

The capability of the OMPS Linear Fit SO₂ (LFSO2) algorithm for implementation at NDE

Jianguo Niu System Research Group Inc.at NOAA/STAR

C. Trevor Beck, Lawrence E. Flynn NOAA/NESDIS/STAR

> *Kai Yang* University of Maryland

Goal for LFSO2 implementation at NOAA

- 1. Provide near real time *alerts* of volcanic SO₂ clouds.
- 2. Provide O_3 corrections when large amounts of SO_2 are present.
- Provide accurate SO₂ total column amounts to address the shortfall of the existing products in the Version-8 ozone algorithm.

Residuals and Linearization

The algorithm starts from N-values: $N_m(\Omega, \Xi, R, \lambda_i) = N(\Omega, \Xi, R, \lambda_i) + \varepsilon_r$ (1)

We linearize the problem with differentials at $\Omega = \Omega_0$, $\Xi = \Xi_0$, $R = R_0$:

$$N_{m}(\lambda_{2}) - N_{0}(\lambda_{2}) = \Delta\Omega \frac{dN(\lambda_{2})}{d\Omega}\Big|_{\Omega=\Omega_{0}} + \Delta\Xi \frac{dN(\lambda_{2})}{d\Xi}\Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j}(\lambda_{2} - \lambda_{0})^{j}\right) \frac{dN(\lambda_{2})}{dR}\Big|_{R=R_{0}} + \varepsilon_{r}$$

$$N_{m}(\lambda_{3}) - N_{0}(\lambda_{3}) = \Delta\Omega \frac{dN(\lambda_{3})}{d\Omega}\Big|_{\Omega=\Omega_{0}} + \Delta\Xi \frac{dN(\lambda_{3})}{d\Xi}\Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j}(\lambda_{3} - \lambda_{0})^{j}\right) \frac{dN(\lambda_{3})}{dR}\Big|_{R=R_{0}} + \varepsilon_{r}$$

$$N_{m}(\lambda_{4}) - N_{0}(\lambda_{4}) = \Delta\Omega \frac{dN(\lambda_{4})}{d\Omega}\Big|_{\Omega=\Omega_{0}} + \Delta\Xi \frac{dN(\lambda_{4})}{d\Xi}\Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j}(\lambda_{4} - \lambda_{0})^{j}\right) \frac{dN(\lambda_{4})}{dR}\Big|_{R=R_{0}} + \varepsilon_{r}$$

$$\dots$$

$$\dots$$

$$N_{m}(\lambda_{i}) - N_{0}(\lambda_{i}) = \Delta\Omega \frac{dN(\lambda_{i})}{d\Omega}\Big|_{\Omega=\Omega_{0}} + \Delta\Xi \frac{dN(\lambda_{i})}{d\Xi}\Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j}(\lambda_{i} - \lambda_{0})^{j}\right) \frac{dN(\lambda_{i})}{dR}\Big|_{R=R_{0}} + \varepsilon_{r}$$
(2)

 $N_0(\lambda)$: radiative transfer model computed at $N_0(\Omega_0, \Xi_0, R_0, \lambda)$. $N_m(\lambda)$: measured N-value. $N_m(\lambda) - N_0(\lambda)$: V8TOZ Algorithm output residuals.

15-Granule Bias Estimates

The ozone retrieval provided residual includes biases along-orbit. To eliminate these residual biases, A 15-granule implementation technique is designed. Residual averages $\langle \psi(\lambda) \rangle$ over three five-granule intervals (corresponding to ~10° latitude) are calculated at the 12 wavelength bands and 35 cross tracks. Each individual average residual within these three averaged intervals are calculated by interpolation. The corrected residual, $\psi(\lambda) = N_m(\lambda) - N_0(\lambda) - \langle \psi(\lambda) \rangle$ is called the "adjust residual", then:

$$\begin{split} \psi(\lambda_{2}) &= \Delta \Omega \frac{dN(\lambda_{2})}{d\Omega} \Big|_{\Omega=\Omega_{0}} + \Delta \Xi \frac{dN(\lambda_{2})}{d\Xi} \Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j} (\lambda_{2} - \lambda_{0})^{j} \right) \frac{dN(\lambda_{2})}{dR} \Big|_{R=R_{0}} + \mathcal{E}_{r} \\ \psi(\lambda_{3}) &= \Delta \Omega \frac{dN(\lambda_{3})}{d\Omega} \Big|_{\Omega=\Omega_{0}} + \Delta \Xi \frac{dN(\lambda_{3})}{d\Xi} \Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j} (\lambda_{3} - \lambda_{0})^{j} \right) \frac{dN(\lambda_{3})}{dR} \Big|_{R=R_{0}} + \mathcal{E}_{r} \\ \psi(\lambda_{4}) &= \Delta \Omega \frac{dN(\lambda_{4})}{d\Omega} \Big|_{\Omega=\Omega_{0}} + \Delta \Xi \frac{dN(\lambda_{4})}{d\Xi} \Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j} (\lambda_{4} - \lambda_{0})^{j} \right) \frac{dN(\lambda_{4})}{dR} \Big|_{R=R_{0}} + \mathcal{E}_{r} \\ \cdots \\ \psi(\lambda_{i}) &= \Delta \Omega \frac{dN(\lambda_{i})}{d\Omega} \Big|_{\Omega=\Omega_{0}} + \Delta \Xi \frac{dN(\lambda_{i})}{d\Xi} \Big|_{\Xi=\Xi_{0}} + \left(\Delta R(\lambda_{0}) + \sum_{j=1}^{2} c_{j} (\lambda_{i} - \lambda_{0})^{j} \right) \frac{dN(\lambda_{i})}{dR} \Big|_{R=R_{0}} + \mathcal{E}_{r} \end{split}$$

These linear equations can be converted into a matrix expression.

Matrix Formulation

$$\begin{pmatrix} \psi(\lambda_{2}) \\ \psi(\lambda_{3}) \\ \vdots \\ \psi(\lambda_{1}) \\ \vdots \\ \psi(\lambda_{1}) \end{pmatrix} = \begin{pmatrix} \frac{dN(\lambda_{2})}{d\Omega} & \frac{dN(\lambda_{2})}{d\Xi} & \frac{dN(\lambda_{2})}{dR} & (\lambda_{2} - \lambda_{0}) \frac{dN(\lambda_{2})}{dR} & (\lambda_{2} - \lambda_{0})^{2} \frac{dN(\lambda_{2})}{dR} \\ \frac{dN(\lambda_{3})}{d\Omega} & \frac{dN(\lambda_{3})}{d\Xi} & \frac{dN(\lambda_{3})}{dR} & (\lambda_{3} - \lambda_{0}) \frac{dN(\lambda_{3})}{dR} & (\lambda_{3} - \lambda_{0})^{2} \frac{dN(\lambda_{3})}{dR} \\ \vdots \\ \frac{dN(\lambda_{1})}{d\Omega} & \frac{dN(\lambda_{1})}{d\Xi} & \frac{dN(\lambda_{1})}{dR} & (\lambda_{1} - \lambda_{0}) \frac{dN(\lambda_{1})}{dR} & (\lambda_{1} - \lambda_{0})^{2} \frac{dN(\lambda_{1})}{dR} \\ \vdots \\ \frac{dN(\lambda_{11})}{d\Omega} & \frac{dN(\lambda_{11})}{d\Xi} & \frac{dN(\lambda_{11})}{dR} & (\lambda_{11} - \lambda_{0}) \frac{dN(\lambda_{11})}{dR} & (\lambda_{11} - \lambda_{0})^{2} \frac{dN(\lambda_{11})}{dR} \\ \end{pmatrix} \begin{pmatrix} \Delta\Omega \\ \Delta\Xi \\ \DeltaR \\ c_{1} \\ c_{2} \end{pmatrix} + \begin{pmatrix} \varepsilon(\lambda_{2}) \\ \varepsilon(\lambda_{3}) \\ \vdots \\ \varepsilon(\lambda_{1}) \\ \vdots \\ \varepsilon(\lambda_{11}) \end{pmatrix}$$

The sensitivities differ depending upon the assumed height of the SO_2 layer. Estimates of the total column SO_2 using this Matrix formula is obtained for three different heights: Lower Troposphere (TRL), Middle Troposphere (TRM) and Lower Stratosphere (STL). Other technique is used to estimate Planetary Boundary Layer (PBL) SO_2 .

Retrieval Parameters

Name	Туре	Description	Dimension	Units	Range
s_AlgorithmFlag_PBL	32 bit integer	PBL algorithm flag	105 x 15	Unitless	0, 1, 11
s_AlgorithmFlag_STL	32 bit integer	STL algorithm flag	105 x 15	Unitless	0, 1, 2, 11, 12
s_AlgorithmFlag_TRL	32 bit integer	TRL algorithm flag	105 x 15	Unitless	0, 1, 2, 11, 12
s_AlgorithmFlag_TRM	32 bit integer	TRM algorithm flag	105 x 15	Unitless	0, 1, 2, 11, 12
s_QualityFlags_PBL	32 bit integer	PBL quality flag	105 x 15	Unitless	0~65535
s_QualityFlags_STL	32 bit integer	STL quality flag	105 x 15	Unitless	0~65535
s_QualityFlags_TRL	32 bit integer	TRL quality flag	105 x 15	Unitless	0~65535
s_QualityFlags_TRM	32 bit integer	TRM quality flag	105 x 15	Unitless	0~65535
s_STLO3	32 bit float	STL corrected total column of O3	105 x 15	Dobson	0~1000
s_TRLO3	32 bit float	TRL corrected total column of O3	105 x 15	Dobson	0~1000
s_TRMO3	32 bit float	TRM corrected total column of O3	105 x 15	Dobson	0~1000
s_ColumnamountSO2_STL	32 bit float	STL total column of SO2	105 x 15	Dobson	-10 ~ 2000
s_ColumnamountSO2_TRL	32 bit float	TRL total column of SO2	105 x 15	Dobson	-10 ~ 2000
s_ColumnamountSO2_TRM	32 bit float	TRM total column of SO2	105 x 15	Dobson	-10 ~ 2000
s_deltaRefl331	32 bit float	Delta Reflectivity at 331 nm v Jianguo Niu System Research Group In	105 x 15 c.	Percent	-100 ~ 100

Retrieval Parameters

Name	Туре	Description	Dimension	Units	Range
s_ChiSquareLfit	32 bit float	Chi-square of linear fit	105 x 15	Uniteless	> 0
s_dN_dSO2_STL	32 bit float	dN/dSO2(STL)	12 x 105 x 15	Per Dobson	-1 ~ 100
s_dN_dSO2_TRL	32 bit float	dN/dSO2(TRL)	12 x 105 x 15	Per Dobson	-1 ~ 1000
s_dN_dSO2_TRM	32 bit float	dN/dSO2(TRM)	12 x 105 x 15	Per Dobson	-1 ~ 100
s_Slope	32 bit float	C ₁ in linear equ.	105 x 15	Uniteless	-1~1
s_Qterm	32 bit float	C ₂ in linear equ.	105 x 15	Uniteless	-1~1
s_ResidualAdjustment	32 bit float	Averaged residual of nvalue	12 x 105 x 15	Uniteless	-10 ~ 10
s_ColumnamountSO2_PBL	32 bit float	Planetary Boundary Layer (PBL) SO2	105 x 15	Dobson	-300 ~ 1000
s_ColumnamountSO2_PBLbrd	32 bit float	PBL SO2 by BRD method	105 x 15	Dobson	-10 ~ 2000
s_ColumnamountSO2_STLbrd	32 bit float	STL SO2 by BRD method	105 x 15	Dobson	-10 ~ 2000
s_ColumnamountSO2_TRMbrd	32 bit float	TRM SO2 by BRD method	105 x 15	Dobson	-10 ~ 2000
s_SO2indexP1	32 bit float	Partial adjust residual for 310 and 311	105 x 15	Uniteless	-100 ~ 100
s_SO2indexP2	32 bit float	Partial adjust residual for 311 and 313	105 x 15	Uniteless	-100 ~ 100
s_SO2indexP3	32 bit float	Partial adjust residual for 313 and 314	105 x 15	Uniteless	-100 ~ 100

Products from the LFSO2 algorithm

0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 2.00

Strategy for running LFSO2

Estimates **minimum detectable SO₂** for single IFOV

	# IFOV	Average (DU)	STD (DU)
STL	5480	0.0037	0.069
TRM	5480	0.0057	0.09
TRL	5480	0.0125	0.18
PBL	5480	0.0624	0.6

SO₂ in 5~10km (TRM) over East China

Example-1: Iceland Bardarbunga volcano eruption

PEATE algorithm's product

1.00

1.33

1.67

2.00

0.00

0.33

0.67

STAR products

Example-2: Indonesia Kelud volcano eruption February 14, 2014

STAR V8+NMSO2

STAR/PEATE updated original

Example 3-1: Sicily Volcano eruption and transportation

Example 3-2: Sicily Volcano eruption and transportation

Example 3-3: Sicily Volcano eruption and transportation

Example 3-4: Sicily Volcano eruption and transportation

Example 3-5: Sicily Volcano eruption and transportation

Example 3-6: Sicily Volcano eruption and transportation

Example 3-7: Sicily Volcano eruption and transportation

Example 4: Chile Calbuco volcano 4/23/2015 to 5/04/2015

Example-5: Ozone correction by assuming SO₂ in STL for Indonesia Kelud volcano eruption case February 14, 2014

Daily PBL and TRL SO₂ maps over the US January to June 2016

Summary

- 1. A 15-granule implementation provide a reliable alert to volcanic SO₂ cloud.
- 2. LFSO2 retrieval provides a total column O_3 correction when thick SO_2 appears in the atmosphere.
- 3. Provide accurate SO₂ total column amount for V8TOZ product.
- 4. Shown that OMPS Nadir Mapper possesses high sensitivity to monitor SO₂ as a pollutant in the atmosphere.