

Applications of satellite NO2 observations in US National Air Quality Forecasting Capability

Pius Lee¹, Daniel Tong^{1,2,3*}, Lok Lamsal^{4,5}, Li Pan^{1,2}, Charles Ding^{1,6}, Hyuncheol Kim^{1,2}, Tianfeng Chai^{1,2}, Kenneth E. Pickering⁵, Shobha Kondragunta⁷, and Ivanka Stajner⁷, Barry Baker^{1,9}

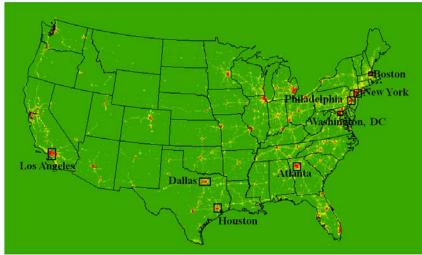
- 1) NOAA ARL; 2) UMD CICS; 3) GMU CSISS; 4) USRA;
- 5) NASA GSFC; 6) UC-Berkeley; 7) NOAA/NESDIS/STAR; 8) NOAA NWS
- 9) NRC

The Great Recession

- Starting Ending time: December 2007 October 2009;
- Cause: Bursting of the housing bubble in 2007, followed by a subprime mortgage crisis in 2008;
- Impacts:
 - **>** Unemployment rate: 4.7% in Nov 2007 \rightarrow 10.1% in Oct 2009.
 - Income level: dropped to 1996 level after inflation adjustment;
 - \rightarrow Poverty rate: 12% \rightarrow 16% (50 millions);
 - GDP: contract by 5.1%;
- Worst economic recession since the Great Depression

Question: What does it mean to Air Quality (and Emissions)?

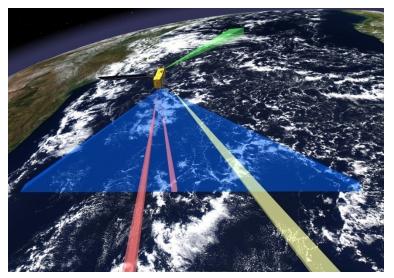
Methodology

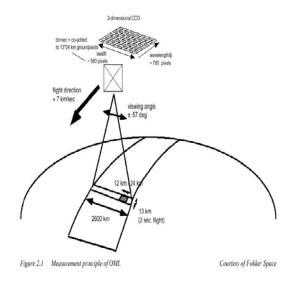

- Emission Indicator Urban NOx in Summer
 - > Short lifetime → proximity to emission sources
 - Urban NO2 dominated by local sources;
 - ▶ High emission density → low noise/signal ratio;
- NOx Data sources
 - Satellite remote sensing (OMI-Aura NO2).
 - Ground monitoring (EPA AQS NOx);

Emission data (NOAA National Air Quality Forecast Capability

operational emissions);

❖ Deriving the trend: (Y2−Y1)/Y1 × 100%


Selection of urban areas



NO_x Regulatory Actions Since 2005

- 2003 2008: NO_x Budget Trading Program (SIP Call)
 - Summer time power plant emission reductions in 20 states
 - Point sources can pay for reductions at other facilities (trading)
 - 2500 large combustion units affected.
- 2005: Clean Air Interstate Rule (CAIR)
 - NO_x reductions of 53% by 2009 (2003 baseline). Affects 28 states
 - Thrown out by courts in 2008.
- State-specific rules beyond Federal CAIR have led to further NO_x reductions in some states.
- 2011: Cross-State Air Pollution Rule (CSAPR)
 - Replacement of CAIR
 - Add five additional mid-West states to reduce NOx during ozone season.
- Tier II Tailpipe NO_x Emission Standards 5% reduction in fleet emissions per year over 2002 to 2010.

Ozone Monitoring Instrument (OMI)

One of four sensors on the EOS-Aura platform (OMI, MLS, TES, HIRDLS)

Courtesy of OMAR Torres

Launched on 07-15-04

Instrument Characteristics

-Nadir solar backscatter spectrometer

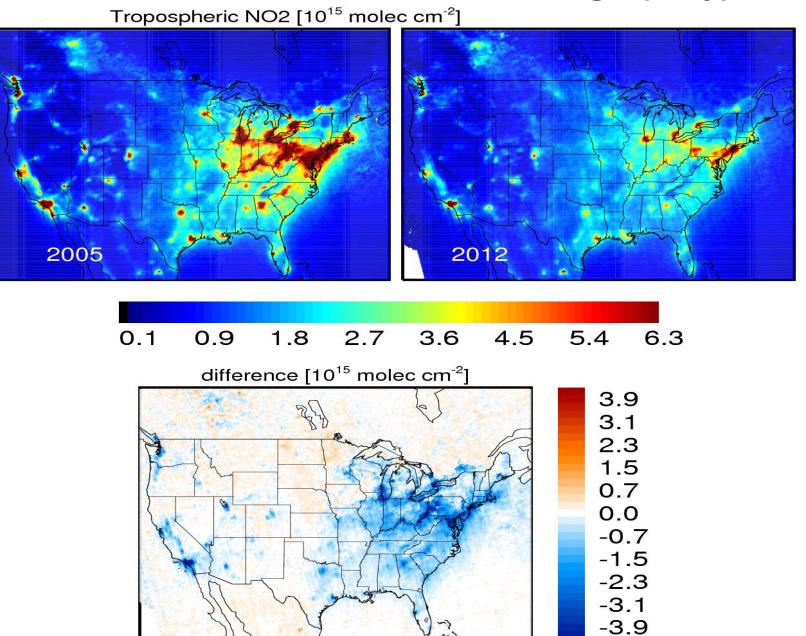
-Spectral range 270-500 nm (resolution~0.6 nm)

-Spatial resolution: 13X24 km footprint

-Swath width: 2600 km (global daily coverage)

-13:45 (+/- 15 min) Local equator crossing time (ascending node)

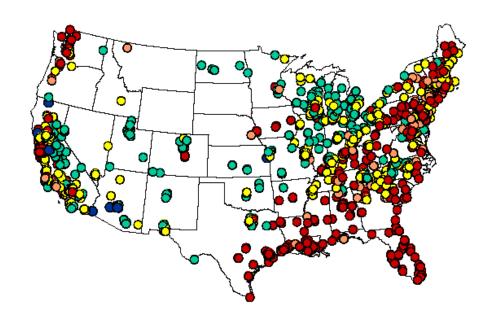
Data Quality Control

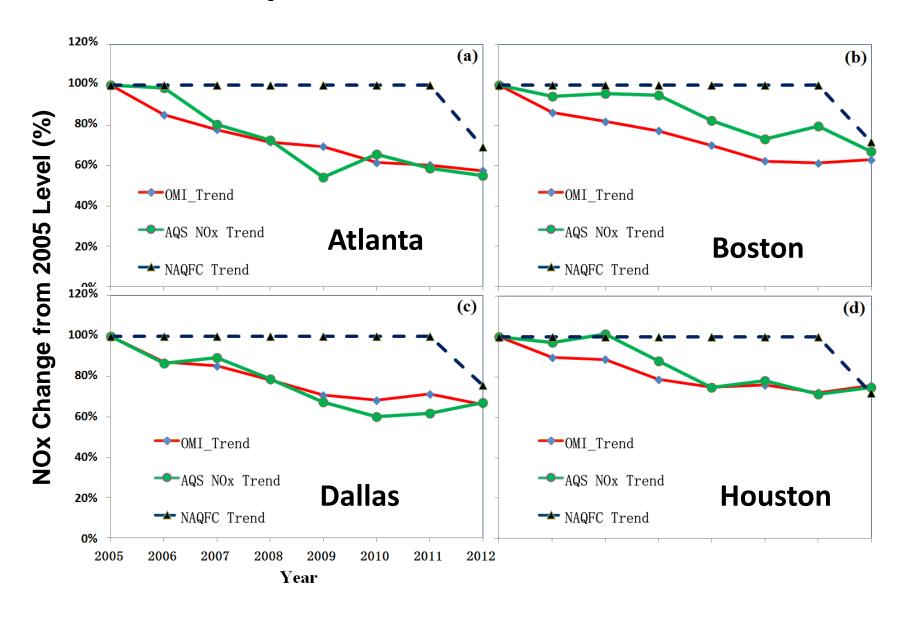

- VCD quality flag;

- Cloud fraction;

- Row Anomaly;

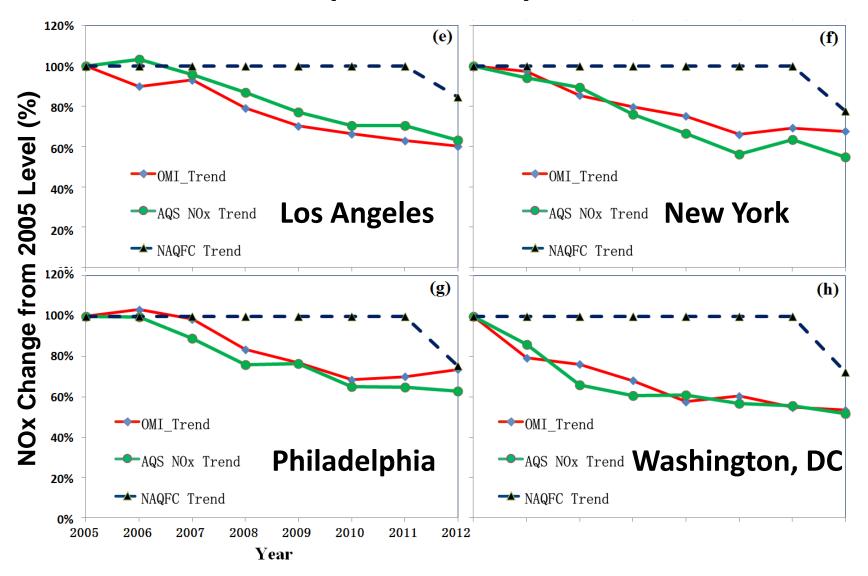
- Outliners (5% at each end)


OMI Observed NOx Change (July)

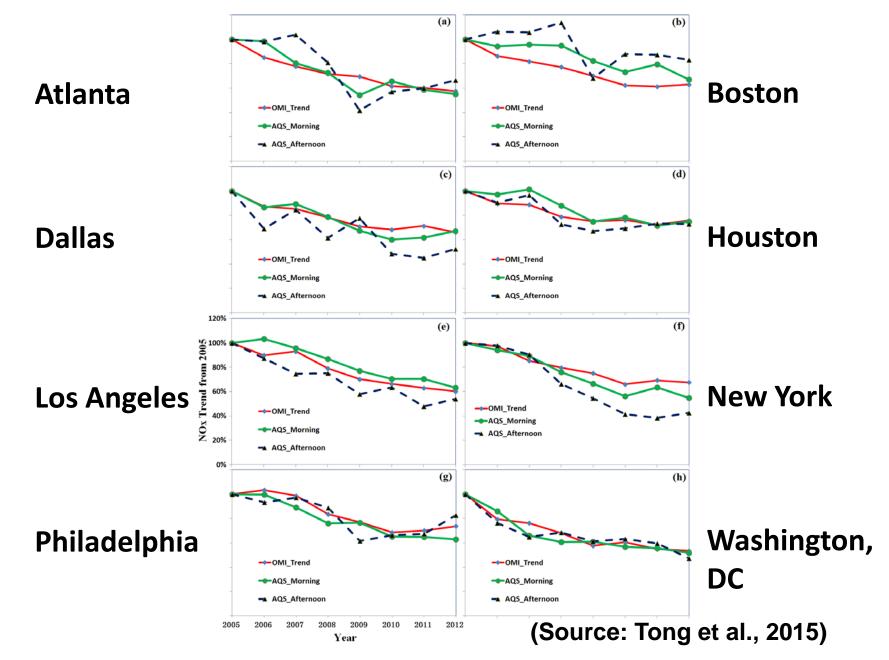

Contributed by Lok Lamsal

AQS: EPA Ambient NO2 Monitoring

- Method: Chemiluminescence
 - Interferences with PAN, O3 and alkyl nitrates
 - Uncertainty higher at lower end
- Select early morning rush hours (6-9AM): higher values and less photochemistry



Inter-Comparison of OMI, AQS and NAQFC


(Source: Tong et al., 2015)

Inter-Comparison of OMI, AQS and NAQFC (Continued)

(Source: Tong et al., 2015)

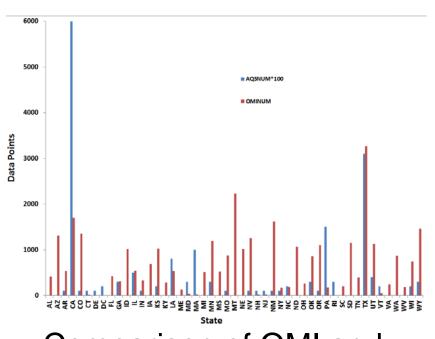
Morning Rush Hours vs Early Afternoon

Seven-year NOx Changes

City _e	Atlanta ₀	Boston	Dallas	Houston	Los Angeles	New York	Philadel- phia	Washing- ton, DC	¢.	Mean
OMI	- 42% ÷	-37%÷	-3 4 %	-2 4 %	- 40 %	-32% ₀	-26% _°	- 4 7%	₽	-35%
\mathbf{AQS}_{\wp}	- 4 5%»	-33%	-33%	-25%	-37% ₀	- 45 %	-37%	- 48 %	₽)	-38%»
NAQFC	-31%	- 28%	- 24% ÷	-28%	- 15% ÷	-22% ₀	- 25% ÷	-28% s	ą	-25%

- Both observations (OMI and AQS) revealed -5%/yr reduction rate;
- NAQFC adopted change corresponds to -3.5%/yr;

NOx Changes Prior to, during and after the Recession

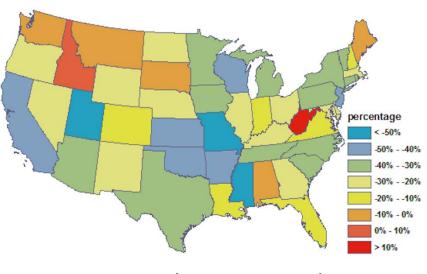

Stage	Sources	Atlanta	Boston	Dallas	Houston	L os Angeles	New York	Philadel- phia	Washing- ton, DC	Mean
Before	OMI SP	-11.7	-9.4	-7.5	-5.7	-3.3	-7.5	-0.6	-12.3	-7.3
	AQS	-9.9	-2.1	-5.2	0.7	-2.0	-5.5	-5.5	-18.7	-6.0
During	OMI SP	-5.5	-7.5	-8.9	-7.9	-13.1	-6.2	-11.7	-13.0	-9.2
	AQS	-17.5	-7.0	-13.0	-14.0	-10.3	-13.6	-7.0	-3.7	-10.8
After	OMI SP	-6.0	-3.3	-2.1	0.4	-5.0	-3.2	-1.2	-2.3	-2.8
	AQS	1.4	-6.1	0.1	0.2	-6.4	-5.4	-6.1	-5.3	-3.4

- Distinct regional difference;
- Average NOx changes are consistent for OMI and AQS data;
- -6%/yr -7%/yr prior to Recession;
- -9%/yr -11%/yr during Recession;
- -3%/yr after Recession (Recovery?).

(Source: Tong et al., 2015)

Rapid Refresh of NO_x Emissions

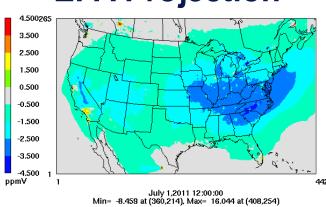
Question: Can satellite and ground data be used to rapidly refresh NOx emissions?

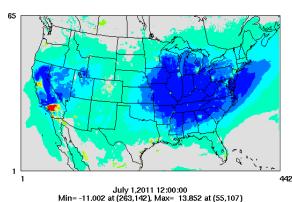


Comparison of OMI and AQS (x100) Samples

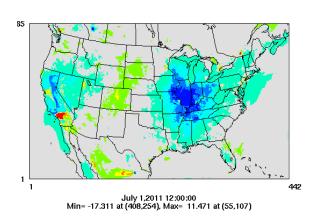
Fusing AQS & OMI

$$AF = \frac{\Delta S \times N_S \times f_S + \Delta G \times N_G \times f_G}{N_S \times f_S + N_G \times f_G}$$


State-level Projection


(2005 to 2012)

Effect on O₃ Forecast



Effect of Using Fused Obs.

Difference

Performance Metrics (July 2011 over CONUS)

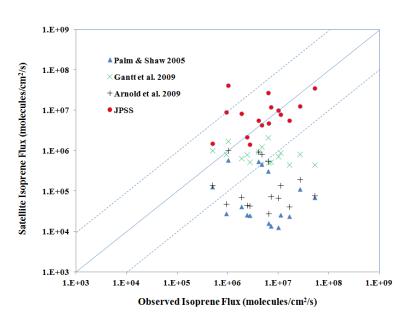
	MB (p	pbv)	NMB	(%)	RMSE (ppbv)		
	Hourly	Max8	Hourly	Max8	Hourly	Max8	
Op. NAQFC	11.9	9.9	29.7	20.3	23.1	21.5	
Fused Obs	11.5	9.7	28.7	20.1	22.7	21.4	

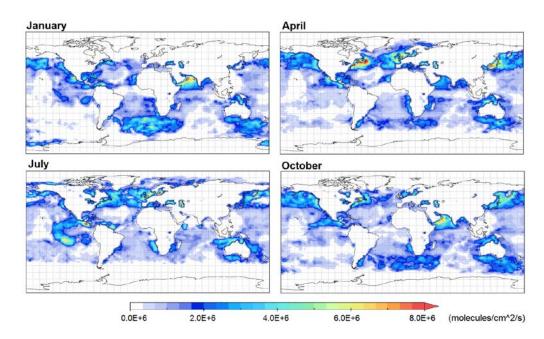
14

(Source: Tong et al., GRL, 2016)

Summary

- ❖ Revealed consistent NOx responses to the 2008 Economic Recession by OMI and AQS (-6%, -10%, and -3% reduction per year before, during and after the Recession);
- Demonstrated how to use space and ground observations to 1) evaluate emission updates; and 2) rapidly update NOx emissions to support national air quality forecasting.


References:


Tong, D.Q., L. Pan, W. Chen, L. Lamsal, P. Lee, Y. Tang, H. Kim, S. Kondragunta, I. Stajner, 2016. Impact of the 2008 Global Recession on air quality over the United States: Implications for surface ozone levels from changes in NO_x emissions. Geophysical Research Letter, Accepted.

Tong, D.Q., L. Lamsal, L. Pan, C. Ding, H. Kim, P. Lee, T. Chai, and K.E. Pickering, and I. Stajner, 2014. Long-term NO_x trends over large cities in the United States during the 2008 Recession: Intercomparison of satellite retrievals, ground observations, and emission inventories, Atmospheric Environment, 107,70-84, doi:10.1016/j.atmosenv.2015.01.035.

JPSS and Marine Isoprene

 SNPP-VIIRS, MODIS and SeaWiFS was used to produce marine isoprene emissions for use in NAQFC and other NOAA models

