

Inter-calibration of Himawari-8/AHI using CrIS as a reference

Masaya Takahashi Japan Meteorological Agency

Contents

- Himawari-8/AHI Overview
 - AHI Specification
 - Observing Mode
- Inter-calibration of Himawari-8/AHI IR bands
 - Method
 - Results
- Summary and Future Plans

Acknowledgement

JMA is grateful to NOAA for our collaboration on AHI/ABI Cal/Val activities

Advanced Himawari Imager

Advanced Himawari Imager (AHI) on Himawari-8						Wavelength [µm]	Resolution [km]	# of Detectors*	of digital count [bit]
						3.9	2	332 (6)	14
				Laurala	8	6.2	2	332 (6)	11
Band	Wavelength [µm]	Spatial Resolution	# of	of digital count [bit]	9	6.9	2	332 (6)	11
		[km]	Detectors] 10	7.3	2	332 (6)	12
1	0.47	1	676 (3)	11	11	8.6	2	332 (6)	12
2	0.51	1	676 (3)	11	12	9.6	2	332 (6)	12
3	0.64	0.5	1460 (3)	11	13	10.4	2	408 (6)	12
4	0.86	1	676 (6)	11	14	11.2	2	408 (6)	12
5	1.6	2	372 (6)	11	15	12.4	2	408 (6)	12
6	2.3	2	372 (6)	11	16	13.3	2	408 (6)	11
# of redundant detector 2014 (CY)					Y)	2015 (CY)		2016 (CY)	
columns per side Satellite operation MTSAT-1R Meteorological mission									
				6	In-orbit st	tandby	/		
MTSAT-2 Meteorological mission Himawari-8 Himawari-9			SAT-2	rate		tion	Ir	n-orbit standby	
			awari-8 awari-9	anufacture	Launch	Y		Operation Launch	
		L							

Central

Spatial

Levels

Full Disk / Regional Observation in 10 minutes Repeat Cycle

Full Disk Observation every 10 min.

 Region 1
 Region 2
 Region 3
 Region 4
 Region 5

 2000 x 1000km 2000 x 1000km1000 x 1000 km 1000 x 500 km (NE Japan)
 2000 x 1000km1000 x 1000 km 1000 x 500 km (Target Area)
 1000 x 500 km (Landmark Area)
 1000 x 500 km

 Every 2.5 min. Every 2.5 min. Every 2.5 min. Every 30 sec.
 Every 30 sec.
 Every 30 sec.

Lunar observation: performed using Landmark Area (Region 5)

Himawari-8/AHI Radiometric Calibration Methods

Band [µm]	Solar Diffuser	Black Body	GSICS (IR)	GSICS (DCC)	GSICS (Moon)	RT simulation	Ray matching	GEO- GEO
Band1 [0.47]	Y			(Y)	(Y)	Y	Y	Y
Band2 [0.51]	Y			(Y)	(Y)	Y	Y	Y
Band3 [0.64]	Y			(Y)	(Y)	Y	Y	Y
Band4 [0.86]	Y			(Y)	(Y)	Y	Y	Y
Band5 [1.6]	Y			(Y)	(Y)	Y	Y	Y
Band6 [2.3]	Y			(Y)	(Y)	Y	Y	Y
Band7 [3.9]		Y	Y					Y
Band8 [6.2]		Y	Y		I (P			Y
Band9 [6.9]		Y	Y		Inter-call		/IS/NIR	Y
Band10 [7.3]		Y	Y		bands us	sing viirs		Y
Band11 [8.6]		Y	Y		-> P(oster prese	ntation	Y
Band12 [9.6]		Y	Y					Y
Band13 [10.4]		Y	Y					Y
Band14 [11.2]		Y	Y					Y
Band15 [12.4]		Y	Y					Y
Band16 [13.3]		Y	Y					Y

(Y) : under implementation

GSICS Approach Helped AHI Commissioning Phase Activity

 GSICS approach revealed diurnal variation of IR calibration performance due to a bug of ground processing software

Diurnal variation in commissioning phase data at the earliest stage

2016 GSICS User's Workshop, College Park, MD, 11 August 2016

Inter-calibration using LEO Hyperspectral Sounders as References

- Reference instruments
 - Metop-[A,B]/IASI, Aqua/AIRS, S-NPP/CrIS
- GEO/LEO collocation based on SNO approach
 - Temporal/Spatial/Geometric thresholds
 - Averaging GEO pixels to be equivalent to LEO FoV size (~12km)
- Generation of GEO imager "super-channel"
 - Convolution of LEO spectra with GEO spectral response
 - Spectral gap (e.g. AHI 3.9 µm and CrIS):
 <u>compensated</u> using "gap-filling" optimization method
- Regression of GEO and LEO in radiance
 - Derivation of radiance correction (i.e. GS/CS Correction)
 - Converted to TB for easy understanding

AHI-CrIS Collocation conditions

Time difference	5 minutes			
Viewing angle diff.	$ \cos(VZA_{CrIS})/\cos(VZA_{AHI}) - 1 $ < 1 or 3%			
Environment uniformity	Stdv. of AHI (18x18 pixels) < thresholds (band/scene dependent)			

Spectral "Gap-filling" of CrIS to Generate AHI Super-channel

- CrIS covers about 40% of AHI Band 7 (3.9µm)
- Most spectral range of AHI Band 11 (9.6 μm): not covered by CrIS

Spectral "Gap-filling" method

(Tahara and Kato, 2009)

 $\log I_i^{\text{calc}} = c_0 + \sum c_k \log I_{i,k}^{\text{sim}}$

Formulation

Estimated radiance of

missing channel i

Simulated radiance of channel *i* for model profile *k*

- For each GEO channel and each hyper sounder observing point
- Log radiance estimated to prevent radiance from being negative

Simulated radiances for 8 model profiles

- Tropic, US standard, Mid-latitude winter and summer profiles
- Thick cloud at 500 hPa and 200 hPa for Tropics and US std.

Coefficients (c_0, c_k) computation

 Solving least square problem by applying valid hyper sounder observations and corresponding simulated radiances

No NWP fields, no RT computation in operation

Himawari-8/AHI Band 7 (3.9µm) S-NPP/CrIS (Valid, Missing channels)

TB Biases Converted from Radiance Regression

Time series of AHI TB biases w.r.t S-NPP/CrIS at standard scene

Standard scene: typical scene defined as 1976 US Standard Atmosphere at nadir, at night, in clear sky, over the sea with SST=288.15K and a wind speed= 7m/s

Global Space-based

Impacts of "Gap-filling" method on inter-calibration results (AHI 3.9µm)

• Gap-filling method efficiently reduces the inter-calibration uncertainty

Impacts of "Gap-filling" method on inter-calibration results (<u>AHI 8.6µm</u>)

• Gap-filling does not work in case of too big gap

TB Bias Stability at different scenes

- Similar results in all hyper sounders
- AHI Tb biases: stable w.r.t. CrIS at cold scenes compared with others

Time series of Tb biases between hyper sounders and Himawari-8/AHI Band 12 (9.6µm)

Time Dependence of Tb Biases

- MTSAT-2:
 - Diurnal variation of Tb biases during midnight
- Himawari-8
 - No significant diurnal variation

Multiple references: very important to validate diurnal calibration biases

> Reference sensors: Metop-A/IASI Metop-B/IASI Aqua/AIRS S-NPP/CrIS

Himawari-8/AHI

Inter-calibration of Himawari-8/AHI IR bands

- Method
 - Metop-[A,B]/IASI, Aqua/AIRS and S-NPP/CrIS as references
 - Based on SNO approach
 - Spectral "gap-filling" method is applied if the reference sensor does not cover spectral range of GEO channel
- Results
 - All IR bands are very stable, Tb biases < 0.2K at standard scene
 - No significant diurnal calibration biases
 - ✓ Multiple references: important/useful to validate them
- Future Plans
 - Inter-calibration results will be included in L1B equivalent data (i.e. Himawari Standard Data) once the product gets GSICS stamp
 - Generation of "Prime GSICS Correction" (blending multiple references results)

Thanks for Your Attention

IR on-board Calibration

$$R_{obs} = F(\theta,\phi)(q_nC^2 + m_nC + b_n) - G(\theta)R_{Mns} - H(\theta,\phi)R_{Mew}$$

- q_n : pre-launch test value
- *m_n*: updated using blackbody observation for each full-disk observation
- *b_n*: updated using deep space observation for each swath

 R_{obs} : Observed radianceC: Raw digital count q_n, m_n, b_n : Coefficientsn: Detector ID θ, ϕ : Incidence angle to SM $F(\theta, \phi), G(\theta, \phi), H(\theta, \phi)$: Parameters on
scan mirror emissivity R_{Mns}, R_{Mew} : NS/EW scan mirror radiance