

#### GSICS Inter-Calibration for Infrared Bands with Hyperspectral Sounder

#### Xiangqian Wu, NOAA/NESDIS/STAR

GSICS Users Workshop, College Park, MD, 11 August 2016

## Outline



- Algorithm
- Products
- Future work



### **Basis for Inter-Calibration**

- Calibration quantifying the instrument responses to known signals.
  - Onboard Cal: Blackbody, Solar Diffuser;
  - Vicarious Cal: Invariant (desert, Moon) or derived (RTM)
  - Inter-Cal: Reference instrument
- Premises: two instruments should make identical measurements under <u>identical conditions</u>.
  - Concurrent in time;
  - Collocated in space (including spatial response);
  - Comparable spectral coverage and response; and
  - Co-aligned in viewing geometry.

### 1. Subsetting







### 2. Collocation

#### • Time

- From Telemetry
- Threshold depends on refresh rate and size of data

#### • Location

- Operational geolocation
- Angle
  - |geo\_zen-leo\_zen| < threshold penalize at small angle</p>
  - |sec(geo\_zen) sec(leo\_zen)| < threshold penalize at larger angle
  - |cos(geo\_zen)/cos(leo\_zen)-1| < threshold</p>











#### Empirical correction is helpful, although one cannot depend on that too much since this correction depends on the lapse rate



### **3a. Spatial Transform**



#### **3b. Spectral Transform**



#### 4. Selection



- Several reasons
  - Performance under certain conditions, e.g., night
  - Narrow down threshold, e.g., time window
  - Avoid certain conditions, e.g. sun glint
- Weighted average/regression is superior than threshold
- ATBD facilitates these options. No specific recommendation/discrimination



5a. Analysis – Quantify Bias





#### **5b. Analysis – Correct Bias**

$$R_{GSICS} = -\frac{a}{b} + \frac{1}{b}R_{GEO}$$

- GSICS Corrected radiance from GEO operational product
  - *a*, *b* from weighted regression
- Reduced Major Axis under investigation
- Period of regression is critical

# 5b. Analysis – Correct Bias





# Outline



- Algorithm
  - Quantify the difference magnitude and uncertainty
  - Correct the difference empirical removal
  - Understand the difference root cause analysis.
- Products and Applications
  - Core products: Refer to GCC talk.
  - Double Difference (Wang et al.)
  - Outgassing
  - Spectral Response Function
  - Midnight Blackbody Calibration Correction
  - Image Navigation and Registration (Yu et al.)
  - HIRS
- Future work

Global Space-based Inter-Calibration System Monitoring HIRS by inter-comparison with IAS



15 Hewison



#### Development of GSICS products for HIRS?

- Metop/HIRS: Mature Algorithm, based on GEO-LEO IR inter-cal wrt IASI
- NOAA/HIRS: Need to implement LEO-LEO collocation system
- Suitable for:
  - Instrument monitoring
  - Near Real-time Corrections
  - Re-Analysis Corrections (e.g. case studies)
- But no further development without strong user needs
- Could also develop
  - Archive Re-Calibration to support FCDR generation
  - Harmonising data from all instruments in HIRS series
  - Based on activities supporting re-calibration of Meteosat archive
- Any beta testers?

## Outline



- Algorithm
- Products
- Future work



18

#### **Prime Correction**





#### IR Reference Sensor Traceability And Uncertainty Report



#### • Aims

- To support the choice of reference instruments for GSICS and IASI as Anchor
- To provide traceability between reference instruments (IASI, AIRS, CrIS)
- By consolidating pre-launch test results and various in-flight comparisons
- To seek consensus on the uncertainties in the absolute calibration of the reference sensors
- Limitations
  - No new results, just expressing results of existing comparisons in a common way,
  - reformatting where necessary, to allow easy comparisons.
- Error Budget & Traceability
  - Focus on Radiometric and spectral calibration
  - AIRS, IASI, CrIS
- Inter-comparisons
  - Polar SNOs, Tandem SNOs, Quasi-SNOs, GEO-LEO Double Differencing, NWP Double-Differencing, Regional Averages ("Massive Means"), Aircraft Double-Differences, other
- Conclusions

#### Global Space-based Inter-Calibration System

### Summary

- Overview of algorithm, products, and future work.
- User comments on planned future work.
- User suggestion of new future work.
- User feedback on existing products.