 $\Delta X$  in the PBL, > 7 $\Delta X$  at 500mb. Adding/Removing model Oil/Gas emissions impacts  $CH_4$  power spectra for both the PBL and high altitude transects.

#### **Comparing Average Power Spectra: Aircraft and Model**

Data at high altitude (~500mb)



#### **Comparing Average Power Spectra: NUCAPS and Model**

Total precipitable water (TPW) data, 6/10/13



#### **Comparing Average Power Spectra: NUCAPS and Model**

TPW and  $CH_4$  data, 13 days between 6/10/13-7/10/13



# Comparing Average Power Spectra: NUCAPS and Model 6/10/13-7/10/13



### **Some Next Steps**

- Use averaging kernels to scale model vertical sensitivity to match CrIS
- Incorporate updated NUCAPS data from science code processing and filter with revised quality control flags
- Examine alternative scale variance approaches beyond Fourier analysis to evaluate NUCAPS data
- Examine NUCAPS CH<sub>4</sub> and CO during other recent aircraft field experiments (2015 and beyond)