THE EUMETSAT SATELLITE PROGRAMMES AN OVERVIEW FROM NOW TO THE FUTURE

Kenneth Holmlund EUMETSAT

R. Stuhlmann, P. Schlüssel,

D. Klaes, R. Munro, F. Montagner, J. Grandell, C. Hanson And many other contributors from EUMETSAT and its partners

Current EUMETSAT satellite fleet – Extrapolated to end 2016

METOP -A and -B

(LOW-EARTH, SUN – SYNCHRONOUS ORBIT)

EUMETSAT POLAR SYSTEM/INITIAL JOINT POLAR SYSTEM

Sentinel -3a (LOW-EARTH, SUN-SYNCHRONOUS ORBIT)

Copernicus Global Marine and Land Environment Mission Operated by EUMETSAT

JASON-2, -3 (LOW-EARTH, 63° INCL. NON SYNCHRONOUS ORBIT)

OCEAN SURFACE TOPOGRAPHY MISSION

METEOSAT SECOND GENERATION -9, -10, -11 (GEOSTATIONARY ORBIT)

TWO-SATELLITE SYSTEM:

- METEOSAT-11: IN-ORBIT BACKUP
- METEOSAT-10: FULL DISK IMAGERY MISSION AT 0° (15 MN)
- METEOSAT-9: RAPID SCAN SERVICE OVER EUROPE AT 9.5°E (5 MN)

METEOSAT -8 (2nd GENERATION) (GEOSTATIONARY ORBIT)

INDIAN OCEAN DATA COVERAGE MISSION AT 40° E (TBD June 2016)

EUMETSAT programmes overview

EUMETSAT programmes overview

MTG Programme – Space Segment

Twin satellite concept – based on 3-axis platforms: 4 geostationary imaging satellites (MTG-I) 2 geostationary sounding satellites (MTG-S)

Established through a cooperation between:

MTG-I: - Flexible Combined Imager (FCI) - Lightning Imager Instrument (LI)

20 years of operational service

MTG-S:- Infrared Sounder (IRS) - Ultra-violet, Visible and Near-infrared Sounder (UVN)

15.5 years of operational service

Upper Layer (ice) COT scaled 0-11

JPSS Science Team Meeting August 2016

2011 July 25 11:30-12:30 Lower Layer (water) COT scaled 0-42

2011 July 25 11:30-12:30 RGB 0.6, 0.8, 8-7-11

JPSS Science Team Meeting August 2016

Scientific development for future / enhanced products (3) Coccolithophore blooms from the geostationary orbit ?

Observing lightning Reference processor product example

"Accumulated flash area" product, integrated over 15 minutes and updated every 30 seconds Date: 20 June 2013.

IRS NRT Demonstration service for Europe

- IRS Nowcasting Workshops
- Assimilation Workshop
 - Very High Resolution Limited Area Moel
- IRS NRT Demonstration service for Europe
 - Aims to involve potential operational users of MTG-IRS Level 2 products in the development of the level 2 processor.
 - The results of this evaluation will be used to identify limitations of the envisaged products and where possible to start mitigation actions in light of the experience with the proxy data.
 - Based on level 2 products from IASI and CrIS
 - Derived vertical profiles (T/H) and T_{surf} with their uncertainty

For more on IRS see Tjemkes Wednesday 09:40.

The EUMETSAT polar system is part of the joint polar system shared with the US

- A two pillar backbone system:
- NOAA with Suomi-NPP and JPSS provides the afternoon orbit data
- EUMETSAT provides mid-morning data
- Coordination of products and services

•A third pillar? China has committed to the early morning orbit

EPS Second Generation

Continuing the European contribution to the Joint Polar System (JPS)

- Emhanced service from mid morning polar orbit in 2021 2040
- Twin satellite in-orbit configuration:
 - Metop-SG A: optical imagery and sounding mission
 - Flies the Copernicus Sentinel-5 instrument
 - Metop-SG B: microwave imaging mission
- Two series of 3 successive satellites for 21 years of operations
- Orbit @ 09:30 LTDN (Same as Metop)
- Phasing of Sat-a and Sat-b 180°

	Satellite a	Satellite b
Payload	METImage, IASI-NG, MWS, 3MI, S-5, RO	SCA, MWI, ICI, ARGOS-4, RO
Launch mass	3661 kg	3339 kg
Power	2.3 kW	2.0 kW
P/L data rate	54 Mb/s	6.3 Mb/s

Observation Missions

Mission	Instrument	Applications Benefitting	
Hyper-spectral Infrared Sounding	IASI-NG	NWP, NWC, Air Quality, CM	
Visible/Infra-red Imaging	METimage	NWC, NWP, CM, Hydrology, Oceanography	
Microwave Sounding	MWS	NWP, NWC, CM	
Radio Occultation Sounding	RO	NWP, CM	
Nadir viewing UV/VIS/NIR/SWIR Sounding	Sentinel 5	Ozone-UV, Air Quality, CM, Composition-Climate interactions	
Multi-viewing, -channel, -polarisation Imaging	3MI	Air Quality, CM, NWC	
Scatterometry	SCA	NWP, NWC, Oceanography, Hydrology	
Microwave Imaging	MWI	NWP, NWC, Hydrology, CM, Oceanography	
Ice Cloud Imaging	ICI	NWP, NWC, Hydrology, CM	

Hyper-spectral infrared sounding: IASI – NG

- Objectives
- Temperature/humidity profile at high vertical resolution
- Clouds, trace gases (O_3 , CO, CH₄, CO₂,...)
- Sea/land/ice surface temperature
- Aerosols, Volcanic Ash
- Implementation
 - Development of Fourier Transform
 - Spectrometer IASI-NG by CNES

Key performances

- spectral range: 645 2760 cm-1
- spectral resolution: 0.25 cm-1
- radiometric calibration: 0.25 K stability: 0.1 K
- Radiometric noise: 0.045 1.1 K pixel size: 12 km
- spatial sampling: 25 km
- cross-track scan

Breakthrough

- Doubling of radiometric and spectral resolution of IASI for the benefit of weather forecast and atmospheric composition
 - 75% more information in temperature profiling, particularly PBL
 - 30 % more information in water vapour profiling
 - Quantification of trace gases which are currently only detected
 - Vertical resolution of trace gases instead of columnar amounts only

Atmospheric Profiling Hyperspectral Infrared L2 - IASI L2 v6 Temperature vs ECMWF ANA

16 JPSS Science Team Meeting August 2016

EUMETSAT

Atmospheric Profiling Hyperspectral Infrared L2 - IASI L2 v6 Temperature vs ECMWF ANA

17 JPSS Science Team Meeting August 2016

EUMETSAT

Towards a IASI CO Profile product: a premiere

The IASI L2 processor v6 implements the FORLI-CO algorithm developed at ULB/LATMOS (O3M-SAF CDOP-2)

Optical imaging METimage

Objectives

Hi-res cloud products, incl. microphysics

Aerosols

- Polar AMVs
 - Vegetation, snow, fire
 - Sea/ice/land surface temperature
 - Support to sounding missions
 - Implementation
 - Development of *METimage* by DLR
 - Key performances
 - 20 channels: 0.443 13.345 µm
 - absolute calibration: 5% (short-wave) 0.5 K (long-wave)
 - radiometric sensitivity:

SNR 60 – 500 (short-

wave)

0.05 – 0.2 K (long-wave) spatial sampling: 500 m

cross-track scan

Breakthrough

- Far more spectral channels than AVHRR for the benefit of measuring more variables
 - Higher spatial resolution (500 m):
 - more complete coverage through greater likelihood to measure surface variables in partly cloud conditions
 - Better radiometric resolution for more accurate quantification of many variables

Microwave Sounding

Objectives

- Temperature/humidity profiles in clear and cloudy air
- Cloud liquid water total column
- Imagery: precipitation
- ESA development

Key performances

24 channels: 23.8 – 229 GHz absolute calibration: 0.5 K radiometric noise: 0.2 – 1.6 K footprint size: 17 – 40 km cross-track scan

Breakthrough

- Addition of a quasi-window channel at 229 GHz (recommended by ITSC-11)
 - Cirrus cloud information giving a better humidity retrieval performance

Addition of sounding channels

- + 2 channels at 53-54 GHz
- + 3 channels at 183.31 GHz
- More information on temperature and water vapour profiles

Scatterometry

- Objectives
- ocean surface wind vectors
- soil moisture
- snow equivalent water sea-ice type
- ImplementationESA development

Key performances
C-band carrier frequency
VV + VH polarisation
measurement range: 4 – 40 m/s
Radiometric resolution: 3%
spatial resolution: 25 km
dual swath: 550 km each

JPSS Science Team Meeting August 2016

550 km each

Breakthrough

- Increase of spatial resolution to 25 km
 - Better approach of coast lines
- Increase of swath width to >1100 km
 - Enhanced coverage

Addition of VH polarisation

Covers higher wind speeds without saturation, will benefit observation of tropical and extra-tropical storms

Radio-Occultation

Objectives

Refractivity profiles at high vert. resolution

Temperature / humidity profiles

- PBL top and tropopause height
- Ionospheric electron content
- Implementation **ESA** development

Key performances

tracking of GPS and Galileo satellites optional: GLONASS and COMPASS RO on two satellites: > 2600 occultations per day bending angle accuracy: 0.5 µrad or 0.2%

Breakthrough

180

200

220

Tracking of GPS and Galileo satellites to double the number of occultation measurements

240

260

280 Temperature 30

Equipment of both Metop-SG satellites with RO in case of a dual satellite configuration

Scientific development for future / enhanced products Wave optics for retrieval of GRAS profiles

UVNS Nadir Viewing UV/VIS/NIR/SWIR sounding

- Objectives
- Ozone profile and column
- Columns of CO₂,SO₂, NO₂, H₂O, CO, CH₄,
 - Aerosol optical depth
- Columns of BrO, HCHO, OCHCHO
- Volcanic Plumes
 - Implementation
 - GMES Sentinel-5 to be embarked on Metop-SG, ESA
 - development
 - Key performances
 - spectral range: 0.27 2.385 µm spectral resolution: 0.25 – 1

nm

- radiometric calibration: 1 2%
- SNR: 120 1500

Aug, 01, 2007

Breakthrough

- Drastically increased spatial sampling (7 km)
 - for the benefit of air quality monitoring
- Extended spectral range into the near and shortwave infrared regions
 - to measure aerosols as well as methane and carbon monoxide in the PBL

Microwave Imaging

Objectives of a new mission precipitation and cloud products water vapour profiles and imagery sea-ice, snow, sea surface wind

Implementation
 ESA development

Key performances

18 channels: 18.7 – 183 GHz dual polarisation (V, H) up to 89 GHz

- V polarisation at higher frequencies
- radiometric accuracy: 1 K
- radiometric sensitivity: 0.6 1.2 K Footprint size: 10 – 50 km spatial sampling: 7 km conical scan

Breakthrough: 18 channels

Continuity of key microwave imager channels for weather forecast

Inclusion of dedicated sounding channels (118.75 GHz)

- Enhanced precipitation measurements through inclusion of dedicated sounding channels
- Extended suite of 183.31 GHz channels
 - water-vapour and cloud profiling

Ice Cloud Imaging

Objectives of a new mission

Cloud products, in particular ice clouds

- Snowfall detection and quantification
- Water-vapour profiles and imagery
- Implementation

ESA development

Key performances

- 11 channels: 183 664 GHz
- single polarisation (V) for all channels
- dual polarisation (V, H) at 243 and 664 GHz
- radiometric accuracy: 1 1.5 K
- radiometric sensitivity: 0.6 1.9 K
- Footprint size: 15 km spatial sampling: 7.5 km conical scan

Breakthrough: 11 channels

- Establishes operational ice-cloud imaging mission
- Support of weather forecast, hydrology, and climate monitoring

Multi-viewing multi-channel multi-polarisation Imaging

Objectives of a new mission

- Aerosol optical thickness, particle size, type, height, absorption Volcanic Ash
- Cloud phase, height, optical depth Surface albedo

Implementation

ESA development

Key performances

- 12 channels: 0.41 2.13 µm
- 3 polarisations: 0°, 60°, -60°
- 14 views

o -

- radiometric bias: 3%
- SNR: 200
- spatial sampling: 4 km
- push-broom scan (2200 km swath)

Kaufman et al. (2002) Kaufman et al. (2002)

Breakthrough:

- Enhanced spatial sampling (4 km)
 - Improves separation of cloudy areas

14 2

- 12 spectral channels (9 polarised), extending into the UV and SWIR
 - Better aerosol characterisation
- Higher angular resolution (14 views)
 - Better phase function characterisation

EPS Second Generation Synergy of observation missions

Observation missions are highly complementary

- Co-registration of measurements will allow to optimise the information extraction
- Synergy to be considered in payload distribution of a dual satellite configuration

Essential co-registrations

IAS – VII – UVNS MWI - I<u>CI</u>

Desired co-registrations

- IAS MWS
- VII 3MI

- IAS UVNS 3MI
- MWI SCA VII

Process for user requirements elaboration

User Preparation: MTG as an example

A dedicated project in EUMETSAT

- Including representatives from the Member States MTGUP Project objectives are to:
 - Support users in a smooth transition from Meteosat Second Generation (MSG) to MTG for all comparable services, noting that the MSG and MTG availability may have a longer period of overlap;
 - Assist users in the early adoption of MTG services into operational forecasting;
 - Assist and encourage users to take advantage of the new services and capabilities offered by MTG in the early stages of MTG operations;
 - Establish a communication platform for the exchange of user feedback on MTG Programmatic and general user preparation issues.

User Preparation: Schedule

 Once established, the project will continue until the start of MTG-I2 operations + 1 year to cover the transition and the early operations phases, until such time when the full MTG services are in place;

The various project phases and milestones shall be linked to the availability of the future MTG services (0 degree, RSS, Sounding).

Consider operational transition scenarios

User Preparation: Work packages

- Establish and validate user expectations
- Ensure User engagement
- Monitor user preparedness
- Training Support
- Communication and information!

User Preparation: Work packages

- Test Data Support
- Science interaction and collaboration
 - Science studies and activities supporting the new capabilities of MTG, e.g. NWC-IRS Demonstration project
 - Research Announcement Collaboration, etc.,
 - Review the portfolio of existing meteorological products
 - Propose enhancements to the existing products based on changing user requirements
- Build on experiences from our partners
 - US/Europe collaboration is exemplary!!

Test Data: MWI-1 HiRes

Test Data: MWI Channels 1 - 18

Channel	Frequency (GHz)	ТВ			B CONV-CH18	
MWI-1	18.7			_		
1WI-2	23.8					
MWI-3	31.4	26 [°] N				
WI-4	50.3	and a				
VI-5	52.610					
/I-6	53.24	24° N				
VI-7	53.750					
I-8	89.0					
9	118.7503±3.20	22° N				
-10	118.7503±2.10					
11	118.7503±1.4					
I-12	118.7503±1.2	20 [°] N				
/I-13	165.5±0.75					
I-14	183.31±7.0					
I-15	183.31±6.1	10 N				
-16	183.31±4.9			_		
-17	183.31±3.4	62 ₩	60 W	58 [°] W	56 [°] ₩	
·18	183.31±2.0					

Thank You – Any Questions

Thank You For Inviting Me! Questions?

