

1

JPSS Sensor Data Record (SDR) Overview

Fuzhong Weng Satellite Meteorology and Climatology Division (SMCD) NOAA/NESDIS/Center for Satellite Applications and Research (STAR)

Outline

- Suomi NPP SDR Status and Reprocessing
- Applications of Suomi NPP SDR Data in NWP
- J1 SDR Algorithm Status and Schedule
- Summary and Conclusions

Suomi NPP Instruments and Their Applications

NPP/JPSS Instrument		NOAA Mission Benefits	
	Advanced Technology Microwave Sounder (ATMS)	ATMS and CrIS together provide high vertical resolution temperature and water vapor information needed to maintain and improve forecast skill out to 5 to 7 days in	
	Cross-track Infrared Sounde (CrIS)	advance for extreme weather events, including hurricanes and severe weather outbreaks	
	Visible Infrared Imaging Radiometer Suite (VIIRS)	VIIRS provides many critical imagery products including snow/ice cover, clouds, fog, aerosols, fire, smoke plumes, vegetation health, phytoplankton abundance/chlorophyll. All are required for environmental hazard monitoring and are useful for crucial economic sectors (transportation, fishing, energy, agriculture), all of which impact human health	
	Ozone Mapping and Profiler Suite (OMPS)	Total ozone for monitoring ozone hole and recovery of stratospheric ozone and for UV index forecasts	
	Clouds and the Earth's Radiant Energy System (CERES)	Provide climate quality measurements of the Earth's outgoing radiation budget- longwave infrared, reflected solar flux, and incoming solar radiation, all of which are vital to climate monitoring	

Suomi NPP TDR/SDR Algorithm Schedule

Sensor	Beta	Provisional	Validated
CrIS	February 10, 2012	February 6, 2013	March 17, 2014
ATMS	May 2, 2012	February 12, 2013	March 17, 2014
OMPS	March 7, 2012	March 12, 2013	September 17, 2015
VIIRS	May 2, 2012	March 13,, 2013	April 17, 2014

Beta

- Early release product.
- Initial calibration applied
- Minimally validated and may still contain significant errors (rapid changes can be expected. Version changes will not be identified as errors are corrected as on-orbit baseline is not established)
- Available to allow users to gain familiarity with data formats and parameters
- Product is not appropriate as the basis for quantitative scientific publications studies and applications

Provisional

- Product quality may not be optimal
- Incremental product improvements are still occurring as calibration parameters are adjusted with sensor on-orbit characterization (versions will be tracked)
- General research community is encouraged to participate in the QA and validation of the product, but need to be aware that product validation and QA are ongoing
- Users are urged to consult the SDR product status document prior to use of the data in publications
- Ready for operational evaluation

Validated

- On-orbit sensor performance characterized and calibration parameters adjusted accordingly
- Ready for use in applications and scientific publications
- There may be later improved versions
- There will be strong versioning with documentation

JPSS SDR 2016 Major Accomplishments

- CrIS full spectral resolution (FSR) SDR data are routinely produced at STAR processing system and the FSR data have been made available to the user community for various applications and research
- ATMS SDR team have completed the two-round J1 ATMS TVAC analysis, is timely supporting the anomaly investigations, and the team is prepared for the third round performance analysis after the ATMS channel 17 anomaly is fixed.
- VIIRS SDR team delivered J1 codes that accommodate 13 waivers (e.g. DNB aggregation). RSBautocal has been transitioned into IDPS operation. VIIRS SDR team, STAR OC team and NASA VCST are further working on uses of lunar observations to improve the RSB calibration
- J1 OMPS SDR algorithm was delivered with calibration tables and LUTs, after its end-to-end tests. The core dump issue in the OMPS 43 data sets was found and associated with the FSW compressor
- STAR Integrated CalVal System (ICVS) is monitoring the ATMS scan motor current excursion and the ICVS team has been supporting the NASA/NOAA decision makers for defining the Suomi NPP ATMS scan reversal scheme
- Suomi NPP SDR reprocessing project is initiated and a high quality of SDR data sets from ATMS and CrIS have been reprocessed and can be applied for climate applications

S-NPP ATMS Scan Reversal Coverage Map

Daily Orbital Reversal (24 Scans per Orbit) Centered at 70N, 75N, and 80N

Objectives of JPSS Life-Cycle Data Reprocessing

- Optimize the algorithms and processing systems to achieve the lowest JPSS data uncertainties
- Implement the mission-life consistent sciences to achieve a long-term stability of JPSS data accuracy
- Reduce the processing anomalies to the lowest level for preserving the highest integrity of the JPSS data stream
- Incorporate the user-oriented algorithm sciences into reprocessing to further augment the society impacts of JPSS datasets

Chronology of OMPS SDR Algorithm Change

19

Technical Approaches for JPSS Data Reprocessing

ATMS NRT data:

- Integrate the recommendations from user's community into the JPSS life-cycle data reprocessing plan
- Build a cost and effective HPC infrastructure for JPSS data reprocessing and accessing
- Utilize the latest version of algorithms with new sciences fully vetted by the calval teams
- Recover the missing/repaired granules from every possible archival and medium
- Update all the processing coefficient tables, look up tables and engineering package in reprocessing

Heather Laurence, ECMWF reported at 2016 NOAA JPSS Reprocessing Workshop

Example of NWP User Recommendations for ATMS/CrIS Reprocessing

- Lunar intrusions in cold calibration should be flagged for whole ATMS time series (ECMWF)
- Lunar intrusion correction should be applied for whole ATMS time series (ECMWF)
- ATMS striping correction algorithms need to be applied for reprocessed data (ECWMF)
- ATMS data stream at temperature sounding channels need to be remapped to AMSUA-like channels (NCEP)
- ATMS channel correlations should be well quantified through reprocessed data (NRL)
- CrIS data can be collocated with VIIRS imager data to assist in cloud-detection (ECMWF)
- CrIS data stream should be generated at both normal and full spectral resolution (NCEP)

Examples of VIIRS User Recommendations

- A "hybrid methodology" by combining SD and lunar calibrations is necessary for VIIRS calibration due to the RTA uniformity degradation (OC team)
- SD/SDSM calibration provide stable and clean calibration coefficients but each component must be robustly characterized VF, BRF, H-factor, F-factor, Hybrid coefficients (OC team)
- VIIRS RSB channels requires the calibration stability of 0.1 0.2% level for the ocean color products (OC team)
- Warm up and cool down (WUCD) in thermal calibration results in spikes in VIIRS derived SST. Thermal channel calibrations should be compared w/o (WUCD) in VIIRS SDR reprocessing and be assessed on SST impacts (SST Team)
- VIIRS EDR repressing should be implemented with the enterprise algorithms (Land Team)
- VIIRS EDR reprocessing should be based on a holistic approach and should estimate impact of SDR and upstream product changes on downstream product such AOT (Aerosol Team)

OMPS User Recommendations

- Improved characterization of darks, radiance and irradiance calibration constants, non-linearity, stray light and intraorbit NM wavelength scales provide good SDR adjustments and have improved product accuracy
- The OMPS NM SDRs show a small cross-track bias in their calibration
- The OMPS NP has experienced a small amount of throughput degradation for the shortest wavelengths but its time dependence is accurately determined
- The OMPS NP has an annual cycle in its wavelength registration, and the 27-day and 11-year solar activity produces corresponding radiance variations.
- The OMPS NP SDRs show a small, wavelength-dependent bias in their calibration versus NOAA-19 SBUV/2

SMCD/CICS Cluster for JPSS Reprocessing

- Cluster: 36 nodes with each node having 24 cores
- Hard disk/node: 236 GB
- Memory/core: 64 GB
- Total distributed cluster storage: 1 Petabytes
- Operating system: 64-bit Linux (Red Hat)
- Aggregated network speed (storage to compute): 56 gigabits / second
- Job management: PBS Torque and MAUI
- Optimized ways of job submission for different sensors

Suomi SNPP SDR Reprocessing Benchmark Tests

Instrument	Process Time Needed for One- Year SDR Data
ATMS	5 hours
CrIS	1 day
OMPS NP	2.8 hours
OMPS TC	18 hours
VIIRS	8.5 days
S-NPP Total	10 days

Suomi NPP Yearly SDR Data Volume

Instrument	Input Data	Output Data
ATMS	185 GB	400 GB
CrIS	6.57 TB	17.2 TB
OMPS NP	30 GB	86 GB
OMPS TC	138 GB	1.1 TB
VIIRS	20 TB	230 TB
S-NPP Total	27 TB	275 TB

ATMS TDR Mean Bias after Reprocessing

ATMS TDR Difference between Reprocessing and Operation

90 N 75 N 60 N 45 N 30 N 15 N EQ 15 S 30 S 45 S 60 S 75 S 90 S 180 W 150 W 120 W W 00 60 W 30 14 30 E 60 E 90 F 120 E 150 E 180 E K -0.400 0.000 0.400 Gap -0.800 0.800

S-NPP ATMS TDR Bias (Rep - OPS)Ch.1 23.8 GHz QV-POL Scan UTC Date: 2012-07-26

S-NPP ATMS TDR Bias (Rep - OPS)Ch.16 88.2 GHz QV-POL Scan UTC Date: 2012-07-26

S-NPP ATMS TDR Bias (Rep - OPS)Ch.7 54.4 GHz QH-POL Scan UTC Date: 2012-07-26

S-NPP ATMS TDR Bias (Rep - OPS)Ch.20 183.311±3.0 GHz H-POL Scan UTC Date: 2012-07-26

Impacts of CrIS SDR Algorithm Update on Data Quality

Internal thermal drift thresholds in engineering packet were updated around 14:00 on June 27, 2012

NPP CrlS Short Wave SDR Overall Quality Flag, Mapped, Ascending, 06/27/2012 (Blue: Good; Green: Degraded; Red: Invalid) Updated at Aug 10 22:48:14 2015 UTC

NPP CrIS Short Wave SDR Overall Quality Flag, Mapped, Descending, 06/27/2012

The next day after this update

NPP CrlS Short Wave SDR Overall Quality Flag, Mapped, Ascending, 06/28/2012 (Blue: Good; Green: Degraded; Red: Invalid) Updated at Aug 10 22:49:33 2015 UTC

Remaining issues will be fixed after reprocessing

Cooler stage thermal drift limit is still too tight

Blank granules with pre-defined filled values, i.e. the '1958' granules

False alarm: Negative values as thresholds for Short-wave radiance invalidity over very cold scenes, i.e. Antarctic, Tropical cloud tops

Impacts of OMPS SDR Algorithm LUT Update on Data Quality

OMPS daily nadir view reflectance trending produced by ADL4.2 with up-to date table

STAR JPSS Annual Science Team Meeting

VIIRS SDR F-Factor from Lunar-Corrected RSBAutocal

ATMS Monitors Well the Development of Tropical Cyclone Giovanna

MODIS Visible Channel

Giovanna at Feb 13 2012 0630Z

A warm core of 8K ore more at 250 hPa from ATMS indicated a category 4 to 5 hurricane intensity

STAR JPSS Annual Science Team Meeting

New ATMS Channel Composite Reveals Hurricane Structures

STAR JPSS Annual Science Team Meeting

20

Impacts of Microwave Sounders in NCEP GFS

500 hPa Southern Hemisphere AC scores for 20140101 – 20140131 00Z

Assimilation of ATMS radiances in NCEP GFS produces a largest impact on global medium-range forecast, especially in southern hemisphere. The baseline experiment includes the conventional and GPSRO data and the control experiment includes all the satellite instruments and conversional data.

STAR JPSS Annual Science Team Meeting

2016 Hurricane Earl Predicted by HWRF

1200 UTC August 2, 2016

ATMS DA Research Highlighted in Nature

METEOROLOGY

Satellite improves storm forecasts

Data from a US Earthobserving satellite could help improve the accuracy of prediction of hurricane track and strength.

When generating hurricane forecasts the US National Weather Services does not us real-time information from weather satellites. But Xiaolei Zou at Florida State University in Tallahassee and her colleagues looked at the effect of including data from the

Suomi NPP satellite, launched in 2011, on hurricane forecasts. The satellite's microwave instrument measures air temperature and humidity.

Incorporating Suomi data into the government's hurricane model for four 2012 storms, including Sandy(pictured), made for more accurate forecasts of track and intensity. The work suggests a way to improve the notoriously difficult predictions of storm strength. J. *Geophys. Res. Atm.*, 118, 11558-

11576(2013)
Suomi NPP launch date:
October 28, 2011
ATMS into NCEP operational system: May 25, 2012
Impact test completed: Spring 2013
Results published: Fall 2013

ATMS data assimilation in GSI/HWRF results in a consistent positive impact on the track and intensity forecasts of the four landfall hurricanes in 2012.

Impacts of ATMS Data Assimilation on Track Forecast of Hurricane Sandy

12 DECEMBER 2013 VOL 504 NATURE [19] 2 2013 Macmil an Publish

ATMS Quality Control in HWRF/GSI

GSI QC performs well for ATMS water vapor sounding channels due to the use of more window channels (1, 2, 16, 17) for cloud detection

0600-0900 UTC

1200-1500 UTC

AMSU-A and Observed 3-h rainfall MHS data assimilation improves forecasts 100 of Hurricane 50 **ISAAC's** 35 CTRL 25 rainbands 15 AMSU-A, MHS 10 assimilation as 5 two data streams 1

ODS

0.1

AMSU-A, MHS assimilation as one data stream

August 30, 2012

Impacts of Infrared Sounder in NCEP GFS 500 hPa Southern Hemisphere AC scores for 20140101 – 20140131 00Z

The impact from assimilation of CrIS radiances in NCEP GFS is smaller, compared to that from AIRS and IASI. The baseline experiment includes the conventional and GPSRO data and the control experiment includes all the satellite instruments and conversional data. The new quality control is required for

Impacts of CrIS and ATMS DA on Hurricane Forecasts

Unlike ATMS data, assimilation of CrIS radiance observations in HWRF degraded the forecasts of Superstorm Sandy tracks. Some fundamental issues related to QC of CrIS data are yet to be resolved!

Issues with the Current GSI Cloud Detection

- The IR semi-transparent thin cirrus clouds are poorly detected by the current GSI QC scheme and thus the cloudaffected CrIS radiances could be treated as clear-sky radiances and assimilated wrongly into GSI.
- Compared with VIIRS cloud products, both CrIS cloud fraction and cloud top pressure derived in the current GSI are significantly biased.
- A new cloud detection algorithm needs to be developed for better discrimination of the optically thin cirrus clouds within CrIS FOVs.

STAR

Physical Basis for CrIS Double CO₂ Cloud Detection Algorithm

- The CrIS BTs at both LW (e.g., 670-750 cm⁻¹) and SW (e.g., 2200-2400 cm⁻¹) CO₂ channels display different responses to the changes of cloud vertical structures.
- A new cloud detection algorithm will be developed using the two CrIS CO₂ bands.

A New Cloud Index for CrIS DA QC Using CrIS Double CO2 Bands

A linear regression is established between the paired CrIS SWIR and LWIR channels.

$$T_{b,SWIR}^{regression} = \alpha T_{b,LWIR}^{obs} + \beta$$

where the regression coefficients α and β are obtained by minimizing the following cost function

$$\min J(\alpha_i, \beta_i) = \sum_{i=1}^{JJ} \left(T_{b,SWIR}^{regression}(i, j) - T_{b,SWIR}^{CRTM}(i, j) \right)^2 \quad (\text{Clear pixels})$$

An empirical cloud emission and scattering index (CESI) is defined for cloud detection at various altitudes

$$CESI = T_{b,SWIR}^{regression} - T_{b,SWIR}^{obs}$$

Validation of CESI by GOES Cloud Products

STAR JPSS Annual Science Team Meeting

Advanced Satellite Data Assimilation Activities

- Generate the new LUT for CRTM using discrete dipole approximation (DDA) to advance the cloudy radiance assimilation
- Develop a new interface for CRTM to incorporate the polarization capability
- Prepare CRTM readiness for uses of CrIS unapodized radiance data
- Evaluate cloud scattering and absorption table at infrared wavelengths
- Implement NLTE and solar reflection modules in CRTM
- Improve CRTM microwave surface emissivity model

Updates on ATMS Cloudy Radiance (O-B) from CRTM (Mie vs. DDA)

- The DDA can correct the over-estimation of scattering by Mie theory at 165 GHz
- The lower frequency channels are mainly affected by water phase clouds, thus the difference between DDA and Mie is not significant
- Scattering effect is not significant for upper-air temperature channels

STAR JPSS Annual Science Team Meeting

J1 SDR Algorithm Readiness and Deliverables

- ATMS SDR:
 - Delivery of Pre-Launch Characterization Package: Feb-16
 - Delivery of PCT updates (ADR8199, CCR-2955): Jun-16
 - J-1 PCT with mounting Coefficients (ADR 8224, CCR-2981): Jul-16
- CrIS SDR:
 - FCE updates: updated delivery (with ADL5.3_PSAT16; ADR 4481, CCR-2898): Apr-16
 - J-1 updates (DQI, A4, and Geo) (ADR 4481, 8057, 7968, and 7487, CCR-2979): Jun-16
 - J-1 PCT with mounting Coefficients (for TS & FS) (ADR 8210, CCR-2978): Jun-16
- VIIRS SDR:
 - Delivery of algorithm updates based on TVAC (ADR8036, CCR-2590): updated delivery: Nov-15
 - Delivery of LUTs updates based on TVAC (ADR7996,CCR-2589): updated delivery: Dec-15
 - J-1 Geo code update (ADR8160, CCR-2890): Apr-16
 - J-1 Launch Ready LUTs with mounting Coefficients (ADR 8161, CCR-2859): Jul-16
- OMPS SDR:
 - LUTs for S-NPP Block 2.0 (TC: ADR8088, CCR-2764; NP: ADR8139, CCR-2765):
 - Delivery: Mar-16; updated delivery (with ADL5.3_PSAT16): Apr-16
 - JPSS-1 Launch Ready LUTs (Initial delivery. TC: ADR8158, CCR-2848; NP: ADR8159, CCR-2849):
 - Delivery: Mar-16; updated delivery (with ADL5.3_PSAT16): Apr-16
 - JPSS-1 Launch Ready LUTs (final delivery) with mounting Coefficients
 - ◆ TC: ADR 8211, CCR-2962; NP: ADR 8212, CCR-2963
 - Delivery: Jul-16

J1 TDR/SDR Algorithm Schedule

Beta CrIS L+68D ATMS L+20D VIIRS L+70D OMPS NM L+68D, NP: L+68D **Provisional** CrIS L+90D ATMS L+36D VIIRS L+90D OMPS NM L+90D, NP L+90D Validated CrIS L+9M ATMS L+6M VIIRS L+9M OMPS NM: L+9M, NP: L+9M
Summary and Conclusions

- Suomi NPP instruments are well calibrated and their performance in orbit meet the specification
- Many of ATMS instrument calibration and SDR science advances have been published through peerreviewed process (2013 JGR special issue, 2016 Remote Sensing special issues, etc)
- JPSS IDPS processing system is enhanced with new SDR sciences (e.g. CrIS FSR, ATMS antenna reflector emission, VIIRS RSB autocal-Lunar corrected)
- STAR ICVS is transitioned into operation and monitoring all the instrument performance in orbit
- SNPP SDR data are successfully assimilated into NWS global and regional forecast models and produced the largest positive impacts.

Satellite Oceanography & Climatology Division (STAR/SOCD) and JPSS Ocean EDRs: A sea of activity

Paul M. DiGiacomo and Veronica P. Lance With contributions from: Mark Eakin, Daniel Tong, Avichal Mehra, Eric Bayler, Cara Wilson, Eileen Maturi, Sasha Ignatov, Menghua Wang, Michael Soracco

Outline

 Users & Applications – representation from NOS, NMFS, **NWS, OAR and NESDIS** Highlights from VIIRS SST and Ocean **Color EDR Teams** Reprocessing (Oceans) at STAR Non-NOAA data at STAR

VIIRS SST User: NESDIS & NOAA Coral Reef Conversation Program

VIIRS SST User: NESDIS & NOAA Coral Reef Conversation Program

... to generate a new climatology for their bleaching alert and monitoring products for coral reef managers around the globe.

VIIRS SST Users: GHRSST and International Met Offices

GHRSST, UK Met office, Canada Met Office, BoM of Australia, Japanese Met Agency and other agencies, academics, etc.

VIIRS Ocean Color User: NOS

- JPSS PGRR Program
 has supported integration
 of VIIRS ocean color
 data into NOS HAB
 bulletins.
- Currently testing Science Quality dataset to better interpret NRT data stream.

Gulf of Mexico Harmful Algal Bloom Bulletin Region: Southwest Florida Friday, 12 December 2014 NOAA Ninoal Ocean Service NOAA Stational Gean Service NOAA Stational Weature Service Las bulletin: Tweaday, Mys 27, 2014

Satellite chlorophyll image with possible *K*. brevit HAB areas shown by red polygoa(s), when applicable. Points represent cell concentration sampling data from December 2 to 11: red (high), orange (medium), yellow (low b), bown (low a), bue (very tow b), puralg (very low a), pink (present), and green (out present). Cell count data are provided by Florida Fish and Wildlife Conservation Commission (FWC) Fish and Wildlife Research lastitute: For a list of sample providers and a key to the cell concentration categories, please see the HAB-OFS bulletin guide.

http://tidesandcurrents.noaa.gov/hab/habfs_bulletin_guide.pdf

Detailed sample information can be obtained through FWC Fish and Wildlife Research Institute at: http://myfwc.com/rediidestatus

To see previous bulletins and forecasts for other Harmful Algal Bloom Bulletin regions, visit at: http://tidesandcurrents.noaa.gov/hab/bulletins.html Conditions Report Does the image look good to you?

Analysis Blah blah blah

Wind speed and direction are averaged over 12 hours from buoy measurements. Length of line indicates speed; angle indicates direction. Red indicates that the wind direction favors upwelling near the cost. Values to the left of the dotted vertical line are measured values; values to the right are forecasts. Wind observation and forecast data provided by NOAA* Vlational Weather Service (NWS).

Wind Analysis Test for VIIRS products

NOAA CoastWatch is working with NOS as part of the NOAA Ecological Forecasting Initiative

NWS/NCEP/EMC is using VIIRS Ocean Color to train a neural network to estimate gap-free, consistent ocean color fields (e.g., chlorophyll-a) to be assimilated into a pre-operational environment for NOAA's operational ocean models (HYCOM, MOM4). (And see Kim et al. at OC Breakout, Wednesday afternoon.)

VIIRS Ocean Color User: OAR

The NOAA Air Resources Laboratory (OAR) derives the global distribution of marine isoprene which is then incorporated into emission models for the National Air Quality Forecasting Capability (NAQFC).

College Park, MD ; 8-12 August 2016

VIIRS Ocean Color & SST Data Users: **NMFS**

The Satellite Data Training Course conducted by Cara Wilson of **NMFS/SEFSC** is enabling fisheries research & operational applications.

Developing ecological indicators for sablefish recruitment

Obiectives

- Support an ecosystem approach to management
- \$ 142 million fishery for sablefish in U.S.
- Develop indicators for sablefish recruitment
 - Sablefish (Anoplopoma fimbria)

Futu Use s

spatia

of oc

sable

Quantify blooms in rearing areas Link to future sablefish recruitment

Coastal rearing habitat for young sablefish

Ellen Martinson, NMFS/A

Ocean survey results

High age-2 recruitment in 2002 was linked to high chlorophyll-a in the late summer in 2000

Reductio

We Thanks to the JPSS Proving Ground & Risk nitiative for making this class possible e 2013 NOAA Ocean Satellite Data Class

Not a complete photo – 9 people missing

High quality, long term time series satellite data are essential to an "Integrated Ecosystem Assessment" approach to fisheries management at NMFS.

Highlights from VIIRS SST

Redesigned SQUAM AVHRR GAC page and updated ACSPO AVHRR RAN1 in SQUAM

SQUAM v10.0

SQUAM objective

SQUAM

Serve as a community tool for near real-time monitoring of major global SST products

Home Level 2 + Level 3 + Level 4

Leve

- Co SST prov

What SQUAM does? Monitors global L2 & L3 SSTs w.r.t. L4 fields & in situ data

Intercompares and validates various global L4 SST products

Methodology

Global QC and statistical checks for self- and cross-consistency using maps, histograms, time series, and dependencies of SST differences

Page navigation

For specific data, follow the topleft menu or click inside the table For related info (ver., ref. ...), see "About+" at the top-right

Contact us Tell us how we can do better:

Prasanjit Dash Sasha Ignatov

High Resolution NPOESS VIIRS NESDIS ACSPO NGS/Raytheon IDPS NAVO AVHRR FRAC NESDIS MetOp-B NESDIS MetOp-A ACSPO EUMETSAT OSI SAF Terra/Aqua MODIS NASA MOD28/MYD28 (coming) NESDIS ACSPO (A)ATSR/Sentinel-3 SLSTR ARC L2P (A)ATSR ESA Sentinel-3 (future) AVHRR GAC NESDIS ACSPO NAVO SEATEMP NESDIS MUT (heritage)	AVHRR GAC ACSP0 L3U (currently v2.4) NODC/RSMAS PathFinder v5.0	Bulk Reynolds (AVHRR) : DOLAV Reynolds (+ AMSRE-E): DOLAA RTG high resolution: RTG_HR RTG low resolution: RTG_LR NAVO K10 NESDIS POESGOES NASA JPL 1km G1SST: G1SST Foundation/Sub-skin OSTIA, UK Met0 ffice OSTIA Reanalysis, UK Met0ffice CMC 0.2°, Environment Canada GAMSSA 28km, Australian BOM ODYSSEA, MERSEA France MUR, JPL/NASA DMI OISST, DMI Ensemble of L4 SSTS GHRSST Median Ensemble
- "L2/3 vs L4" complements heritage - Contributes to GHRSST STVAL	e "L2/3 vs insitu" validation <u>++Why?</u> ++Link	- Contributes to GHRSST IC-TAG
SST data providers Met Office	Canadian Meteorological Centre	Satellite missions & SST Groups

SST Quality Monitor

2016 STAR/JPSS Annual Science Meeting College Park, MD ; 8-12 August 2016

Last undated: Aug-24-201

2	Level-3	Level-4	Highlights since Feb 2010
PO 5 (coming) 3 SLSTR ;)	LEVEI-3 AVHRR GAC ACSPO L3U (currently v2.4) NODC/RSMAS PathFinder v5.0	LEVEL-4 Bulk Reynolds (AVHRR) : DOLAV Reynolds (+ AMSRE-6): DOLAA RTG high resolution: RTG_LR NAVO K10 NESDIS POESGOES NASA JPL 1km G1SST: G1SST Foundation/Sub-skin OSTA, UK MetOffice OSTA, Reanalysis, UK MetOffice CMC 0.2°, Environment Canada GAMSSA 28km, Australian BOM ODYSSEA, MERSEA France MUR, JPL/NASA DMI OISST, DMI Ensemble of L4 SSTS GHRSST Median Ensemble	Eumetsat Vis Sci presentation (Nov-19-2015]_PDE 2012 Eumetsat presentation (VIIRS) [Aug-30-2012] PPT VIIRS & MODIS (ACSPO) included in High Res SQUAM; SSTs compared against L4 & in situ [Mar-15-2012] [More Insitu val of high res. SSTs included [Oct-12-2011] More OSTIA reanalysis SST included [May-08-2011] [More GAMSSA SST included in L4-SQUAM [Mar-09-2011] [More SQUAM overview presented at GHRSST DV-WG, ST-VA HL-TAG combined workshop [Mar-02-2011] PPT Insitu validation of L4 SSTs implemented [Dec-2010] SQUAM other NESDIS monitoring systems presented USSST meeting [Nov-08-2010] PPT Peer-review paper published in JAOT-Oceans [Nov-2010] FDE JPL G1SST and CMC 0.2° SST included in L4-SQUAM [Nov-03-2010] More
ents heritag T STVAL	e "L2/3 vs insitu" validation <u>++Whv?</u> ++Link	- Contributes to GHRSST IC-TAG <u>++Link</u>	PathFinder v5.0 included in L3-SQUAM [Sep-03-2010] More
Contraction of the second seco	Canadian Meteorological Centre	Satellite missions & SST Groups	NAVO K10, GMPE, & POES-GOES Blended SSTs include L4-SQUAM [Aug-23-2010] More MetOp-A FRAC SST (NESDIS ACSPO and 0&SI SAF) in in L2-SQUAM [May-18-2010] More NAVO L2 SEATEMP products included [Apr-07-2010] More 2010 MyOcean & STVAL [Feb-23-2010] PPT GHRSST Multi-year Science Team Meeting (& CEOS Meti Workshop) presentations are available from GHRSST and

Year

Advanced Clear-Sky Processor for Oceans (ACSPO) Near real time data

Advanced Clear-Sky Processor for Oceans (ACSPO) reprocessed long term science quality data

5-km Global Blended SST Analysis (includes VIIRS)

Highlights from VIIRS Ocean Color

VIIRS SNPP MSL12 mission-long science quality climatology

Including greatly improved retrievals for high altitude lakes

Multi-Sensor Level 1 to Level 2 Processing System (MSL12) **Both NRT and** mission -long science quality data

Attributo	Noar Poal Timo	Science Quality		
Allibule		Delayed Mode		
Processing System	MSL12	MSL12		
	Best effort, as soon as	Best effort, ~1-2 week		
Latency:	possible (~12-24h)	delay		
SDR:	IDPS Operational SDR	OC-improved IDPS SDR		
	Global Forecast System	Science quality		
Ancillary Data:	(predicted)	(assimilated)		
	May be gaps due to			
Spatial Coverage:	various issues	Complete global coverage		
	CoastWatch, transferring			
Processed by:	to OSPO	NOAA/STAR		
Distributed by	Coast\Match	Coast\Match NCE		
Distributed by:	Coastwatch	COASE VVALCH, INCEI		
Archive Plans:	Yes, NCEI, via OSPO	Yes, NCEI, via CoastWatch		
		Yes, ~2-3 years or as		
Reprocessing:	No	needed		

2016 STAR/JPSS Annual Science Meeting College Park, MD ; 8-12 August 2016

Menghua Wang 17

Global Oligotrophic Waters

Statistics of VIIRS Data vs. In Situ (MOBY)

(2012-01-01 ~ 2016-04-27)

.6	IDPS-SDR MSL12 (ver. 1.10) (Near-Real-Time Data)				OC-SDR MSL12 (ver. 1.10) (Science Quality Data)			
	AVG	MED	STD	No	AVG	MED	STD	No
	1.0083	1.0065	0.0961	463	1.0164	1.0157	0.0956	509
	1.0191	1.0005	0.1733	475	1.0083	1.0062	0.0899	509
+0 0)	1.0258	0.9991	0.1861	475	1.0110	1.0103	0.0846	509
551)	1.0604	0.9809	0.4910	475	1.0148	1.0004	0.1338	509
671)	1.3366	1.0059	2.1345	487	1.1762	1.1053	0.5393	505
l-a	1.0508	0.9764	0.4254	468	1.0141	1.0041	0.1647	509
190)	1.0135	0.9826	0.2437	471	0.9842	0.9760	0.1007	505
0 000001 00000 00000 000000 000000 000000					MOBY			

IIR Gain 8 = [0.979954, 0.974892, 0.974685, 0.965832, 0.979042, 0.982065, 1.00000, 1.01812, 0.994676, 1.2025

2016 STAR/JPSS Annual Science Meeting College Park, MD ; 8-12 August 2016

nL

Ch

 $K_d(4$

Menghua Wang 18

VIIRS Ocean color EDR Team: Introduced OCView tool for easy, interactive image monitoring

http://www.star.nesdis.noaa.gov/sod/mecb/color/

NOAA CoastWatch/OceanWatch Data Dissemination of VIIRS Ocean Color and SST

Science Quality 'Life-of-Mission'

CoastWatch Level-2 Granule Viewer

The <u>NOAA CoastWatch</u> The granule selector enables a user to select a Level-2 dataset by selecting a date and clicking covers the user's area of interest. Clicking a granule will open an information window containing a link to the preview file. If multiple files are desired, clicking on the download icon $(\underbrace{\ddagger})$ will add the selected granule to a list that can be used to retrieve files.

Sensor: VIIRS on S-NPP

▼ Layers: ■MGRS Grid for S-2 regions ■ CoastWatch Regions Remove all

ATELLITE SIGNER TOTAL ALIANASA http://coastwatch.noaa.gov/cwn /cw_granule_selector.html <u>ftp://ftp.star.nesdis.noaa.gov/pub/socd1/mecb</u> /coastwatch/viirs/science/L2/

FTP OC 2012 to [Present – 15 days]:

Integrated with the same L2 Granule Selector tool

- Present 15 days: NRT Granules
- 15 days old and prior:
 Science Quality
- Includes data preview and data cart
- <u>VIIRS SST</u> Science Quality will be included when ready

Example of VIIRS OC Data Cart

Science Quality (forward processing)

Near real-time

The case for Reprocessing

•WHY"? ALL NOAA Line Offices have expressed a need for consistent, fit-for-purpose quality, long-term time series ocean satellite observations to do their part in support of the NOAA Mission.

Reprocessing is essential for the production of science quality time series data for earth and ocean observations and is expected by satellite data product user communities both within and external to NOAA.

Operational:

Science:

- Requirements:
- Measurement-Based:
- Integrated:

Operational: Redefine Not just Near Real Time

Science:

Requirements:

Measurement-Based:

Measurement-Based:

NORR COMPARENCE OF COMPARENCE

DORR COMPARENCE OF THE STREET OF COMPARENCE OF THE STREET OF COMPARENCE OF THE STREET OF COMPARENCE OF COMPARENCE

Science: Crucial at every step Not just product development Requirements: Allow to Evolve Not etched in stone tablets •Measurement-Based: Mission agnostic approach

Measurement-based approach in support of users: Ensuring continuity & coverage *Observing System Highways*: Utilize satellite data from NOAA & non-NOAA missions Leverages existing science, technical, programmatic et al. infrastructure in NESDIS

Courtesy: Paul DiGiacomo & Paul Chang

Science: Crucial at every step Not just product development Requirements: Allow to Evolve Not etched in stone tablets Measurement-Based: Mission agnostic approach Integrated: Fundamentally integrate non-NOAA observations, including reprocessing

•Operational: Redefine Not just Near Real Time Science: Crucial at every step Not just product development Requirements: Allow to Evolve Not etched in stone tablets •Measurement-Based: Mission agnostic approach Integrated: Fundamentally integrate non-NOAA observations, including reprocessing

GEO Blue Planet Initiative

•

Thank you - Questions?

Suomi NPP/JPSS Land EDR Overview

Products, Applications and J1 Readiness

Ivan Csiszar NOAA/NESDIS/STAR and the NOAA JPSS Land Team see slides for individual credits

Why monitor land surface?

- Land surface is an important component of the integrated Earth System
 - Interactions between land surface and all other "spheres" (e.g. energy, momentum, carbon)
 - Critical role of terrestrial ecosystems
- Most **human activities** take place there e.g.
 - Agriculture
 - Land use and land cover change
 - Urbanization
 - Sources of emissions
- Various <u>disasters</u> involve land surface processes e.g.
 - Droughts
 - Floods
 - Fires
 - Insects
- Land surface variables are critical inputs to numerical <u>weather and climate</u> <u>models</u>
 - Previously used climatologies are replaced by real-time data

Land algorithm status

- Land algorithms are currently transitioning to Enterprise solutions
 - changes in retrieval algorithm, product content, format
 - see presentations from the NOAA JPSS Enterprise Workshop for details
 - <u>http://www.star.nesdis.noaa.gov/star/meeting_SJEAW2016.php</u>)
- Long-term product monitoring and maintenance continues
 - <u>http://www.star.nesdis.noaa.gov/jpss/EDRs/index.php</u>
- Product development is directly in synch with operational applications
 - NCEP/EMC land: consistent, gridded, global, 1-km composites
 - biophysical variables for terrestrial ecological studies
 - fire radiative power for smoke/air quality applications
 - etc.
- Preparations for reprocessing are ongoing
 - <u>http://www.star.nesdis.noaa.gov/star/meeting_JPSS2016_LDRW.php</u>

Schematic view of proposed Land Enterprise System

VIIRS Surface Reflectance

Critical Design Review for implementation of the NOAA Enterprise version is ongoing.

E. Vermote, NASA

VIIRS VEGETATION INDEX PRODUCTS

- <u>Enterprise Algorithm for Vegetation Products</u> (EAVP) is being developed that will run operationally at NDE
- The new Vegetation products (Phase-1:EVI, EVI2*, NDVI, GVF) will be global gridded at 1* km resolution
- For generating these new vegetation products, the EAVP will ingest the enterprise versions of the VIIRS SDR, CM, SR, and AOT datasets
- These new Vegetation products generated with the EAVP will incorporate all the refinements in sensor calibration (VIIRS SDR), improvements to the input datasets (CM, SR, and AOT), as well as changes/improvements to the VI-EDR algorithm (additional quality flags, new TOC NDVI dataset, improved quality definition, etc)

FUTURE (PHASE–1) ENTERPRISE ALGORITHM FOR VEGETATION PRODUCTS (EAVP)

The Normalized Difference Vegetation Index (TOA and TOC)

$$NDVI = \frac{\rho_{\rm NIR} - \rho_{\rm red}}{\rho_{\rm NIR} + \rho_{\rm red}}$$

The Enhanced Vegetation Index (TOC)

$$EVI = 2.5 \frac{\rho_{\text{NIR}} - \rho_{\text{red}}}{\rho_{\text{NIR}} + C_1 \cdot \rho_{\text{red}} - C_2 \cdot \rho_{\text{blue}} + 1}$$

The 2-band EVI (no Blue band)

$$EVI2 = 2.5 \frac{\rho_{\rm NIR} - \rho_{\rm red}}{\rho_{\rm NIR} + 2.4\rho_{\rm red} + 1}$$

The Green Vegetation Fraction

$$GVF = \frac{EVI - EVI_0}{EVI_{\infty} - EVI_0}$$

Global Gridded Vegetation Products

- <u>Projection</u>: Geographic Lat/Lon
- <u>Spatial resolution</u>: 0.009 degree (1 km @ nadir)
- <u>Temporal resolution</u>: daily, weekly updated daily, bi-weekly updated daily
- <u>Quality Flags</u>: Land/Water, Coastal, Clouds, Aerosols, Snow/Ice, etc
- <u>Additional Scientific Data Layers</u>: Gridded, composited surface reflectance and observation geometry for use in science/advanced data analysis
- <u>Format</u>: tiled in NetCDF4

M. Vargas, STAR

Phase - 2 Enterprise Algorithms for Vegetation Products

Phase - 2 Vegetation Products	Retrieval Strategy	
Leaf Area Index (LAI): a measure of the amount of one-sided leaf area per unit ground area in a pixel	Following the MODIS heritage, the VIIRS LAI and FPAR products will be derived from a lookup table (LUT) based on three-dimensional canopy modeling combined with measurements of reflectance, surface type and viewing geometry	
Fraction of Photosynthetically Active Radiation (fPAR): a measure of absorbed photosynthetically-active radiation (PAR) by vegetation		
(Daily) Net Photosynthesis (PSN) : net carbon exchange over 1 day (photosynthesis – respiration)	$PSN = \varepsilon \cdot VI \cdot PAR$ PAR is the incident photosynthetically active radiation and ε is the light use efficiency	
(Annual) Net Primary Production (NPP): the net flux of carbon from the atmosphere into green plants per unit time, i.e., the amount of vegetable matter produced (net primary production) per year	$NPP = \sum_{annual} PSN$ NPP is the time integral of PSN over a single year (will therefore be reported annually on a global 1-km grid)	

Sample Global Gridded VIIRS Vegetation Products

16-day TOC EVI August 13-28, 2015

Daily TOC EVI2 August 01, 2015

Suomi NPP VIIRS Daily EVI2 Aug 1, 2015

7-day TOA NDVI August 13-19, 2015

VIIRS TOA NDVI (7 days) for August 13 - August 19, 2015

Weekly GVF August 7-13, 2015

M. Vargas, STAR

GVF difference (VIIRS-AVHRR clim.)

GVF difference (VIIRS - GVF_clim) April 9 - April 15, 2013

GVF difference (VIIRS - GVF_clim) July 9 - July 15, 2013

AVHRR GVF "climatology" is higher than VIIRS GVF over vegetated area in spring

M. Vargas, STAR

Green Vegetation Fraction Impacts

Surface temperature (T_{sfc}) for GFS model runs for the Eastern CONUS for May 1 – June 5, 2014.

T_{sfc} (top) and T_{sfc} [forecast – obs] (bottom). Black: observed; red: control run using multiyear AVHRR; green: experimental run using VIIRS near-real-time data. T_{sfc} RMSE (top) and RMSE [VIIRS] – RMSE [control] (bottom). Black: control run using multi-year AVHRR; red: experimental run using VIIRS near-realtime data.

Impact of real-time VIIRS (RGVF2) vs. multi-year mean AVHRR GVF (CLIMO) on NAM near-surface air and dewpoint temperatures in 2014

NWS NGGPS Project: Incorporation of near-real-time Suomi NPP Green Vegetation Fraction and Land Surface Temperature data into NCEP Land modeling suite

PIs: I. Csiszar (STAR), M. Ek (EMC) Team: M. Vargas, W. Zheng, Y. Wu, Y. Yu, Z. Jiang, Z. Song

Difference and RMSE between VIIRS and AVHRR GVF Climatology

- Mean GVF climatology is slightly higher than VIIRS GVF
- •Positive difference in winter and negative difference in spring and summer
- •RMSE is relatively low

M. Vargas, STAR; J. Jiang, Riverside / AER

Updated VIIRS GVF at Changbai mountain

Biome: Mountain Forest

M. Vargas, STAR; J. Jiang, Riverside / AER

Vegetation Health

March-September 2015 precipitation anomaly (deviation from 1981-2014 average)

F. Kogan, STAR

Phenology: monitoring and prediction of vegetation changes

http://www.star.nesdis.noaa.gov/JPSS/EDRs/products_Foliage.php

Y. Yu, STAR; X. Zhang, SDSU

Enterprise land surface albedo

- Quality of SDR, cloud mask and surface types will have direct impacts on albedo retrievals
- Land Surface Albedo reprocessing first will be based on the granule product first
 - Eventually will include a new gridded daily LSA product
- Limited retrospective reference data and validation tools are available.

Albedo: surface energy balance, numerical weather and climate modeling

Suomi NPP VIIRS Global Land Surface Albedo

20150701-20150731

A gridded albedo product is in development to serve the needs of NOAA's land surface modeling activities.

www.star.nesdis.noaa.gov/jpss/albedo.php

Y. Yu, STAR

Enterprise Land Surface Temperature

- Based on (enterprise) upstream data: SDR, cloud mask, surface type and AOT if possible
- LST production will rely on an enterprise algorithm that applies emissivity data explicitly
- The input/output data structure as well as the QC flags are determined for enterprise LST algorithm
- The software code for the enterprise LST calculation is ready in local environment
- Possible risk is the availability of corresponding water vapor information
- Limited retrospective reference data and validation tools are available.

Land Surface Temperature: numerical weather, climate modeling, agriculture

A gridded land surface temperature product is in development to serve the needs of NOAA's land surface modeling activities.

http://www.star.nesdis.noaa.gov/jpss/lst.php

Y. Yu, STAR

VIIRS gridded LST (Level 3 LST,VLSTL3)

- Gridded composite global products suitable for integration and model performance evaluation:
- 0.01 degree, daily
- 8 tiles for global, day/night separately, each tile within 150M
- Processing time less than 1.5hr for daily products

Example products: 20150602 VLSTL3 for Daytime

Gridded LST Products and their NWP application

294 296 298 300 302 304 306 308 310 312 314 316 318 320

Combining polar and geostationary data for complete coverage

Geostationary data provide the diurnal cycle of land surface temperature and help match satellite measurements with model data.

VIIRS Land Surface Emissivity

VIIRS Land Surface Emissivity (LSE) --Derived for LST retrieval

Purpose:

- Enhance LST retrieval and validation
- Support the forecasting model

Method:

- Using historic emissivity product to generate background (soil or snow) emissivity climatology
- Using real time vegetation and snow information to adjust the static emissivity.

Main Features:

- Daily global gridded dataset
- Up to 0.009 degree resolution
- VIIRS split window bands (M15&M16)
- QF for each grid
- Uncertainty better than 0.015

NOAA Operational VIIRS Fire Product Status (2/1)

- Tailored version of the M-band UMD / NASA ST algorithm operational within the Suomi NPP Data Exploitation (NDE) system since March 15, 2016
 - includes fire mask and fire radiative power (FRP)
- Data available from OSPO in simplified text and other formats
 - <u>ftp://satepsanone.nesdis.noaa.gov/FIRE/VIIRS/</u>
- Data available from CLASS
 - currently ftp interface at <u>ftp://ftp-npp.class.ngdc.noaa.gov/</u>
 - pick the date, then to the folder NDE-L2/VIIRS-Active-Fire-EDR-NOAA-Enterprise-Algorithm/
 - ordering capability through the Web interface will be available in August
 - all operational data will be backfilled by late summer from the STAR archive
- Long-term quality monitoring ongoing (including both NDE and IDPS products)
 - https://www.star.nesdis.noaa.gov/jpss/EDRs/products_activeFires.php

NOAA Operational VIIRS Fire Product Status (2/2)

- Ongoing integration into NOAA operational and experimental systems e.g.
 - Hazard Mapping System
 - eIDEA extended Infusing Satellite Data into Environmental Applications
 - http://www.star.nesdis.noaa.gov/smcd/spb/aq/eidea/
 - NWS Advanced Weather Interactive Processing System (AWIPS-II)
 - High Resolution Rapid Refresh (HRRR) <u>http://rapidrefresh.noaa.gov/HRRRsmoke/</u>
- IDPS production, long-term monitoring and maintenance until all downstream products in NDE / NOAA ESPC Enterprise system
- Other ongoing activities:
 - JPSS-1 testing / preparations
 - preparations for VIIRS SDR reprocessing
 - code integration into CSPP (Community Satellite Processing Package)
 - work towards UMD / NASA I-band / hybrid product transition to operations
 - end user interaction / support NOAA JPSS Fire and Smoke Initiative
 - RealEarth[™] Google Maps etc.

Web-Based Blended Fire and Smoke Product: eIDEA-Alaska

S. Kondragunta, STAR

eIDEA-Alaska: Overlays

default smoke product; click on "AOT" or "Satellite Derived PM₂₅" to switch b/w smoke products Slider bars

"Smoke Mask" is

Click "Save Image" to save configuration as a graphics file

S. Kondragunta, STAR

HRRR smoke forecast vs. eIDEA observations

S. Kondragunta, STAR

HRRR smoke forecast vs. eIDEA observations

VIIRS Annual Surface Type

Evergreen Needleleaf Forests Evergreen Broadleaf Forests Deciduous Needleleaf Forests Deciduous Broadleaf Forest Mixed Forests Closed Shrublands **Open Shrublands** Woody Savannas Savannas Grasslands Permanent Wetlands Croplands Urban and Built-up Lands Cropland/Natural Vegetation Mosaics Snow and Ice Barren Water Bodies

> A new 1km surface type map is produced every year from VIIRS. The data are used to support numerical weather, climate, hydrological and ecological modeling.

> > http://www.star.nesdis.noaa.gov/jpss/st.php http://vct.geog.umd.edu/st/

VIIRS Annual Surface Type (AST)

- ✓ Global Gridded, 1km, 17 IGBP surface type classes. Required typing accuracy ~70%
- Generated annually to reflect recent year changes
 - Based on VIIRS gridded surface reflectance products
 - Use Support Vector Machine (SVM) algorithm for classification
 - Training data are the best available
- Validated with ~5000 ground "truth" data
- Merged with 3 tundra types for NCEP NWP and climate models

Suomi NPP VIIRS Surface Type Map of 2014

VIIRS Surface Type Validation Data Collection Tool

CEOS-WGCV Land Product Validation (LPV) Framework

- JPSS Land cal/val team has adopted the CEOS/WGCV LPV framework & validation stages.
- Key JPSS contributions:
- 1. Tower-based reference data (CRN, BSRN-SURFRAD)
- 2. Airborne-UAV reference data (MALIBU: Román et al.)
- 3. Land Product Characterization System (LPCS: K. Gallo)
- *Participating CEOS member agencies: NOAA-STAR, NOAA-NCDC, USGS-EROS, NASA-GSFC, ESA-ESRIN.*

CEOS/WGCV/LPV subgroup has developed a framework for land product intercomparison and validation based on: (1) a citable protocol, (2) fiducial reference data, and (3) automated subsetting. These components are integrated into an online platform where quantitative tests are run, and standardized intercomparison and validation results reported. *M. Román, NASA*

Standards and Protocols – LPV Validation Hierarchy

Validation Stage - Definition and Current State		Variable
1	Product accuracy is assessed from a small (typically < 30) set of locations and time periods by comparison with in-situ or other suitable reference data.	Fapar Snow Cover Phenology LST & Emissivity Fire Radiative Power
2	Product accuracy is estimated over a significant set of locations and time periods by comparison with reference in situ or other suitable reference data. Spatial and temporal consistency of the product and consistency with similar products has been evaluated over globally representative locations and time periods. Results are published in the peer-reviewed literature.	Leaf Area Index Burned Area
3	Uncertainties in the product and its associated structure are well quantified from comparison with reference in situ or other suitable reference data. Uncertainties are characterized in a statistically rigorous way over multiple locations and time periods representing global conditions. Spatial and temporal consistency of the product and with similar products has been evaluated over globally representative locations and periods. Results are published in the peer-reviewed literature.	Land Cover Albedo Soil Moisture
4	Validation results for stage 3 are systematically updated when new product versions are released and as the time-series expands.	

Adopted by **all CEOS-WGCV subgroups** and LPV sponsor agencies: **NASA** (Terra/Aqua: MODIS, MISR, ASTER, EO-1, Suomi-NPP, SMAP, LANCE), **NOAA** (AVHRR, GOES, Suomi-NPP/JPSS), **USGS** (Landsat-8), **CNES** (SPOT/POLDER), **ESA** (MERIS, Proba-V, Sentinel Land CCI products), **EUMETSAT** (MSG-3/4).

M. Román, NASA

LPCS Science for a changing world Land Product Characterization System

NOAA/USGS Land Product Characterization System

A web-based system that is designed to use moderate- to high-resolution satellite data for the characterization and validation of CEOS-endorsed time series products, including GOES-R ABI, Landsat-8/Sentinel-2, and the Land Science products from MODIS and VIIRS.

The LPCS includes:

- data inventory
- access and
- analysis functions

that will permit selection of data to be easily identified, retrieved, co-registered, and compared statistically through a single interface.

Kevin Gallo: NOAA/NESDIS/STAR John Dwyer: USGS/EROS Greg Stensaas: USGS/EROS Ryan Longhenry: USGS/EROS

Land reprocessing and JPSS-1 readiness

- Test datasets of upstream products are needed for algorithm validation and verification
 - SDR, SR, AOT, VCM
 - Opportunity for accelerated product maturity
 - Training / validation datasets are needed
 - JPSS-1 cal/val plan and CEOS validation protocol, as applicable
- Reprocessing schedule is contingent on
 - Reprocessing of upstream products
 - Reprocessing should be done after evaluation by downstream product teams
 - Readiness of Enterprise algorithm and processing code
 - At least validated maturity Stage 2 level is required
 - Full global and seasonal sampling
- JPSS-1 readiness in general is confirmed
 - Evaluated test datasets provided to STAR
 - Ran select algorithms in STAR environment
 - Further interaction with NDE needed for pre-launch testing

Summary

- Finalizing Enterprise algorithm development and preparations for reprocessing are done in parallel
 - Overall, algorithms will be ready within the next FY for at least the granule-based products
- Reprocessing and data continuity
 - Consistency over the entire mission
 - Continuity (as much as possible) with heritage AVHRR and MODIS data
- Consistency between different geophysical products
 - e.g. signal from all products should indicate vegetated vs. clear land etc.
- Cross-fertilization between NOAA and NASA efforts continues
 - SDR science content consistent or at least well understood
 - Algorithms and formats
 - Validation (including coordination through CEOS)
- Properly stratified evaluation / validation datasets
- Land / cryosphere breakout session: Thursday, August 11

JPSS-1 Post Launch Test (PLT) and Integrated Mission Timeline (IMT) Snapshot

August 8, 2016

Natalie Provost Instrument Post Launch Test Lead NASA Flight Operations

- What is a PLT?
- PLT and IMT Status
- Orbit Raising Campaign Summary
- Open Items
- Overall Power On and Door Deployment Sequence
- JPSS LEO&A Timeline
- Back-up (PLT List)

- Operational testing that starts shortly after launch and continues until operations handover to OSPO (during LEO&A)
 - Includes tests on spacecraft bus, instruments, and science data
 - Characterization, ops testing, and on-orbit validation (not verification) of requirements
 - Executed in accordance with the PLT Management Plan (472-00373)
- What makes a PLT
 - A more formal planning and reporting of the test data and its analysis will benefit normal/sustaining operations. (e.g. trending, TDRS C&T angle characterization)
 - There is potential for change of performance from ground tests due either to the launch environment or space v. ground environment. (e.g. vibration sensitive)
 - Unable to validate performance or characterize on the ground. (e.g. instrument noise, star tracker performance)

- Instrument and System Post Launch Test (PLT) Peer Reviews are complete and included NOAA and NASA science representation
- The majority of instrument PLTs have been exercised in JCTs, with the remaining ones scheduled for JCT-4
- Integrated Mission Timeline
 - Days 9 52 (Instrument activation through doors open) have been thoroughly reviewed and rehearsed (with the exception of maneuvers)
 - Doors closed stored commanding sequences are still in work
 - Days 53 90 have not been thoroughly reviewed, and typically are scheduled where they occurred on NPP
 - Science teams are working with us to better define/schedule this timeframe
 - All existing instrument PLTs have been accounted for in the IMT, however some are not assigned a date yet
 - This presentation is a snapshot of our current status and is subject to change
 - Orbit Raising Campaign is heavily dependent on launch date and has impacts to instrument commissioning activities (see next slide)

- A meeting was held on August 1st to communicate to instrument vendor and science stakeholders the orbit raising campaign scenarios
- Target injection altitude is 10 km lower than the operational altitude
 - 13 seconds / orbit different if 10 km lower (3 minutes per day)
 - The time it takes J1 to lap NPP is 35 days
- Final orbit day varies based on launch time/date, launch vehicle performance, and desired time between burns
 - Current launch date of 3/16/17 results in on orbit on L+19 days
 - 3 Day Burn Cadence results in on orbit:
 - Best case: L+18 days
 - Worst case: L+50 days
 - 6 Day Burn Cadence results in on orbit:
 - Best case: L+30 days
 - Worst case: L+62 days
 - High Separation Altitude likely increases the wait time and could lead to on orbit on L+70 days (3 day burn cadence)
- The scenarios are on a 16 day repeat cycle
- This presentation is assumes a January 20 launch date, which is almost the worst case scenario

Open Items

- Orbit raising implications
 - Instrument vendors and scientists have been asked to think about whether doors opening and subsequent activities need to be delayed until all orbit raising burns are complete (or possibly just inclination burn complete)
- VIIRS Nadir door opening will move
 - It currently occurs at the end of outgassing right before CRD (Day 43)
 - It may move up to 2 weeks after VIIRS activation (like NPP; ~Day 23)
 - It may move past CRD opening for stray light calibration
 - Direction from NOAA Science is needed
- J1/NPP Cross-calibration
 - Of 13 of 16 cases, J1 will fly under S-NPP for a few days
 - However, orbit raising will begin *after* the overlap; and therefore instrument doors will likely be closed (ATMS is exception)
 - We have no current requirement for cross-calibration

Cool down at same time

- Power ON
 - 1. OMPS
 - 2. VIIRS
 - 3. ATMS
 - 4. CrIS
 - 5. CERES

- Door Deployment
 - 1. ATMS (no doors)
 - 2. VIIRS NAD
 - 3. CrIS
 - 4. VIIRS CRD
 - 5. CERES
 - 6. OMPS

No Change since NPP

= S/C Bus Activation period

= S/C Bus Activation period

Back-up – PLT List

Instrument PLTs (1 of 2)

Instrument	Document Number	Test Name	POC
ATMS	472-00614	ATMS Activation	Eric Graham
ATMS	472-00615	ATMS Trending	Eric Graham
ATMS	472-00616	ATMS Dynamic Range	Ed Kim \ Joseph Lyu
ATMS	472-00617	ATMS Noise Characterization	Eric Graham
ATMS	472-00638	ATMS Radiometric Sensitivity	Ed Kim \ Joseph Lyu
ATMS	472-00TBD	ATMS Enviornmental Characterization	Ed Kim \ Joseph Lyu
ATMS	472-00618	ATMS Pointing Angles	Eric Graham
ATMS	472-00619	ATMS Cold Calibration Position Selection	Eric Graham
ATMS	472-00620	ATMS Functional Evaluation - Video Test & Timing	Eric Graham
ATMS	472-00591	ATMS Lunar Intrusion Mitigation	Eric Graham
ATMS	472-00621	ATMS Geolocation	Ed Kim \ Joseph Lyu
ATMS	472-00592	ATMS Center Frequency Stability	Ed Kim
ATMS	472-00593	ATMS Dwell parameter	Eric Graham
CERES	472-00622	CERES Activation	Tony Salerno \ Adhemar Rivera
CERES	472-00623	CERES Trending	Tony Salerno \ Adhemar Rivera
CERES	472-00624	CERES Geolocation/Pointing Accuracy	Chris Brown
CERES	472-00625	CERES Bridge Balance	Tony Salerno \ Adhemar Rivera
CERES	472-00626	CERES El scan test	Tony Salerno \ Adhemar Rivera
CERES	472-00686	CERES Science Trending	Kory Priestly
CERES	472-00628	CERES Solar Raster Scan	Tony Salerno \ Adhemar Rivera
CERES	472-00629	CERES Lunar Raster	Tony Salerno \ Adhemar Rivera
CERES	472-00630	CERES Azimuth Checkout	Tony Salerno \ Adhemar Rivera
CERES	472-00631	CERES SPS checkout	Tony Salerno \ Adhemar Rivera
CrIS	472-00632	CrIS Activation	Mike Stager \ Jason Osmann
CrIS	472-00633	CrIS Trending	Mike Stager \ Jason Osmann
CrIS	472-00634	CrIS Noise Characterization	Dave Johnson
CrIS	472-00636	CrIS Geolocation/Pointing Accuracy	Dave Johnson \ Mike Stager

Instrument PLTs (2 of 2)

Instrument	Document Number	Test Name	POC
CrIS	472-00637	CrIS Jitter Performance	Dave Johnson
CrIS	472-00639	CrIS Bias Tilt Optimization	Mike Stager \ Jason Osmann
CrIS	472-00675	CrIS PCE Telemetry Dwell and Baselining	Mike Stager \ Jason Osmann
CrIS	472-00676	CrIS Diode temperature Set Point Check and Adjustment	Mike Stager \ Jason Osmann
CrIS	472-00677	CrIS Bit Trim and Impulse Noise Mask Checks and Adjustments	Mike Stager \ Jason Osmann
CrIS	472-00679	CrIS Programmable Amplifier Gain Check and Adjustment	Mike Stager \ Jason Osmann
CrIS	472-00680	CrIS Detector Linearity Check	Mike Stager \ Jason Osmann
CrIS	472-00641	CrIS Laser Stability	Mike Stager \ Jason Osmann
CrIS	472-00642	CrIS Full Resolution Diagnostic Interferograms	Dave Johnson \ Mike Stager
OMPS	472-00643	OMPS Activation	Eric Graham
OMPS	472-00644	OMPS Data Rate Characterization	Tom Kelly \ Glen Jaross
OMPS	472-00645	OMPS Trending	Eric Graham
OMPS	472-00687	OMPS Science Trending	Tom Kelly \ Glen Jaross
OMPS	472-00646	OMPS Noise Characterization	Tom Kelly \ Glen Jaross
OMPS	472-00647	OMPS Dynamic Range	Tom Kelly \ Glen Jaross
OMPS	472-00648	OMPS Calibration	Tom Kelly \ Glen Jaross
OMPS	472-00649	OMPS Geolocation/Pointing Accuracy	Tom Kelly \ Glen Jaross
VIIRS	472-00650	VIIRS Activation	Jodi Vezzeti \ Helena Smith
VIIRS	472-00651	VIIRS Trending	Jodi Vezzeti \ Helena Smith
VIIRS	472-00652	VIIRS Dynamic Range and Linearity Verification	Kurt Thome
VIIRS	472-00653	VIIRS DNB Offset Determination	Jodi Vezzeti \ Helena Smith
VIIRS	472-00654	VIIRS Solar Diffuser Calibration	Jodi Vezzeti \ Helena Smith
VIIRS	472-00655	VIIRS Geolocation/Pointing Accuracy	Kurt Thome \ Slawomir Blonski
VIIRS	472-00657	VIIRS DNB Gain Stage Cross Calibration and Dark Offsets Measurement	Jodi Vezzeti \ Helena Smith
VIIRS	472-00658	VIIRS Electronic Cross Talk Evaluation	Jodi Vezzeti \ Helena Smith
VIIRS	472-00659	VIIRS Lunar Calibration and Sector Rotation	Jodi Vezzeti \ Helena Smith
VIIRS	472-00660	VIIRS Emissive Band Calibration	Jodi Vezzeti \ Helena Smith
VIIRS	472-00661	VIIRS Fixed Pattern test	Jodi Vezzeti \ Helena Smith
VIIRS	472-00635	VIIRS FPA Electronics Self-Test	Jodi Vezzeti \ Helena Smith
VIIRS	472-00673	VIIRS Cryoradiator Door Opening	Jodi Vezzeti \ Helena Smith
VIIRS	472-00688	VIIRS Nadir Door Openeing	Jodi Vezzeti \ Helena Smith

System PLTs

Title	Test Description	POC
Pitch offset (backflip) for	Perform back-flip over 1/3 of orbit entirely in eclipse.	
instrument calibration		
		Andy Lopatin
ATMS Cross Track Scan Check	Roll to -65° to acquire data during crossing of the Earth's limb. Stay at -65°	
	roll angle for 4 minutes to allow scan across cold space. Return to Earth	
	view orientation.	Andy Lopatin / Ed Kim
ATMS Image Earth Limb	Roll far enough (max +25°) so that main lobes of outermost beams are well	
	off earth limb. During maneuver, acquire data during limb crossing and	
	deep space view. Stay at final roll angle for 5 minutes and return to Earth	
	view orientation. Must be done before CrIS cooler shade & VIIRS CRD	
	deployments.	Andy Lopatin / Ed Kim
VIIRS Lunar Calibration	Start after VIIRS is commissioned at first moon phase of	
	~51°. Approximately 8-9 rolls per year performed on daylight side of orbit,	
	roll of -14° or less allows VIIRS to image moon.	Jodi Vezzetti / Kurt Thome
VIIRS Solar Diffuser	15 yaws at different yaw angles (max -20° to max +20°) in consecutive	
Characterization	orbits. Yaws are performed in sunrise and begin dwell for 10 minutes in	
	sun.	Jodi Vezzetti / Kurt Thome
CERES Solar Cal / Interference /	12-14 yaws at different angles between -14.5° and 14.5°. Requires 35	
Glint Evaluation & OMPS Solar	minutes at the slewed angle, 30 minutes in sunlight before the northern	
Diffuser Goniometric Cal	terminator crossing and 17.5 minutes in eclipse.	Andy Lopatin / Tom Kelly / Glen
		Jaross / Kory Priestly
SEU Trending	Roll up report of all the SEU detections seen during the 90 days, instrumets	
	and SC.	Rich Kavanagh
Concurrent Operations (Proof of	Plan ~2 day proof of concept putting JPSS-1 & NPP on the same string.	
Concept Putting JPSS-1 & NPP	(Some time after ~L+68 when instruments are 'operationally ready'.) Plan	
on the Same String)	to include a 'worst case' day, eg DAS load day. Plan to move JPSS-1 to the	
	same string as NPP prior to handover.	Rich Kavanagh
Spacecraft Jitter		
Characterization	Characterize S/C jitter caused by all instruments and mechanisms	Jeremy Meduvsky

Raytheon Intelligence, Information and Services

JPSS IDPS System JPSS-1 Readiness – IDPS Product Perspective

Wael Ibrahim

STAR JPSS

2016 Annual Science Team Meeting NCWCP, College Park, MD August 8, 2016

> RAYTHEON COMPANY INTELLIGENCE, INFORMATION AND SERVICES (IIS) JPSS CGS PROGRAM AURORA, COLORADO

Copyright © 2016 Raytheon Company Sponsored by the United States Government Under Contract No. NNG10XA03C Notice to Government Users: Refer to FAR 52.227-14, "RIGHTS IN DATA — GENERAL" (Dec. 2007), as modified by NASA FAR Supplement 1852.227-14 – Alternate II (Dec. 2007) and Alternate III (Dec. 2007), paragraph (c)(1)(iii), for Government's license rights in this data or software. Notice to Non-Government Users: Subject to Proprietary Information Agreement or Other Non-Disclosure Agreement

Outline

- Block 2.0 IDPS Milestones
- Block 2.0 IDPS Build Plan
- Block 2.0 ADL Build Plan
- ATMS Algorithm and SRS Updates
- CrIS Algorithm and SRS Updates
- OMPS Algorithm and SRS Updates
- VIIRS SDR/GEO Algorithm and SRS Updates
- VIIRS Imagery Algorithm and SRS Updates
- LG2 Test Analysis Results
- Post LG2 Test Event

Block 2.0 – IDPS Milestones

JPSS CGS Form J-135 05/21/2012

STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

Block 2.0 - IDPS Build Plan (v77)

			Linux shared			SegInt			Letter Build		
Time	Durited	Laboration of	CSI branch	COTS Upgrade	Final Code	Nightly	Letter Build	000 0	Checkout	Grantant	
Frame	Build	Identifier	open for	Eval Complete	Cutoff	Checkout	Date	PDR Generation	Completed	Content	Milestone
										GPAT Critical PCRs	
	DSAT 12	12 0 00 00 13	11/12/2015	11/12/2015	11/20/2015	12/1/2015	12/2/2015	NUA	12/9/2015	OMPS Compression	
	DSAT 14	12.0.00.00.13	12/1/2015	12/1/2015	12/14/2015	12/12/015	12/16/2015	N/A	12/18/2015	GPAT Critical PCPs	
·	FJA1_14	12.0.00.00.14	121112013	121112013	121 1412013	1211012010	1211012013	NIM	1211012013	ICT/ORD Critical PCRs	P3G2 25 Jan-22
	PSAT 15	12.0.00.00.15	12/15/2015	12/22/2015	1/14/2016	1/15/2016	1/18/2016	1/20/2016	1/21/2016	Serveral endean ends	Feb
										JCT/ORR Critical PCRs	Targeted DRs 29
										M11 at night	Feb-11 Mar
	PSAT_16	12.0.00.00.16	1/15/2016	1/18/2016	2/4/2016	2/5/2016	2/8/2016	2/11/2016	2/19/2016	CrIS (FS) SDR	
										PCR055913Data	LG2 TRR 24 Mar
		12.0.00.00.16								Production Report	
	PSAT_16.01	.01	N/A	N/A	3/15/2016	3/15/2016	3/15/2016	N/A	3/16/2016	Deliveries	
										VIIRS Sensor Char	
										Oracle Failover:	
	DSAT 17	12 0 00 00 17	2/5/2016	2/22/2016	3/3/2016	3/4/2016	3/7/2016	3/10/2016	3/15/2016	Connection Pooling	
	ron_n	12.0.00.00.11	21312010	212212010	31312010	31412010	31112010	311012010	311312010	JCT/ORR Critical PCRs	
										Oracle Failover:	
										DMS low-level DB auto	
	PSAT_18	12.0.00.00.18	3/4/2016	3/7/2016	3/17/2016	3/18/2016	3/21/2016	3/24/2016	3/28/2016	retry	
										JCT/ORR Critical PCRs	Phase 1 CGS
										ATMS Full Radiance	Regression
PSAT											Development
	PSAT_19	12.0.00.00.19	3/18/2016	3/28/2016	4/7/2016	4/8/2016	4/15/2016	4/17/2016	4/26/2016		Release (4/25)
	DEAT 20	12 0 00 00 20	41012040	414012046	412012016	412012040	FIGIDOME	FIFIDOIE	E11712010	JCT/ORR Critical PCRs	
	FJMI_20	12.0.00.00.20	41012010	411012010	412012010	412312010	31212010	31312010	31112010	ICT/ORP Critical PCPs	
										OMPS NP Table Undates	
	PSAT_21	12.0.00.00.21	4/29/2016	5/9/2016	5/19/2016	5/20/2016	5/23/2016	5/26/2016	6/6/2016		
										JCT/ORR Critical PCRs	Phase 2 CGS
											Regression
											Development
	PSAT_22	12.0.00.00.22	5/20/2016	5/30/2016	6/9/2016	6/10/2016	6/13/2016	6/16/2016	6/17/2016		Release (7/11)
	DCAT22 01	12.0.00.00.22	71010040	71012010	71012010	71012040	71712046	71712016	71712046	VCID/APID Mapping	
	PSAIZZ.UI	.01	6/10/2016	6/20/2016	6/30/2016	7/1/2016	7/4/2016	7/7/2016	7/8/2016	ICT/ODD Critical DCDe	
	FJMI_2J	12.0.00.00.23	011012010	012012010	013012010	11112010	11412010	1112010	11012010	ICT/ORR Critical PCRs	Phase 3 CGS
										ATMS Sensor/Table	Regression
										Updates	Development
											Release (9/5)
	PSAT_24	12.0.00.00.24	7/1/2016	7/11/2016	7/21/2016	7/22/2016	7/28/2016	7/29/2016	8/1/2016		ORR Release
	PSAT_25	12.0.00.00.25	7/22/2016	8/1/2016	8/11/2016	8/12/2016	8/15/2016	8/18/2016	8/19/2016	JCT/ORR Critical PCRs	
	PSAT_26	12.0.00.00.26	8/12/2016	8/22/2016	9/1/2016	9/2/2016	9/5/2016	9/8/2016	9/9/2016	JCT/ORR Critical PCRs	
	PSAT_27	12.0.00.00.27	9/2/2016	9/12/2016	9/22/2016	9/23/2016	9/26/2016	9/29/2016	9/30/2016	JCT/ORR Critical PCRs	
	PSAT_28	12.0.00.00.28	9/23/2016	10/3/2016	10/13/2016	10/14/2016	10/17/2016	10/20/2016	10/21/2016	JCT/ORR Critical PCRs	
	PSAT_29	12.0.00.00.29	10/14/2016	10/24/2016	11/3/2016	11/4/2016	11/7/2016	11/10/2016	11/11/2016	JCT/ORR Critical PCRs	ORR 10/28

JPSS CGS Form J-135 05/21/2012 STAR JPSS Annual Science Team Meeting, NCWC

STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

Block 2.0 - ADL Build Plan (v9)

		IDPS Baseline	IDPS Letter Build	ADI Letter Build		
Build		Compatibility	Date	Date	Content	Notes
ADL5.3_PSAT_22	ADL5.3_2.0.00.00. 22	12.0.00.00.22	6/17/2016	7/1/2016	JCT/ORR critical PCRs	Available on Common CM and media delivered
ADL5.3 PSAT_23	ADL5.3_2.0.00.00. 23	12.0.00.00.23	7/8/2016	7/22/2016	JCT/ORR critical PCRs	Available on Common CM and media delivered
ADL5.3 PSAT 24	ADL5.3_2.0.00.00. 24	12.0.00.00.24	8/1/2016	8/15/2016	JCT/ORR critical PCRs	
ADL5.3 PSAT 25	ADL5.3_2.0.00.00. 25	12.0.00.00.25	8/19/2016	9/2/2016	JCT/ORR critical PCRs	
ADL5.3 PSAT_26	ADL5.3_2.0.00.00. 26	12.0.00.00.26	9/9/2016	9/23/2016	JCT/ORR critical PCRs	
ADL5.3_PSAT_27	ADL5.3_2.0.00.00. 27	12.0.00.00.27	9/30/2016	10/14/2016	JCT/ORR critical PCRs	
ADL5.3_PSAT_28	ADL5.3_2.0.00.00. 28	12.0.00.00.28	10/21/2016	11/4/2016	JCT/ORR critical PCRs	
ADL5.3_PSAT_29	ADL5.3_2.0.00.00. 29	12.0.00.00.29	11/11/2016	11/25/2016	JCT/ORR critical PCRs	

JPSS Common Ground System

ATMS Algorithm Updates

ADR	Title	Description	X-Ref	Build	Status
*	▼	×		*	-
8224	Update JPSS-1 ATMS PCT with final	Update instr2scMatrix coefficients in J1 ATMS PCT with post-	474-CCR-16-2981	PSAT_xx	
	instrument mounting matrix	dynamic measurement results.			
	coefficients				
8199	JPSS-1 ATMS PCT (Preliminary	Preliminary version of JPSS-1 ATMS PCT is going to be delivered	474-CCR-16-2955	PSAT_24	
	Version) Delivery	based on current NGES TVAC draft report. A good part of	PCR058549		
		coefficients are still under revision. According to NASA flight			
8070	ATMS SDR: Triggering Logic Issues	As part of the RTN IDPS AAV verification activity, we tried at the	PCR052649		Rejected
	with (KAV/WG/Shelf) PRT Conversion	factory to create a non-nominal condition to trigger these			
	Error QFs	QFs, but we were unsuccessful. We believe there are			
8068	ATMS 8-17-2015 TDR/SDR outages	From recent ATMS scan reversal event on Aug. 17, 2015, we	PCR052498		Rejected
	related to scan reversal	found some unexpected TDR/SDR outages which lasted for at			
		least 7 min.			
7966	ATMS Full Radiance Processing	Change ATMS calibration processing by full radiance instead	474-CCR-15-2497	PSAT_19	
		of R-J approximation. This will affect both ATMS TDR and	PCR053562 (PRO)		
		ATMS SDR.	PCR053563 (DPGD)		
			PCR053564 (OAD)		
7954	Correct errors in ATMS PCT	In January, Joseph Lyu discovered, and Neal Baker confirmed,	474-CCR-15-2497	PSAT_19	
	warmBiasCorrection	that the warmBiasCorrection coefficients (3x22 array) in the	PCR053562 (PRO)		
		ATMS PCT are using the wrong values. They should be the	PCR053563 (DPGD)		
		values from the NPP Cal Data Book, but somehow other values	PCR053564 (OAD)		
		are in place. This is a simple correction to restore the correct			

ATMS Software Requirements Specification (SRS) Updates

Raytheon Intelligence, Information and Services

- CCR-15-2745 Update JPSS Algorithm Specifications
 – ATMS RDR/TDR/SDR Volume I and II
 - SRS Vol II update for QF19 (ATMS Data Gap Quality Flag) in Table 5.1.2-1 ATMS TDR Product Profile from CCR-15-2228 (ADRs 7820/7942)
- CCR-16-2991 ATMS SDR Corrections to SRS Parameter File (SRSPF)
 - SRSPF update to provide clarification of the ATMS "shelfPRT_ConvERR" QF triggering logic; driven by Block 2.0 Analysis and Verification (AAV) activity

CrIS Algorithm Updates (1/2)

ADR	Title	Description	X-Ref	Build	Status
Υ.	×	▼	•	•	T
8223	ADL BLK 2.0 cannot process J1 test data	The J1 test data are generated by the DRL STPS software in			
		HDF5 format. First, ADL BLK 2.0 was not able to unpack the			
8210	CrIS Mounting Coefficients for J1	The mounting coefficients is a 3 X 3 rotation matrix. The	474-CCR-16-2978	PSAT_26 (TBD)	
		coefficients are stored as part of the PCT input file.			
8209	ADL unpacker not working with J1 test data (15	The J1 spacecraft level testing data are aggregated into 15			
	granule file)	granules (60 scan, 8 minutes) file. The ADL unpacker in Block			
8188	Missing TLE	Raytheon uncovered a bug when the TLE files was older than	PCR057151	PSAT_21	
		30 days in LGG testing. PCR 0571511 was submitted			
8178	CrIS RDR of Block 1.2 and Block 2.0 differ	On 4/8/2016 IDPS generated CrIS SDR for block 1.2 and 2.0 at			Closed
		full spectral resolution as part of LGG testing. It was found			
8175	CrIS SDR anomaly on 4/1/2016	CrIS SDR produced bad data for about 45 minutes on 4/1/2016			Cancelled
		due to the in-track servo motor tilt error. A possible			
8069	CrIS SDR: Issues with CrIS SDR DS/ICT Spectral	The purpose of this ADR is to document the following issue	PCR053286 (Blk 1 -	PSAT_22	
	Stability Calculation when missing DS/ICT	and agree on a path forward to understand/fix it:	rejected)		
	packets	The Issue:	PCR052650 (Blk 2)		
8057	Inconsistent DQI in FCE module	The FCE module was delivered on 08/2015. These 2 tests were	474-CCR-16-2979	PSAT_26 (TBD)	
		performed: 1) run the original J1 code with the FCE module	DR4481		
		turned OFF, 2) Run the J1 code with FCE module turned ON	DR7487		
8001	CrIS Incorrect FOR set to 32	One granule was incorrectly set to FOR =32. However, the CrIS	DR7571		Cancelled
		SDR processing did not calculate the product for 9 granules.on			
7982	Change maxLunarRadiance to an array and	In the PCT file, the parameter named maxLunarRadiance has	474-CCR-16-2979	PSAT_26 (TBD)	
	check all bands for lunar intrusion	the value 10.0 (float32). This value should be changed into	DR4481		
7968	CrIS SDR FOV Remapping	In CrIS SDR, the geolocation parameters are remapped such	474-CCR-16-2979	PSAT_26 (TBD)	
		that FOV 1 to FOV 3, 3 to 1, 4 to 6, 6 to 4, 7 to 9, and 9 to 7.	DR4481		
7951	Geolocation Issue-Orbital Inclination differs	Given S/C position R and velocity V vectors, the orbital			Cancelled
	from TLE	inclination (i) is			
7895	CrIS Concurrent Archival Full Spectral SDR and	For Block: 2.0	474-CCR-15-2536	PSAT_16	Closed
	Operational Truncated Spectral SDR	The current IDPS Block 1.2 produces CrIS truncated spectral (TS)	PCR051646 (OAD)		
		SDR, and that SDR is a key product. We must continue to	474-CCR-15-2278		
		produce the TS SDR until the Program has validated that	PCR048581 (Parent)		
		transition to a full spectral (FS) SDR may be accomplished	PCR048586 (PRO)		

CrIS Algorithm Updates (2/2)

ADR	Title	Description	X-Ref	Build	Status	
Ψ.	▼	×	Ψ.	Ψ.		Ψ.
7850	CrIS SDR Spectral Ringing	The CrIS SDR spectral IDPS outputs are seen to demonstrate	474-CCR-15-2395	Post J1 Launch		Τ
		ringing, where ringing is defined as noticeable amplitude	DR/851	(IBD)		
		oscillations (positive to negative). Initial observation of Cris	DR/926			
		SDR spectral ringing was made prior to CrIS SDR Validated	474-CCR-15-2304			
7487	Reorder CrIS Calibration Equations	Update CrIS SDR software to reorder the calibration equations	474-CCR-16-2979	PSAT_26 (TBD)		
		to improve the accuracy of the SDR product.	DR4481			
7486	CrIS High Resolution Processing	Update CrIS SDR software to support reading the high	474-CCR-15-2278	SAT_06	Closed	
		resolution RDR data and produce high resolution SDR data	PCR048586 (PRO)			
		Impact Statement: Without this improvement only low				
7445	CrIS SDR: Impulse Noise Count Threshold	While performing analysis work for the "PCR035944/DR7363	PCR049994 (Blk 2)	PSAT_13	Closed	
	Issues in the CrIS PCT/Code	CrIS Incorrect Impulse Noise Count", I found the following	PCR036519 (Blk 1 -			
		issue:	rejected)			
			474-CCR-16-2895 (SRS DD			
		The CrIS PCT: CrIS-SDR-	Vol II)			
4508	Earth spectra quality flag set to degraded	Considering only the event where an Earth spectrum has a FCE	PCR029555	Post J1 Launch		
	when FCE detected	and it has been		(TBD)		
4481	Fringe count error correction algorithm does	The CrIS SDR ATBD (D443773 Rev D) on page 51 states: "(CrIS)	474-CCR-16-2898	PSAT_26 (TBD)		
	not work for cold Earth scenes.	SDR algorithm uses only the positive square root term in the	474-CCR-16-2985 (SRS)			
		denominator of phase extraction function, equation (14), to				
						-

- CCR-15-2536 Update CrIS SDR OAD for Full Spectral Resolution Values-One Section
 - Update to OAD Section 2.1.1.2 to account for updated wavelengths, bin numbers, etc. per CrIS FSR SDR updates per CCRs 15-2278 and 15-2446
- CCR-15-2587 Update the SRSPF for CrIS Full Spectral Resolution SDR
 - Update to SRSPF to account for updated QF conditions per CrIS FSR SDR updates per CCRs 15-2278 and 15-2446
- CCR-16-2814 ALG SRS CrIS RDR_SDR Vol I&II
 - Multiple updates, e.g., tables, QF logic, etc.; driven by CrIS Science Team and Raytheon
- CCR-16-2895 Remove Field Impulse Noise ADR 7445
 - Update to SRS Vol II "Data Dictionary" to per updated software implementation per ADR 7445/PCR049994

- CCR-16-2979 CrIS SDR update for inconsistent DQI ADR 8057
 - Update to SRS Vol II "Data Dictionary" per updated software implementation per CCR 16-2979
- CCR-16-2985 Update 474-00448-01-03 SRS for CrIS FCE Exception
 - Update to SRS Vol I to indicate that the activation of fringe count error processing, per CCR 16-2898, will be deferred until the optimization of the algorithm meets latency.
- CCR-16-2992 CrIS SDR Corrections to SRSPF
 - SRSPF update to provide clarification of the CrIS "ICT Spectral Stability" QF triggering logic; driven by Block 2.0 Analysis and Verification (AAV) activity

OMPS EV SDR Algorithm Updates

ADR	Title	Description	X-Ref	Build	Status	
8225	OMPS Dark Cal transition to GRAVITE	Weekly OMPS Dark Count Ground-Pis are currently manually	<u> </u>	Ľ		Ť
8212	OMPS NP J1 prelaunch tables - v2	produced, tested, and put through the Fast Track CCR process. Deliver the second version of the OMPS NP J1 prelaunch tables	474-CCR-16-2963	PSAT_xx (TBD)		_
		based on further analysis of prelaunch test data.				
8211	OMPS TC J1 prelaunch tables - v2	Deliver the second version of the OMPS TC J1 prelaunch tables based on further analysis of prelaunch test data.	474-CCR-16-2962	PSAT_xx (TBD)		
8198	Short granules and offset granules between OMPS NP and NM	We have implemented an aggregator in the OMPS NM SDR processing and plan to use it to allow expanded content in				
8159	OMPS NP J1 prelaunch tables - v1	Deliver the initial version of the OMPS NP J1 prelaunch tables based on analysis of prelaunch test data.	474-CCR-16-2849 PCR057419 (DPGD)	PSAT_21		
8158	OMPS TC J1 prelaunch tables - v1	Deliver the initial version of the OMPS TC J1 prelaunch tables based on analysis of prelaunch test data.	474-CCR-16-2848 PCR057417 (DPGD)	PSAT_23		
8139	OMPS Nadir Profiler table updates for S-NPP Block 2.0	Tables compatible with the Block 2.0 OMPS Nadir Profiler algorithm are needed.	474-CCR-16-2765 PCR057152	PSAT_20		
8088	OMPS Nadir Mapper table updates for Block 2.0	Three new tables were provide for the OMPS Nadir Mapper for Block 1.2 in CCR 15-2547.	474-CCR-16-2764 PCR056817	PSAT_20		
7826	OMPS TC Wavelength GND-PI and Solar irradiance LUT fields values in the CDFCB are	A functional test of a Wavelength GND-PI update and OSOL LUT uncovered fields that were out of bound. These fields are	474-CCR-15-2546 PCR051639 (PRO DPGD, BIk	SAT_10	Closed	
7825	OMPS NP SDR Wavelength GND-PI inconsistent field values in the XML	A functional test of a Wavelength GND-PI update for CCR 2053, uncovered fields that seemed out of bound and an	474-CCR-15-2546 PCR051639 (PRO DPGD, BIk	SAT_10	Closed	
7340	TC EV SDR pre-processor to ingest high- resolution data	The current J1 plans include the generation of high-resolution data. In particular, the plans include a 3D flexible data cube	474-CCR-15-2432 (Phase 2) PCR051556 (PRO)	SAT_13, SAT_14		
7249	JPSS -1 Algorithm Improvements: Mandated: OMPS NP SDR	The OMPS NP SDR cal/val team has identified JPSS-1 algorithm improvements mandated in the Level 1 RD. This DR serves as	PCR051582 (PRO) 474-CCR-15-2469 (Phase 2)	SAT_13, SAT_14		
7248	JPSS-1 Algorithm Improvements: Mandated: OMPS NTC SDR	The OMPS NTC SDR cal/val team has identified JPSS-1 algorithm improvements mandated in the Level 1 RD. This DR	474-CCR-15-2432 (Phase 2) PCR051556 (PRO)	SAT_13, SAT_14		

CCR-16-vvvv/ADR zzzz - J1 OMPS Sensor Mounting Coefficients (PSAT_xx (TBD))

JPSS CGS Form J-135 05/21/2012 STAR JPSS Annua

STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

OMPS EV SDR SRS Updates

- CCR-15-2629 OMPS NP SDR Correct SRSPF
 - SRSPF update to provide clarification of the NP LIN CORR QF triggering logic and removal of MISS Fill condition; driven by Block 2.0 Analysis and Verification (AAV) activity
- CCR-15-2630 OMPS TC SDR Correct SRSPF
 - SRSPF update to provide clarification of the TC LIN CORR QF triggering logic and clarification/correction of MISS and VDNE Fill conditions; driven by Block 2.0 Analysis and Verification (AAV) activity
- CCR-15-2731 ALG SRS Vol II OMPS TC RDR_SDR
 - Multiple table updates per updated software implementation per CCRs 15-2283 and 15-2546
- CCR-16-2818 ALG SRS OMPS Nadir RDR_SDR Vol I&II
 - Multiple table updates driven by OMPS Science Team and Raytheon

VIIRS SDR/GEO Algorithm Updates (1/9)

ADR	Algorithm	Title	Description	X-Ref	Build	Status	
		<u>т</u>	×	· · · · · · · · · · · · · · · · · · ·	*		•
8226	SDR	Is the VIIRS DNB radiation thresholding	The huge discrepancy between adjacent pixels in a largely				
		working?	uniform cloud-top background suggests that the SAA threshold				
8208	GEO	Calculate Bounding Box numCrosses and	During a testing event, received an invalid number of dateline	PCR054702			
		numQuadrants issues (PCR054702)	crossings message				
8197	SDR	VIIRS SDR Update for J1 Radience Limits	J1 VIIRS radiance limits are expected to be different from SNPP				
			radiance limits due in part to the absence of RTA degradation				
8196	GEO	SNPP spacecraft z-axis off nadir 17 degrees	SNPP and the follow-on JPSS spacecraft perform orbit				
		during orbit adjust maneuvers	adjustment maneuvers to maintain the orbit configuration for				
8176	GEO	Erroneous timestamp step limits in VIIRS Geo	In 474-00001-08_JPSS-CDFCB-X-Vol-VIII_0124, Table 3.2.1.4.80-1,				
		LUT document from Ops values	we found errors in two entries in the VIIRS SDR GEO PARAM PC				
8164	GEO	VIIRS GEO QF2 erroneously described in OAD	The GEO QF2 in Table 13 is erroneously described.				
8161	SDR	J1 VIIRS Prelaunch LUTs: Version 2	Deliver the first update (version 2) of the J1 Prelaunch LUTs	474-CCR-16-2859	PSAT_xx		
			based on prelaunch test data analysis, and inputs from the	474-CCR-15-2589 (DR 7996)			
			data working				
			group, the vendor, and the flight project				
8160	GEO	Sector rotation flagging in SNPP VIIRS ground	The existing SNPP VIIRS SDR (Cal + Geo) code will set FILLs to	474-CCR-16-2890	PSAT_21		
		SW will set FILLs in J1 VIIRS SDR(Cal)/Geo	the J1 VIIRS Cal and Geo products, rendering the J1 VIIRS	PCR057420			
8137	GEO	Spacecraft Diary drops and subsequent Two	TLE use continues on a regular basis and the VIIRS	Mission DR#?			
		Line Element use in IDPS 2016 updates and	Geolocation team believes this should be made a Mission				
8059	SDR	VIIRS SDR radiometry error when saturated	Single gain bands are aggregated on-board for scan angles				_
		thermal band pixels are included in on-board	from Nadir to about 45 degrees. In the case of thermal bands				
		aggregation	when viewing very hot fires, the M15 and other bands saturate				
8047	SDR	J1 Prelaunch LUTs: Version 0	Deliver the initial version of the J1 Prelaunch LUTs based on				_
			prelaunch test data analysis, and inputs from the data				
8036	GEO	VIIRS GEO Code Change to Accommodate J1	JPSS J1 VIIRS DNB has anomalous non-linear response at high	474-CCR-15-2590			
		DNB Agg Mode Change	scan angles based on prelaunch testing. The flight project has				
8018	GEO	J1 VIIRS Geo SCE SideB HAM mirror LUT Missing	For NPP VIIRS geolocation LUTs, resolution of DR 4737 made a				_
			field in the LUT, namely, poly coef tel for converting the				
			telescope encoders to angles from one-dimensional to two-				
							_

VIIRS SDR/GEO Algorithm Updates (2/9)

ADR T	Algorithm	Title 🗸	Description	X-Ref	Build •	Status 👻
8012	SDR	Update VIIRS-SDR-CAL-AUTOMATE-LUT to put RSBAUTOCAL for F, H, and DNB LGS Gain in Automated Mode	After thorough analysis of the H factors, F factors, and DNB LGS Gain values from RSBAUTOCAL in manual mode, the Aerospace RSBAutoCal development team has determined that these calibration objects will be ready to be switched to automated	474-CCR-15-2608 PCR053550	Mx8.11.03	
7996	SDR	J1 VIIRS DNB calibration LUTs for DNB Option 21 (Option 26): Version 0	Deliver the initial version of the J1 DNB Calibration LUTs for Option 21 (Option 26) based on prelaunch test data analysis,	474-CCR-15-2589 PCR055094	PSAT_17	
7755	SDR	VIIRS SDR include band M11 in nighttime operations	Intro: Need to support the Nightfire Algorithm, currently using DNB,	474-CCR-14-2020 PCR054867	PSAT_16	

 CCR-16-qqqq/ADR nnnn - J1 VIIRAS Sensor Mounting Coefficients (PSAT_xx (TBD))

VIIRS SDR/GEO Algorithm Updates (3/9)

- CCR-14-1681 VIIRS SDR DQTT Update & DQN Activation -DR 7140
 - VIIRS SDR DQTTs (22 bands: 5 I-Band "I1-I5", 16 M-Band "M1-M16" and DNB) were updated under CCR 14-1681
 - The Updated 22 DQTTs were delivered to OPS I&T under WR-24737 on 2015-07-29 18:26:43z (5 I-Band and 16 M-Band) and 2015-07-29 22:34:42z (DNB); Mx8.10
 - RTN IDPS OAA analyses that drove the current DQTT values were based on data from:
 - CLASS: Oct'12 (Mx6.4), Jan'13 (Mx6.5)
 - Factory GISF I&T w/ enabled DQTTs: Mar'13 (Mx6.6)
 - RTN MST-MDA performed a high-level analysis using 2-wk worth of VIIRS SDR bands and generated DQNs (11/12/15 - 11/30/15); Mx8.10
 - The MST-MDA analysis shows bands DNB, I3 [RSB, D], M7 [RSB, D/N], M8 [RSB, D/N], M9 [RSB, D], M10 [RSB, D/N] and M11 [RSB, D], being the heavy hitters WRT DQN generation

VIIRS SDR/GEO Algorithm Updates (4/9)

- CCR-14-1681 VIIRS SDR DQTT Update & DQN Activation -DR 7140 (Cont.)
 - The MST-MDA study collected other associated granule-level information, e.g., Day/Night Status, Ascending/Descending Orbit, Graceful Degradation Condition, Maneuver Status, RDR-related information (% Erroneous, % Missing and % Not Applicable)
 - The "High Volume" DQN trend for the band sub-set was not observed in the conducted tests/analyses during the 2012/2013 (Mx6.4 – Mx6.6) data collection periods
 - For DNB, this trend is known and expected due to the negative impact of the Stray Light Correction (SL Corr) on the quality of the produced DNB SDR

VIIRS SDR/GEO Algorithm Updates (5/9)

- CCR-14-1681 VIIRS SDR DQTT Update & DQN Activation -DR 7140 (Cont.)
 - RTN IDPS OAA in-depth analysis (in progress; on and off depending on other competing priorities) focuses on identifying any correlation/dependency b/n the "High Volume" DQN trend for the listed bands and other factors/inputs as:
 - VIIRS SDR updates b/n Mx6.6 and Mx8.11 that would have impacted the logic for some of the lower-pixel-level QFs that feed into the pixel-level "SDR Quality" QF
 - "Day vs Night" granule status and if code updates were implemented that • would have affected SDR Fill Value behavior
 - Updated DQTT values and whether some value relaxation is needed for • some of the bands
 - Other factors
- Once the "culprit" factor(s) is(are) identified and if it's determined that code update/DQTT value update is required, OAA will communicate the findings to the VIIRS SDR Science team and NASA IDPS and receive their feedback and recommendation STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016 JPSS CGS Form J-135 05/21/2012

VIIRS SDR/GEO Algorithm Updates (6/9)

- CCR-14-1681 VIIRS SDR DQTT Update & DQN Activation -DR 7140 (Cont.)
 - RTN IDPS OAA in-depth analysis (in progress; on and off depending on other competing priorities) focuses on identifying any correlation/dependency b/n the "High Volume" DQN trend for the listed bands and other factors/inputs as:
 - VIIRS SDR updates b/n Mx6.6 and Mx8.11 that would have impacted the logic for some of the lower-pixel-level QFs that feed into the pixel-level "SDR Quality" QF
 - "Day vs Night" granule status and if code updates were implemented that • would have affected SDR Fill Value behavior
 - Updated DQTT values and whether some value relaxation is needed for • some of the bands
 - Other factors
- Once the "culprit" factor(s) is(are) identified and if it's determined that code update/DQTT value update is required, OAA will communicate the findings to the VIIRS SDR Science team and NASA IDPS and receive their feedback and recommendation STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016 JPSS CGS Form J-135 05/21/2012

VIIRS SDR/GEO Algorithm Updates (7/9)

- Missing S/C Diary Packets and TLE Usage in GEO Generation
 - Downlink from the S/C interleaves, or multiplexes, the Diary APs (APIDs 0, 8 and 11) with all other data streams, e.g., Sensor Science/CAL APs.
 - Space link VCID 0 contains the Diary APIDs, and other APIDs are sent on other channels
 - Ground link from Svalbard interleaves, or multiplexes, the Diary APs with all other data streams
 - IDPS ING assembles the Diary APIDs into Diary RDRs
 - Missing S/C Diary APs can be due to the S/C Downlink, C3S to IDPS or/and IDPS ING
 - If the missing S/C Diary APs are retransmitted to ING, ING would create repaired S/C Diary RDRs
 - Depending on the length "period" of the missing S/C Diary A&E APs, if the gap is small enough, then IDPS PRO SW could employ interpolation from neighboring packets to compensate for the missing A&E APs, a combination of interpolation and TLE usage could be used (larger gap), or only TLE is used (much larger gap)

VIIRS SDR/GEO Algorithm Updates (8/9)

- Missing S/C Diary Packets and TLE Usage in GEO Generation (Cont.)
 - IDPS GEO QF "A&E Availability Status" is triggered accordingly to indicate nominal case (value of zero; S/C Diary is used), or missing S/C A&E APs (values of 1, 2, or 3)
 - IDPS PRO SW uses the TLE (provided by CGS C3S once/day), propagates using SGP4 and creates ephemerides (EPH only no ATT; perfect attitude is assumed "Zero RPY")
 - If S/C Diary APs are missing or arrive late WRT to sensor Science/CAL APs, then, triggered SDR Controller (based on available sensor Science RDR) forces triggered corresponding GEO product to use TLE due to the absence of the corresponding S/C Diary RDRs
 - Repaired S/C Diary RDR (e.g., A2) will NOT trigger the creation of an A2 GEO granule. If it happens that a repaired VIIRS SCI RDR is created and that repaired VIIRS SCI RDR caused the tasking of the SDR controller, then a repaired GEO granule will be created that may use that repaired S/C Diary RDR

VIIRS SDR/GEO Algorithm Updates (9/9)

- Missing S/C Diary Packets and TLE Usage in GEO Generation (Cont.)
 - To fix the problem of sync_ing the downlinked S/C Diary with the downlinked Science/Instrument data JSH PCR PCR058497 is created.
 - As part of IDPS effort to reduce A2 generation, IDPS ING is updating RDR release timing CFG (PCR058806) and evaluating the impact of adding the S/C Diary to the Science SDR Workflow Preconditions (PCR038616)

- CCR-16-2993 VIIRS SDR-Corrections to SRSPF
 - SRSPF update to provide clarification on the triggering of the "SDR Quality" QF to remove the condition of "SDRQual - No Calibration when saturation occurs;" driven by Block 2.0 Analysis and Verification (AAV) activity
- CCR-16-2891 VIIRS SDR Correct SRSPF (ADR 7995)
 - SRSPF update to provide clarification on the triggering of the GEO "Automatic" QF to remove the 'degraded' condition and state that the QF is only set when the HAM/RTA Encoder flag is set to 'Bad' or 'Missing' data; driven by Block 2.0 Analysis and Verification (AAV) activity
- CCR-16-2768 ALG SRS VIIRS RDR_SDR Vol I & II
 - Multiple Vol II updates driven by VIIRS Science Team and Raytheon:
 - Update Radiance and Reflectance/Brightness Temperature Bounds/Ranges & Quality Flag inconsistencies per CCRs 15-2345 and 15-2321
 - VIIRS GEO update to accommodate J1 DNB Agg Mode Change per CCR 15-2590
 - Scan Controller Electronics Side QF per CCR 12-0730

- CCR-16-2767 VIIRS RDR_SDR Correct SRSPF
 - SRSPF updates driven by Block 2.0 Analysis and Verification (AAV) activity:
 - Add in APIDs 827 and 828 for VIIRS DNB
 - Correction and clarification to QF logic
 - Correction to Fill values for certain fill conditions
- CCR-15-2510 SRSPF Updates for VIIRS M11 at Night

VIIRS Imagery Algorithm Updates

Title	Description	X-Ref	Build	Status
×	×	*	*	*
J1 VIIRS Prelaunch LUTs: Version 2	Deliver the first update (version 2) of the J1 Prelaunch LUTs based on	474-CCR-16-2859	PSAT_xx	
	prelaunch test data analysis, and inputs from the data working	474-CCR-15-2589 (DR 7996)		
	group, the vendor, and the flight project.			
	VIIRS SDR Science team to create updated version of the I1 Prelaunch			
JPSS-1 Algorithm Improvements: Recommended:	The VIIRS Imagery EDR cal/val team has provided recommendations	DR4653		
VIIRS Imagery	for JPSS-1 algorithm improvements. This DR serves as a tracking and			
	Title J1 VIIRS Prelaunch LUTs: Version 2 JPSS-1 Algorithm Improvements: Recommended: VIIRS Imagery	Description Image: Displaying the second s	Description X-Ref Image: Construct of the state of the	Title Description X-Ref Build Image: Constraint of the state of

- CCR-15-2626 VIIRS Imagery Correct SRSPF
 - SRSPF update to provide clarification on the usage of MISS and ELINT Fill values; driven by Block 2.0 Analysis and Verification (AAV) activity
- CCR-16-2776 ALG SRS VIIRS Imagery Vol I & II
 - Multiple Vol II updates driven by VIIRS Science Team and Raytheon:
 - Update Radiance and Reflectance/Brightness Temperature Bounds/Ranges & Quality Flag inconsistencies per CCRs 15-2345 and 15-2321
 - Add previously missed processing coefficient format for the VIIRS Near Constant Contrast Imagery PCT VIIRS-NCC-EDR-AC

LG2 Test Analysis Results ATMS (1/5)

- ATMS TDR, SDR and GEO products from Block 2 LG2 (PSAT 16 based) "NSOF-A, NSOF-B, NOSF-I&T, CBU" and Block 1 OPS "Mx8.11" are analyzed (B2B).
- For SNPP configuration, 190 ATMS granules are generated from each of the Block 2 LG2 strings, i.e., NSOF-A, NSOF-B, NOSF-I&T, CBU and collected from Block 1 OPS "Mx8.11", for Apr 5th, 2016, orbit 22999

- Gran #1:

- GATMO-SATMS-TATMS_npp_d20160405_t1027210_e1027526_b22999
- Gran #190:
 - GATMO-SATMS-TATMS_npp_d20160405_t1208063_e1208379_b22999
- For J01 configuration "Time and/or Space Shifted SNPP-Proxy,"190 ATMS granules are generated from each of the Block 2 LG2 strings, i.e., NSOF-A, NSOF-B, NOSF-I&T, CBU
 - Gran #1:
 - GATMO-SATMS-TATMS_j01_d20160404_t2146196_e2146513_b04613
 - Gran #190:
 - GATMO-SATMS-TATMS_j01_d20160404_t2327076_e2327393_b04613

LG2 Test Analysis Results ATMS (2/5)

Day/Night Status: N/A: Full Dataset

CSN: ATMS-SDR

- SNPP-related Analyses
 - GEO Product
 - The following plot for the "ATMS GEO QF - A&E Availability Status" shows two issues:
 - For some scans, QF is triggered with value of 1, indicating missing S/C Diary A&E packets (blue is for NSOF-A granules; red is for OPS "Mx8.11" granules). However, since the QF is triggered with value of 1, then, the gap caused by the missing S/C Diary A&E packets is small enough, such that, interpolation using information from the neighboring packets is employed (i.e., no TLE usage)
 - The difference plot shows that, for some scans "8 scans," QF is triggered differently, i.e., difference of -1/+1. Thus, corresponding GEO field differences would be expected (see next slide)

JPSS CGS Form J-135 05/21/2012 STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

LG2 Test Analysis Results ATMS (3/5)

Raytheon Intelligence, Information and Services

Day/Night Status: N/A: Full Dataset

- SNPP-related Analyses (Cont.)
 - GEO Product (Cont.)
 - The following plot for the "ATMS GEO S/C Attitude - Pitch" shows the corresponding differences WRT to the differences observed in the "ATMS GEO QF - A&E Availability Status"
 - The table in the next slide shows a summary of the corresponding differences in the GEO fields

LG2 Test Analysis Results ATMS (4/5)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - GEO Product (Cont.)
 - The shown differences in the GEO fields are due to:
 - Differences in scans where S/C diary A&E packets are missing → Differences in S/C Att fields (RPY, S/C Position, S/C Velocity)
 - 2. Platform-related machine precision level differences
 - 3. Differences between NOVAS-C 2.0.1 (in OPS Mx8.11) and NOVAS-C 3.1 library suites and the replacement of the IDPSstandalone geometrical/trigonometrical functions/calculations with corresponding NOVAS-C 3.1provided functions/calculations (in PSAT 16).

	II		
Product	Diffs 🖵	MaxAbsDiff *	Diff Mean
GEO - Beam Latitude CH 1 K-Band	99695	4.18E-04	-6.58E-07
GEO - Beam Latitude CH 2 Ka-Band	99644	4.22E-04	-6.81E-07
GEO - Beam Latitude CH 3 V-Band	99980	4.12E-04	-6.50E-07
GEO - Beam Latitude CH 16 W-Band	100090	4.16E-04	-6.70E-07
GEO - Beam Latitude CH 17 G-Band	99848	4.18E-04	-6.76E-07
GEO - Beam Latitude	99848	4.18E-04	-6.76E-07
GEO - Beam Longitude CH 1 K-Band	52018	3.00E-03	4.04E-06
GEO - Beam Longitude CH 2 Ka-Band	52074	1.10E-03	4.02E-06
GEO - Beam Longitude CH 3 V-Band	51909	2.36E-03	4.05E-06
GEO - Beam Longitude CH 16 W-Band	52189	2.07E-03	4.04E-06
GEO - Beam Longitude CH 17 G-Band	51781	1.39E-03	4.02E-06
GEO - Beam Longitude	51781	1.39E-03	4.02E-06
GEO - Solar Zenith Angle	185228	3.97E-04	-1.64E-07
GEO - Solar Azimuth Angle	149005	1.38E-03	3.75E-07
GEO - Satellite Zenith Angle	163448	7.32E-04	2.07E-07
GEO - Satellite Azimuth Angle	210588	1.83E-01	-2.51E-06
GEO - Height	1	1.00E+00	-1.00E+00
GEO - Satellite Range	68651	2.63E+01	1.08E-02
GEO - SCAtt - Roll	2279	1.20E+00	8.06E-04
GEO - SCAtt - Pitch	2279	6.01E+00	-2.94E-02
GEO - SCAtt - Yaw	2279	2.52E+00	-1.47E-03
GEO - SCPos - XComp	4	5.00E-01	-5.00E-01
GEO - SCPos - YComp	2	2.50E-01	-2.50E-01
GEO - SCPos - ZComp	4	5.00E-01	-3.75E-01
GEO - SCVel - XComp	4	7.32E-04	4.27E-04
GEO - SCVel - YComp	3	2.44E-04	8.14E-05
GEO - SCVel - ZComp	4	9.77E-04	7.32E-04
GEO - Scan QF - A&E Availability Status	8	1.00E+00	-1.00E+00

LG2 Test Analysis Results ATMS (5/5)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - TDR and SDR Products
 - ZERO differences in all TDR/SDR fields and QFs.

LG2 Test Analysis Results CrIS (1/10)

- CrIS SDR [TSR SDR "SCRIS" and FSR SDR "SCRIF", where applicable] and GEO products from Block 2 LG2 (PSAT 16 based) "NSOF-A, NSOF-B, NOSF-I&T, CBU" and Block 1 OPS "Mx8.11" are analyzed (B2B).
- For SNPP configuration, 190 CrIS granules are generated from each of the Block 2 LG2 strings, i.e., NSOF-A, NSOF-B, NOSF-I&T, CBU and collected from Block 1 OPS "Mx8.11", for Apr 5th, 2016, orbit 22999
 - Gran #1:
 - GCRSO-<<u>SCRIF</u>*>-SCRIS_npp_d20160405_t1027209_e1027507_b22999
 - Gran #190:
 - GCRSO-<SCRIF*>-SCRIS_npp_d20160405_t1208089_e1208387_b22999
 *FSR SDR "SCRIF" is not applicable to Block 1 OPS "Mx8.11"
- For J01 configuration "Time and/or Space Shifted SNPP-Proxy,"190 CrIS granules are generated from each of the Block 2 LG2 strings, i.e., NSOF-A, NSOF-B, NOSF-I&T, CBU
 - Gran #1:
 - GCRSO-SCRIF-SCRIS_j01_d20160404_t2146265_e2146563_b04613
 - Gran #190:
 - GCRSO-SCRIF-SCRIS_j01_d20160404_t2327065_e2327363_b04613

LG2 Test Analysis Results CrIS (2/10)

Raytheon Intelligence, Information and Services

Day/Night Status: N/A: Full Dataset

- SNPP-related Analyses
 - GEO Product
 - The following plot for the "CrIS GEO QF - A&E Availability Status" shows two issues:
 - For some scans, QF is triggered with value of 1, indicating missing S/C Diary A&E packets (blue is for NSOF-A granules; red is for OPS "Mx8.11" granules). However, since the QF is triggered with value of 1, then, the gap caused by the missing S/C Diary A&E packets is small enough, such that, interpolation using information from the neighboring packets is employed (i.e., no TLE usage)
 - 2. The difference plot shows that, for some scans "4 scans," QF is triggered differently, i.e., difference of -1. Thus, corresponding GEO field differences would be expected (see next slide)

JPSS CGS Form J-135 05/21/2012

STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

LG2 Test Analysis Results CrIS (3/10)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - GEO Product (Cont.)
 - The following 2 plots for the "CrIS GEO S/C Attitude Yaw" and "CrIS GEO Latitude FOV5" show the corresponding differences WRT to the differences observed in the "CrIS GEO QF - A&E Availability Status"
 - The tables in the next slide show summaries of the corresponding differences in the GEO fields

LG2 Test Analysis Results CrIS (4/10)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - GEO Product (Cont.)
 - The shown differences in the GEO fields are due to:
 - Differences in scans where S/C diary A&E packets are missing → Differences in S/C Att fields (RPY, S/C Position, S/C Velocity)
 - 2. Platform-related machine precision level differences
 - 3. Differences between NOVAS-C 2.0.1 (in OPS Mx8.11) and NOVAS-C 3.1 library suites and the replacement of the IDPSstandalone geometrical/trigonometrical functions/calculations with corresponding NOVAS-C 3.1-provided functions/calculations (in PSAT 16).

Product	Diffs	MaxAbground	Diff Mear
	▼ I	-	*
GEO - Latitude - FOV1	10367	3.20E-04	-5.18E-07
GEO - Latitude - FOV2	10467	3.24E-04	-5.62E-07
GEO - Latitude - FOV3	10411	3.26E-04	-5.04E-07
GEO - Latitude - FOV4	10377	3.11E-04	-5.65E-07
GEO - Latitude - FOV5	10338	3.15E-04	-5.47E-07
GEO - Latitude - FOV6	10442	3.20E-04	-5.74E-07
GEO - Latitude - FOV7	10361	3.03E-04	-5.72E-07
GEO - Latitude - FOV8	10307	3.09E-04	-5.69E-07
GEO - Latitude - FOV9	10386	3.11E-04	-5.64E-07
GEO - Longitude - FOV1	5398	4.77E-04	4.57E-06
GEO - Longitude - FOV2	5396	6.94E-04	4.82E-06
GEO - Longitude - FOV3	5280	4.58E-04	4.56E-06
GEO - Longitude - FOV4	5370	4.58E-04	4.58E-06
GEO - Longitude - FOV5	5316	4.50E-04	4.74E-06
GEO - Longitude - FOV6	5302	4.41E-04	4.78E-06
GEO - Longitude - FOV7	5241	4.41E-04	4.80E-06
GEO - Longitude - FOV8	5353	4.35E-04	4.79E-06
GEO - Longitude - FOV9	5261	4.23E-04	4.90E-06
GEO - SolarZenithAngle - FOV1	19297	3.05E-04	-1.77E-07
GEO - SolarZenithAngle - FOV2	19382	3.05E-04	-1.92E-07
GEO - SolarZenithAngle - FOV3	19394	3.20E-04	-2.26E-07
GEO - SolarZenithAngle - FOV4	19284	2.90E-04	-1.68E-07
GEO - SolarZenithAngle - FOV5	19291	3.05E-04	-1.83E-07
GEO - SolarZenithAngle - FOV6	19367	3.05E-04	-1.26E-07
GEO - SolarZenithAngle - FOV7	19309	2.90E-04	-2.30E-07
GEO - SolarZenithAngle - FOV8	19357	2.90E-04	-1.34E-07
GEO - SolarZenithAngle - FOV9	19324	2.90E-04	-2.46E-07
GEO - SolarAzimuthAngle - FOV1	15559	5.42E-04	3.76E-07
GEO - SolarAzimuthAngle - FOV2	15456	6.94E-04	2.59E-07
GEO - SolarAzimuthAngle - FOV3	15533	5.19E-04	1.63E-07
GEO - SolarAzimuthAngle - FOV4	15463	5.21E-04	3.21E-07
GEO - SolarAzimuthAngle - FOV5	15513	5.09E-04	3.18E-07
GEO - SolarAzimuthAngle - FOV6	15564	5.00E-04	3.36E-07
GEO - SolarAzimuthAngle - FOV7	15594	5.00E-04	2.25E-07
GEO - SolarAzimuthAngle - FOV8	15574	4.90E-04	3.63E-07
GEO - SolarAzimuthAngle - FOV9	15526	4.81E-04	2.58E-07

Product	Diffs 🚽	MaxAbs ^{maxe}	Diff Mear
	- 1	× 1	× .
GEO - SatelliteZenithAngle - FOV1	17260	1.70E-03	8.74E-07
GEO - SatelliteZenithAngle - FOV2	17140	1.71E-03	9.06E-07
GEO - SatelliteZenithAngle - FOV3	17241	1.71E-03	9.55E-07
GEO - SatelliteZenithAngle - FOV4	17302	1.66E-03	-4.61E-07
GEO - SatelliteZenithAngle - FOV5	17268	1.68E-03	-3.42E-07
GEO - SatelliteZenithAngle - FOV6	17340	1.69E-03	-2.93E-07
GEO - SatelliteZenithAngle - FOV7	17369	1.63E-03	-1.69E-06
GEO - SatelliteZenithAngle - FOV8	17639	1.64E-03	-1.59E-06
GEO - SatelliteZenithAngle - FOV9	17294	1.65E-03	-1.63E-06
GEO - SatelliteAzimuthAngle - FOV1	22166	2.16E-02	4.17E-06
GEO - SatelliteAzimuthAngle - FOV2	22173	1.74E-02	-2.80E-07
GEO - SatelliteAzimuthAngle - FOV3	22091	2.43E-02	-4.16E-06
GEO - SatelliteAzimuthAngle - FOV4	22227	5.76E-02	2.58E-05
GEO - SatelliteAzimuthAngle - FOV5	22207	2.12E-02	-5.63E-07
GEO - SatelliteAzimuthAngle - FOV6	22231	6.25E-02	-2.76E-05
GEO - SatelliteAzimuthAngle - FOV7	22282	2.14E-02	2.69E-06
GEO - SatelliteAzimuthAngle - FOV8	22211	1.72E-02	-8.05E-07
GEO - SatelliteAzimuthAngle - FOV9	22231	1.94E-02	-4.34E-06
GEO - SatelliteRange - FOV1	6999	2.40E+01	4.69E-03
GEO - SatelliteRange - FOV2	7004	2.30E+01	9.58E-03
GEO - SatelliteRange - FOV3	7018	2.20E+01	6.89E-03
GEO - SatelliteRange - FOV4	6706	2.28E+01	-5.72E-03
GEO - SatelliteRange - FOV5	6757	2.19E+01	-9.62E-04
GEO - SatelliteRange - FOV6	6808	2.10E+01	4.50E-04
GEO - SatelliteRange - FOV7	6690	2.16E+01	-1.74E-02
GEO - SatelliteRange - FOV8	6758	2.08E+01	-1.72E-02
GEO - SatelliteRange - FOV9	6728	1.99E+01	-1.36E-02
GEO - Scan QF - A&E Availability Status	4	1.00E+00	-1.00E+00
GEO - SCAtt - Roll	760	1.00E+00	4.37E-04
GEO - SCAtt - Pitch	760	2.16E+00	-3.16E-02
GEO - SCAtt - Yaw	760	4.68E-01	2.43E-04
GEO - SCPos - XComp	2	5.00E-01	-5.00E-01
GEO - SCPos - YComp	1	2.50E-01	2.50E-01
GEO - SCPos - ZComp	1	5.00E-01	-5.00E-01
GEO - SCVel - XComp	2	4.88E-04	3.66E-04
GEO - SCVel - YComp	1	2.44E-04	2.44E-04
GEO - SCVel - ZComp	2	9.77E-04	7.32E-04

JPSS CGS Form J-135 05/21/2012

STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

LG2 Test Analysis Results CrIS (5/10)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - SDR Product (TSR SCRIS)
 - The following table lists the SDR fields and QFs that have differences. For each field and QF, the table lists the "Max Abs Diff" and "Diff Mean" values.
 - The found SDR fields and QF differences are due to:
 - 1. Differences in the QF1b1 "Data Gap" as shown in the following plot.
 - 2. Platform related difference (Blk 1 AIX vs. Blk 2 Linux):
 - BE vs. LE
 - Compiler and Complier Flag differences
 - OS differences
 - COTS differences
 - Math library differences
 - Differences due to "CCR-15-2278/CCR-15-2446/DRs 7895 & 7486 – CrIS Full Spectral SDR Updates, "still producing only TSR SDR" that were implemented in Blk 2:
 - Updated the way the resampling laser wavelength was updated for each neon calibration.
 - Updated the NEdN algorithm to include spectral calibration.
 - The Blk 1 CMO AUX is split to 2 AUX files:
 - » CrIS-Correct-Matrix-AUX
 - » CrIS-SDR-ENGPKT-BACKUP-AUX
 - 4. Serial execution of CrIS SDR in Blk 1 vs parallel execution in Blk 2
- The plots in the next 5 slides show examples of the differences in the SDR fields.
 JPSS CGS Form J-135 05/21/2012
 STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD August 8, 2016

-		
Product	MaxAbsDiff	Diff Mean
LW Real Radiance	8.52E-02	1.28E-05
LW Imag Radiance	8.77E-02	7.86E-05
LW Radiance NEdN	1.08E-01	1.23E-04
MW Real Radiance	9.58E-03	5.42E-06
MW Imag Radiance	1.10E-02	1.28E-05
MW Radiance NEdN	1.35E-02	1.13E-04
SW Real Radiance	1.41E-03	9.55E-07
SW Imag Radiance	1.28E-03	1.56E-06
SW Radiance NEdN	1.02E-03	2.48E-05
DS Window Size	3.00E+00	2.75E+00
ICT Window Size	4.00E+00	1.58E+00
DS Symmetry	8.44E+01	8.44E+01
DS Spectral Stability	2.56E-03	2.31E-06
ICT Spectral Stability	3.89E-03	1.62E-05
ICT Temperature Stability	2.71E-04	2.21E-05
ICT Temperature Consistency	5.87E-05	4.77E-05
Monitored Laser Wavelength	1.75E-04	6.92E-06
Measured Laser Wavelength	7.35E-05	-7.35E-05
Resampling Laser Wavelength	5.61E-05	3.65E-06
Valid PRT Temp No	1.00E+00	1.00E+00
QF1b1 - Data Gap	1.00E+00	-1.00E+00

JPSS CGS Form J-135 05/21/2012

LG2 Test Analysis Results CrIS (6/10)

Raytheon **Intelligence, Information** and Services

Day/Night Status: N/A: Full Dat CSN: CrIS-SDR HDE5ID: SCRIS Total PxIs: 760

Both Sets Real Pxls: 760 (100%) Both Sets Fill Pxls: 0 (0%)

Diffs: 728 (95.8%) Diff Mean: -1.845e-05 Max Abs Diff: 2.429e-03

Mismatch: Real Becomes Fill: 0 (0%

Mismatch: Fill Becomes Real: 0 0%

DIFFERENCE HISTOGRAM

mW/(m² sr cm¹/₂)₁₀

Day/Night Status: N/A: Full Datase

Both Sets Real Pxis: 760 (100%) Both Sets Fill Pxls: 0 (0%)

Mismatch: Real Becomes Fill: 0 (0%) Mismatch: Fill Becomes Real: 0 (0%

DIFFERENCE HISTOGRAM

CSN: CrIS-SDR

HDF5ID: SCBIS

Total Pxls: 760

Diffs: 744 (97.9%)

700

Count

Diff Mean: 9.839e-05

Max Abs Diff: 1.495e-03

SNPP-related Analyses (Cont.) - SDR Product (TSR SCRIS) (Cont.) CrIS SDR - LW Imag Radiance - FOR15 - FOV2 - 800cm-1 Data: -0.20143/0.43968, Provided: -7.9516/8.2213; Plot: -0.20143/0.4396 blue - Array A Data Source: NSOF A red - Array B Data Source: OPS_Mx8.11 (Black=OutOfBounds) LW – Real Radiance, Imaginary Radiance – Pronounced • differences are driven by the differences in the QF1b1 "Data Gap" (Ex: Imaginary Radiance) and due to CCR-15-2278/CCR-15-2446 updates (Ex: Real Radiance and Radiance NEdN) ≷ 400 Scar Dav/Night Status: N/A: Full Dataset DIFFERENCE CSN: CrIS-SDR 8000 Min/May Diff: .0.002/291/0.00093057 (Risck-OutOfRounds HDF5ID: SCRIS Total Pxls: 760 Both Sets Real Pxls: 760 (100%) CrIS SDR - LW Radiance NEdN - FOR15 - FOV2 - 800cm-1 Min/Max Data: 0.06668/0.084334, Provided: 0.049952/1.3214; Plot: 0.06668/0.084334 Both Sets Fill Pxls: 0 (0%) 400 blue - Array A Data Source: NSOF A Mismatch: Real Becomes Fill: 0 (0%) Scar red - Array B Data Source: OPS Mx8.11 (Black=OutOfBounds) Mismatch: Fill Becomes Real: 0 (0%) 0.084 Diffs: 760 (100%) Diff Mean: -1.142e-03 0.082 Max Abs Diff: 2.864e-03 LW NEdN Radiance 800cm 0.0B CrIS SDR - LW Real Radiance - FOR15 - FOV2 - 800cm-1 Min/Max Data: 17.495/183.04, Provided: -300/300; Plot: 17.495/183.04 0.078 blue - Array A Data Source: NSOF_A red - Array B Data Source: OPS_Mx8.11 (Black=OutOfBounds) 0.076 0.074 160 0.072 800cn DIFFERENCE HISTOGRAM 140 120 0.07 100 0.06B Ba 80 Real 0.065 100 200 300 400 500 600 700 ≥ Scan 10 Sound -W NEdN Radiance 800cm-1 DIFFERENCE x 10⁻³ Min/Max Diff: -0.0028641/0.00079934 (Black=OutOfBounds) Ice 800cm DIFFERENCE Min/Max Diff: -4.5776e-05/0.0014954 (Black=OutOfBounds) × 10 100 200 300 400 500 600 700 -2 400 500 600 200 300 Scan $mW/(m^2 sr cm_x^{-1})_{10}^{-3}$ Scan STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

mW/(m² sr cm⁻¹_x)₁₀-4 Page 37

LG2 Test Analysis Results CrIS (7/10)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - SDR Product (TSR SCRIS) (Cont.)
 - MW Real Radiance, Imaginary Radiance Pronounced differences are driven by the differences in the QF1b1 "Data Gap" (Ex: Imaginary Radiance) and due to CCR-15-2278/CCR-15-2446 updates (Ex: Real Radiance and Radiance NEdN)

Day/Night Status: N/A: Full Dataset CSN: CrIS-SDR HDF5ID: SCRIS

- Total Pxis; 332120 Both Sets Real Pxis; 332120 (100%) Both Sets Fill Pxis: 0 (0%) Mismatch; Real Becomes Fill; 0 (0%)
- Mismatch: Fill Becomes Real: 0 (0%)
- Diffs: 332120 (100%) Diff Mean: 1.115e-04 Max Abs Diff: 3.658e-03

JPSS CGS Form J-135 05/21/2012

Scan

STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

mW/(m² sr cm⁻¹₂)₁₀-3 Page 38

LG2 Test Analysis Results CrIS (8/10)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - SDR Product (TSR SCRIS) (Cont.)
 - SW Real Radiance, Imaginary Radiance Pronounced differences are driven by the differences in the QF1b1 "Data Gap" (Ex: Imaginary Radiance) and due to CCR-15-2278/CCR-15-2446 updates (Ex: Real Radiance and Radiance NEdN)

SW/(m² sr cm⁻¹₃)10⁻⁴

Page 39

Scan

JPSS CGS Form J-135 05/21/2012

STAR JPSS Annual Science Team Meeting, NCWCP, College Park, MD - August 8, 2016

LG2 Test Analysis Results CrIS (9/10)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - SDR Product (TSR SCRIS) (Cont.)
 - Monitored and Resampling Laser Wavelengths Pronounced differences are due to CCR-15-2278/CCR-15-2446 updates

LG2 Test Analysis Results CrIS (10/10)

Raytheon Intelligence, Information and Services

- SNPP-related Analyses (Cont.)
 - SDR Product (TSR SCRIS) (Cont.)
 - DS and ICT Spectral Stabilities Pronounced differences are driven by the differences in the QF1b1 "Data Gap"

Post LG2 - Group 2 Data Sources

Raytheon Intelligence, Information and Services

Credit: JPSS Block 2.0 Post LG2 Group 2 Kickoff Meeting

Data Source

- SMD: Live NPP & GCOM, 17-day time shifted J01
 - NOTE: The "2-day" dataset is a subset of the 17-day (same source data), used temporarily due to storage device issue at McMurdo
- TLM: Live NPP, primarily PSS for J01
- No additional specialty canned datasets in Group2
- Data configuration: SGE1->JSHAO->IDPA Better look at data/configuration in the quicklook in the MCP as well as data request slide

J1 Dataset Expectations

- Base Source is ROOD NPP data from April 2014, validated dataset. Data characterization posted and expected results posted here: <u>https://jpss-</u> erooms.ndc.nasa.gov/eRoom/JPSSGround/GroundSEITWorkingGroup
- <u>s/0_593fe</u>
 Full VCID/APID coverage for S/C, ATMS, CrIS, OMPS, VIIRS, CERES
- Scene content is from April and data is timeshifted with SOS/HALT, so geolocation will not be accurate nor will science quality

Changes to Near Real-time Product Generation and Distribution

Geof Goodrum

Geoffrey.P.Goodrum@noaa.gov NOAA/NESDIS Office of Satellite Ground Services With content from Solers, Inc., ESPDS PMO and OSPO

NASA VIIRS Image

Operations Today

Svalbard

S-NPP, GCOM-W1

External/Internal Users Archive – CLASS (NUPs only)

NOAA

NASA VIIRS Image

External/Internal Users Archive – CLASS (NUPs only)

- NPP Data Exploitation (NDE) in operations since July 2014 and has been distributing critical S-NPP data since soon after launch (November 2011)
- Established and mature process for efficiently transitioning new and updated science algorithms from the NOAA Center for Satellites Applications and Research (STAR) in place since 2011
- Well defined, documented, and simple interface for modular algorithm integration allowing for a repeatable process and small integration team
- Data agnostic, execute algorithms for any platform/instrument (*"algorithm as a service" concept*)
- NDE 2.0 provides an Enterprise Product Generation (PG) framework implemented within the ESPDS common infrastructure platform
- Established solution for product generation for S-NPP, JPSS-1/2, GCOM-W1, and can be leveraged for other NOAA or non-NOAA missions

NOAA PG Transition to Operations Process

NOAT

NOAA Product Generation Algorithms

Algorithm	Platform/Primary Instrument	NDE 1.0 Operations Status	ESPDS PG (NDE 2.0) Operations Status
Microwave Integrated Retrieval System (MiRS)	S-NPP/ATMS	Operational 2014	Operational 2016
Advanced Clear-Sky Processor for Oceans (ACSPO)	S-NPP/VIIRS	Operational 2014	Operational 2016
NOAA Unique CrIS/ATMS Processing System (NUCAPS)	S-NPP/CrIS	Operational 2014	Operational 2016
VIIRS Polar Winds (VPW)	S-NPP/VIIRS	Operational 2014	Operational 2016
Green Vegetation Fraction (GVF)	S-NPP/VIIRS	Operational 2014	Operational 2016
S-NPP Tropical Cyclone	S-NPP/ATMS	Operational 2015	Operational 2016
Vegetation Health (VH)	S-NPP/VIIRS	Operational 2015	Operational 2016
GCOM-W1 AMSR2 Algorithm Software Processor (GAASP)	GCOM-W1/AMSR2	Operational 2015	Operational 2016
Active Fires (AF)	S-NPP/VIIRS	Operational 2016	Operational 2016

ESPDS Product Generation Algorithms

Algorithm	Platform/Primary Instrument	NDE 1.0 Operations Status	ESPDS PG (NDE 2.0) Operations Status
OMPS-Limb Profiler SDR	S-NPP/OMPS-LP	N/A	Post ORR
OMPS-Limb Profiler EDR	S-NPP/OMPS-LP	N/A	Post ORR
JPSS Risk Reduction (Clouds, Aerosols, Cryosphere)	S-NPP/VIIRS	N/A	Operational 2016
GCOM-W1 AMSR2 SDR	GCOM-W1/AMSR2	N/A	Operational 2016

Total Precipitable Water

Advanced Clear-Sky Processor for Oceans (ACSPO)

VIIRS IR Image

AWIPS2 NUCAPS Temperature/Moisture Profiles

NOAA Unique CrIS/ATMS Processing System (NUCAPS)

Green Vegetation Fraction (GVF)

VIIRS Polar Winds (VPW)

NDE Product Generation Tailoring

Aggregation

Resampling

Filtering

Remapping

Sustain • Enable • Create – **OSGS**

NDE Product Generation Tailoring (NWS AWIPS Alaska Region)

Funny River Fire, Alaska VIIRS I1 (Visible)

VIIRS I3 (Fire)

NDE 2.0 Product Generation Operational Science Applications

JPSS Risk Reduction Products

Clouds

Snow/Ice

Aerosols

GCOM AMSR2 Day 2 Products

Product Distribution (PD)

- Product Distribution and Access (PDA) provides an Enterprise Product Distribution (PD) framework implemented within the ESPDS common infrastructure platform using virtual machines
- Initially supporting GOES-R, HRIT/EMWIN and JPSS Block 2.0, Legacy in planning.
- Obtains and distributes ancillary data for NESDIS product generation
- Implements specialized services for NWS Advanced Weather Interactive Processing System (AWIPS) use only
- Implements additional security features required by Government policy
 - > X.509 certificate authentication via NOAA OCSP required for servers
 - In-line malware scanning
 - Secure file transfer protocols: ftps, sftp, https (NFSv4 with CLASS, GOES-R)
 - Backup PG/PD site (Fairmont, WV) for distribution of JPSS primary sensor products only to selected data consumers
- Web-based portal allows data consumer management of OSPO-approved data subscriptions

Data Access

- No change to the NESDIS data access request process
- Near Real-time
 - Subject to Office of Satellite and Product Operations (OSPO) review
 - Policy on Access and Distribution of Environmental Satellite Data and Products
 - http://www.ospo.noaa.gov/Organization/About/access.html
- Retrospective
 - Available through the National Centers for Environmental Information (formerly known as NOAA National Data Centers)
 - Subset of operational products are archived
 - Comprehensive Large Array-data Stewardship System
 - http://www.class.noaa.gov/
 - Caveat: CLASS delays delivery of xDRs by 4 hours for completeness. NUPs in CLASS are near real-time products that use initial delivery xDRs as input.

OSPO Timeline (subject to change)

2011

Questions?

ICVS SDR/EDR REPORT

Ninghai Sun and Lori Brown

NOAAA/STAR

- ICVS Team Members
- ICVS System Overview
- ICVS Product Overview
- JPSS-1 Readiness
- Summary and Path Forward

ICVS SDR Team Members

Team Member	Organization	Roles and Responsibilities		
Fuzhong Weng	NOAA/STAR	ICVS Lead: Budget and execution, strategic science direction, and oversight the ICVS team Cal/Val tasks, reprocessing		
Ninghai Sun	NOAA/STAR	ICVS technical lead for system development, science coordination, research to operation transition, ATMS instrument status/performance and TDR/SDR quality monitoring, spacecraft health status monitoring		
Jason Choi	ERT	VIIRS instrument status and performance monitoring and trending		
Xin Jin Miao Tian Stanislav Kireev	ERT	CrIS instrument status and SDR quality monitoring and trending		
Ding Liang	ERT	OMPS instrument status and performance monitoring and trending		
Wanchun Chen	ERT	System integration, testing, and R2O transition. Suomi NPP SDR reprocessing		
Pedro Vicente	ERT	System integration, optimization, and testing.		
Lori Brown	NOAA/STAR	ICVS website development		

ICVS System Overview

- NOAA ICVS provides the following services
 - Monitors over 400 parameters for 28 instruments onboard NOAA/METOP/SNPP satellites
 - Monitors and trends the SNPP spacecraft parameters , supporting NASA flight team
 - Monitors the instrument performance through trending the instrument house-keeping and telemetry parameters
 - Detects the anomaly events and automatically sends the warning messages to NOAA satellite operators, NASA instrument scientists, and senior program managers
 - Characterizes the sounder SDR data quality with respect to the numerical weather prediction model (NWP) simulations
 - Provides NWP users and remote sensing communities on the instrument noises for their real-time applications (e.g. error covariance in data assimilation)
 - Generates high resolution geostationary/polar-orbiting satellite images
 - 4246 all instrument status and data quality trending figures generated in near real time
 - Supports Suomi NPP life cycle reprocessing by operating SDR processing packages

NOAA/NESDIS/STAR

NOAR

Super typhoon Nepartak from July 5 to 8, 2016 UTC

Himawari-8 AHI TB, 2016-07-05 16:00 UTC, Band B13 (10.4 um)

STAR JPSS Annual Science Team Meeting, 8-12 August 2016

JPSS-1 Readiness

- LG2 data have been successfully tested by ICVS modules
- Sample images have been pushed to ICVSbeta website for seamless transition testing
- Spacecraft TVAC data will be used for additional JPSS-1 readiness testing

Summary & Path Forward

- Summary
 - ICVS keeps providing S-NPP spacecraft and aboard instrument health status and performance near real time monitoring
 - ICVS keeps supporting S-NPP SDR calibration/validation and EDR product generation tasks
 - ICVS has been upgraded and ready for JPSS-1 near real time monitoring
 - ICVS extends its capability to cover more user requested products to better
 - STAR ICVS for JPSS has been successfully transitioned to GRAVITE for 24/7 real time operations
- Path Forward
 - Support S-NPP life cycle SDR reprocessing
 - Provide more geostationary high resolution image products to support severe weather event monitoring

System Status and J-1 Readiness

ICVS & JPSS/EDRs Long Term Monitoring Systems

Lori K. Brown StormCenter Communications at NESDIS / STAR

2016 STAR JPSS Annual Science Meeting Session 2 - 8 August 2016

What is the Long Term Monitoring System?

- **System?** A web application built with HTML, CSS, javascript/jquery, and PHP designed to organize, navigate and display a large set of images, cal-val metrics, and data produced daily and accumulated over the life of the S-NPP satellite
 - Originally developed for ICVS project
 - Went live in September 2013
 - Effort to extend and implement the LTM application for product monitoring (EDRs) started in fall 2014
 - Designed to be 'content agnostic' so as to flexibly house any image, text, or data file, as long as content files conform to the system's naming and organization conventions
 - ICVS: <u>http://www.star.nesdis.noaa.gov/icvs/</u>

^{8/22/2016} JPSS EDRs: http://www.station@weetingnoaa.gov/jpss/EDRs/

ICVS LTM – Web Interface Architecture

8/22/2016

Science Meeting

Scale of JPSS monitoring effort - by the ICVS – LTM Systemnumbers JPSS EDRs LTM Site

	3,015	Images generated per d	lay 851	
	25,599	Total site users — last 12	months5,779	
	~15, varyi	ng # of team contributor	1 9 on product tean	ns / 4 on system
	22	Web pages	25	
	5 years	Time span monitored	2+ years	
3,33	84,550 files / 7	Total images OO GBenerated / file size	412,751 files / 1	. 68 gb

Session 2 - JPSS-1 Readiness - 2016 STAR JPSS Annual Science Meeting

Vebsite Status, J-I Readiness

All JPSS EDR Products now generated daily – Completion of

Products	# Daily Products	Start	Products	# Daily Products	Start
Active Fires	1	1/1/2012	Ocean Color	3	1/1/201
Active Fires - radiative power	3	3/16/2016	OMPS / Ozone	3	1/1/201
Aerosols - AOT	1	1/1/2013	OMPS / IMOPO	2	12/18/20
Aerosols - Suspended Matter	1	1/1/2015	Polar Winds	2	7/20/201
Albedo	1	1/1/2015	Sea Surface Temperature	2	12/7/201
Clouds	4	1/1/2015	Surface Type	4	5/1/201
Cryosphere - Ice	4	2/5/2016	Green Vegetation Fraction	1	8/1/201
Cryosphere - Snow	15	1/1/2015	Vegetation Indices	3	5/19/201
GCOM - AMSR2	40	1/1/2016	Veg. Health - weekly composites	6	1/1/201
VIIRS Imagery - DNB	1	4/23/2016	MiRS Soundings Products	166	2/18/201
Land Surface Temperature	4	4/7/2014	NUCAPS	584	1/1/201

The goal of this phase was to offer a global overview for users and downstream products to quickly assess availability and potential sources of error.

 This phase also allowed for the creation of a framework and a common set of presentation standards for all EDR teams to use.

8/22/2016

Session 2 - JPSS-1 Readiness - 2016 STAR JPSS Annual Science Meeting

Phase II – JPSS/EDRs LTM

• Starting: August 2016

- Will focus on showing real time measures of product quality, such as maps of quality flags or percentage of the granules in a day that meet the specifications.
- Comparisons to similar products from other satellite systems will be included.
- The site will also show trending of these and other measures of product quality.
- The full system will be in place for the Spring 2017 launch of JPSS-1 and will enable product developers and users to quickly identify and rectify potential errors in EDR products.

• JPSS-1 readiness:

- The EDR LTM Phase I is ready to replicate and stand up for JPSS-1
- Phase II will be complete by launch of JPSS annual

Science Meeting

CONTRACTOR MONITORING Systems Website Status, Long-Term Monitoring Systems & New Features

Recent LTM System Improvements – available to both ICVS and JPSS-EDR product sites

- New since May 2015:
 - Users can animate any product across a user configured time span. (demo)
 - Pages with a large number of different products (all ICVS pages and the Soundings pages for EDRs) have in-page search – click 'Finder' button to search by product name instead of select box navigation.
 - Status pages include a configurable description popup. (demo in EDRs)
- Performance rework in Feb. 2016 to ship code to GRAVITE ^{8/22/2016} included complete^P reviews of page bading performance to ^{Science Meeting} reduce server trips, simplify jayascript and php includes

ICVS LTM System Status & JPSS-1 Readiness • Addition of VIIRS high resolution SDR imagery page:

- <u>http://star.nesdis.noaa.gov/icvs/status_NPP_VIIRS_IMG.php</u>
- Incorporated weekly updated Anomaly History for JPSS:
 - <u>http://star.nesdis.noaa.gov/icvs/AnomalyHistory.php</u>
 - Sortable, searchable, and includes a current downloadable bundle of change lists.

• JPSS-1 readiness:

• The beta site for ICVS has had pages for all the JPSS-1 instruments live since Feb. 2016

Session 2 - JPSS-1 Readiness - 2016 STAR JPSS Annual • Full set of J-1 images fogtest dates April 9, 2016

Website Status, J-I Readiness & New Features

JPSS-SPARKS

Report on JPSS Summer Internship Training -2016 for Grooming the Next Generation Cadre of JPSS Scientists (June 13-August 13, and Beyond)

By

Murty Divakarla and IMSG Team at NOAA/STAR JPSS-STAR Science Teams Members

Shakila Merchant City University of New York (CUNY)/CREST

JPSS – Students Professional and Academic Readiness with Knowledge in Satellites (JPSS-SPARKS)

Many Thanks to Mitch Goldberg for his encouragement.

Inception to Action

JPSS --> CUNY --> IMSG

- CUNY/CREST partnered with IMSG to provide internships to graduate students to become familiar with the JPSS program and research to operations process in STAR. IMSG organized the training program.
 - Phase 1: First 4 weeks.
 - IMSG teams with JPSS Program/STAR scientists to provide student training.
 - Phase 2: Week #5 and beyond.
 - Students focus on their research ideas with mentors.

Phase 1: JPSS Research < -- > R2O

Phase 1: Morning Workshop Led primarily by IMSG staff

- R2O Concepts
- Programming Languages, Standards
- Data Formats
- Industry-Govt. Liaison
- Requirements/Verification
- Enterprise Systems
- Configuration Control

• Focused on the skills needed specifically for research-to-operations (R2O).

- How science and programming interact in the R2O environment.
- How changes are integrated through the review process.
- Opportunity to be part of a real working environment
- Improve overall computer programming skills.
- Show students how to write code to standards.

Phase 1: JPSS Research < -- > R2O

ICVS/Long Term Monitoring

JPSS Overview

Cal/Val Process

Suite of Instruments

• NWP and (JPSS) data Assimilation

Geophysical Retrievals/Products

Phase 1: Afternoon Seminars Led primarily by NOAA JPSS/STAR Scientists

- Expose students to the JPSS mission, products, and pioneering research from the state-of-the-art instrument complements.
- Thanks to many JPSS STAR science team members and JPSS Program Office for their enthusiastic response and seminar presentations.

Phase 1: JPSS Research < -- > R2O

Phase 1: IMSG-CUNY JPSS Summer 2016 Internship Training/Workshop Grooming the Next Generation Cadre of JPSS Scientists

Good Luck to You All

JPSS–STUDENTS PROFESSIONAL & ACADEMIC READINESS WITH KNOWLEDGE IN SATELLITES (SPARKS)

In Fall 2015 a team of Educators and Scientists from NOAA/JPSS, IM Systems Group, Inc. and NOAA-Cooperative Remote Sensing Science and Technology (CREST) Center partnered to create an initiative called JPSS SPARKS. JPSS SPARKS is a pilot program

created with an objective to re-

cruit, train and graduate a world-

class cadre of students, with core

competency skills needed to join

NOAA workforce, particularly

from underrepresented and underserved minority **population** to join the nations diverse and competent STEM workforce in the fields of NOAA mission sciences.

The Mission of JPSS SPARKS aligns very well with the missions of NOAA CREST (noaacrest.org) of training students in NOAA mission sciences and build a competent and diverse STEM workforce to address NOAA's Diversity and Workforce Inclusion Initiative.

potential employees to be JOB READY!! JPSS-SPARKS is a Fed-

Employers want their

SPARKS the missions toacrest.org) n NOAA misld a compe-M workforce Diversity and Initiative. B a S of Halls Is a read eral-Academic and Private Sector synergistic partnership built to help students gain JOB READY technical and foundational skills-sets

Four CREST Students spending their summer @NOAA, College Park, MD

Four NOAA CREST students -David Melecio-Vazquez, Elius Etienne, Cassandra Calderella, and Ivan Valerio began their summer JPSS SPARKS workforce training on June 13, 2016 through September 2016.

The students will learn Research to Operations concepts, programing languages, Standards, Data Formats, Industry-Govt. Liaison requirements/ verification; Enterprise Systems and Configurations.

They will be exposed to JPSS mission, products, pioneering research from the state-of-the-art instruments, and use of these products for Weather, Climate and Ocean applications.

David Melecio-Vazquez, PhD Candidate, Mech. Engineering Atmospheric Sciences

Elius Etienne, PhD Ivan Valerio, Masters Candidate, Civil Student, Electrical Engineering Engineering

IMSG-JPSS Training Participants

- Cassandra Calderella
- David Melecio-Vazquez
- Elius Etienne
- Ivan Valerio

STAR Interns and employees Benefited from the Training

- Steven Buckner
- Equisha Glenn
- Tracey Dorian (IMSG)

STAR Interns part of this presentation

• Carlos Luis Pérez Díaz

Poster Presentation: Tuesday (8/9)

Thermal Boundary Layer Retrievals over the Washington

D.C. Metro Area using NUCAPS-EDR

stitude

David Melecio-Vazquez Mentor(s): Dr. Mark Liu, STAR & Dr. Nicholas Nalli, IMSG **Affiliation: IMSG-CUNY Student Training Program** dmeleci00@citymail.cuny.edu

Objectives of this poster:

- **Evaluation of Boundary Layer** Retrievals.
- **Observation of Vertical Profiles During Convective Boundary Layer** Conditions.

Future/Ongoing Work:

- Observe urban-rural temperature differences in space: horizontal and vertical using NUCAPS-EDR profiles.
- [1] NUCAPS-EDR Field-of-Views (red) and the RAOB launch path (blue) over the Washington D.C. Metro Area.
- [2] Surface virtual potential temperature, θ_{ν} , interpolated over the Washington D.C. metro area.

Poster Presentation: Tuesday (8/9)

Validation of Suomi NPP OMPS-LP Ozone Measurements

Steven Buckner Mentor: Dr. Larry Flynn, STAR Affiliation: NOAA-CREST/Hampton University SSIO stevenb1@umbc.edu

Objectives of this poster:

- Show validation of OMPS Limb Profiler ozone volume mixing ratio measurements by comparing them to MLS
 - Daily Global Averages
 - Collocation Comparisons

Future/Ongoing Work:

- Long-term comparisons and statistics
- Using OMPS/MLS validation to later validate SAGE III ISS when it launches in November, 2016

Residuals for 2016_04_01 10^{-1}_{-60} 10^{-1}_{-40} 10

Daily global average residual measurements for April, 2016

Poster Presentation: Thursday (8/11)

Validation of SMAP Soil Moisture Data using Field Measurements in New York

Cassandra Calderella Mentor: Dr. Xiwu Zhan, STAR Affiliation: IMSG-CUNY Student Training Program ccalder001@citymail.cuny.edu

Objectives of this poster:

- Collect in situ data from CREST-SMART ground stations.
- Collect soil moisture data from SMAP for the same latitudes and longitudes as the ground stations.
- Perform statistical analysis for data validation.

Future/Ongoing Work:

- Apply the same validation technique using field measurements in Puerto Rico (NRCS' SCAN Network)
- Repeat the process with other satellite instruments such as SMOS and GCOM-W1.

showing the location of the CREST-SMART ground stations.

Poster Presentation: Thursday (8/11)

Detecting spatiotemporal changes in vegetation using polar

orbiting satellite data for the past 35 years - Case study: Haiti.

Elius Etienne Mentor: Dr. Felix Kogan, STAR Affiliation: IMSG-CUNY Student Training Program eetienn000@citymail.cuny.edu

Objectives of this poster:

- Detecting the trend in vegetation for different period of the year
- Validate the findings with ground based data

Future/Ongoing Work:

 Expand the work to larger regions/countries and detect the trend in vegetation across latitudes (northsouth transect). Slope - SMN TS (week '12' of each yr) - [1982 - 2015]

neg. steep

neg. mild

pos. mild pos. steep

Poster Presentation: Thursday (8/11)

An evaluation of the VIIRS radiative signal from the Fort McMurray fire

www.imsg.com

Ivan F. Valerio Mentor: Dr. Ivan Csiszar, STAR Affiliation: IMSG-CUNY Student Training Program

valerioif@gmail.com

Objectives of this poster:

- Observe signals detected by VIIRS SDR
- Determine pixels with saturation
- Apply statistical analysis
- Comparison of various bands observing the same event
- Future/Ongoing Work:
- Observe other possible cases of pixel saturation
- Generate more statistics to a wider set of events, and determine saturation level

Day-Night-Band Radiannce with Brightness Temperature Contours

Figures on brightness Temperature distribution on McMurray fire site

Poster Presentation: Thursday (8/11) MiRS and HUT Snow Microwave Emissivity Comparison with In Situ Microwave Emissivity from CREST-SAFE and SSMIS retrievals

Carlos Luis Pérez Díaz

Mentors: Quanhua "Mark" Liu and Christopher Grassotti (STAR)

Graduate Research and Training Scholarship Program

Objectives of this poster:

- Compare MiRS and HUT snow MW emission retrievals with in situ derived snow MW emission at CREST-SAFE for winter 2015
- Validate SSMIS analytic MW emission retrievals with in situ derived snow MW emission at CREST-SAFE for selected cases of the 2015 time series

Future/Ongoing work:

- Quantitative comparison between MiRS and HUT for winter 2015
- Integrating snow wetness onto MiRS for snow MW emission simulations

Evaluation Metrics

- Metrics were given during Week #1 and Week #5.
- Week #1 served as a baseline to adjust planned lectures, and Week #5 tested knowledge immediately after workshops ended.
- Students already showed knowledge of Linux and Python Programming
- We were able to build from the basic understanding to languagespecific skills

Performance on the IMSG-CUNY Pre-Test & Post-Test

	Topics Covered	Week 1	Week 5
1	General Program Knowledge of the JPSS Mission	10%	100%
2	Coding in Fortran 90, C++, and PERL.	10%	75%
3	Coding Standards/Configuration Management	0	50%
4	Algorithm Change Process	0	25%

Knowledge increased across the board, especially in JPSS Program and coding ability.

Summary

- IMSG-CUNY put their best foot forward to strengthen the ability of the young generation towards
 - State-of-the art JPSS instruments, algorithms for Sensor and Environmental Data Records (SDR/EDRs) and product applications.
 - Programming languages used operationally and steps involved in putting research into operations.
- At the end of the program you will see how a small additional investment in time at the beginning of their career path provides enormous amount of returns in terms of time saving in learning required research and technical skills.
 - We hope to include students from other universities next year; Explore similar outreach activity/training for other satellite programs (GOES-R), global modeling (NCEP/GFS), and Radiative Transfer.
 - A website with links to presentations is in preparation

JPSS-SPARKS 2016

NOAA

JPSS Program Office, NCWCP Scientists who delivered talks on JPSS Science and Data Products, and Valuable Advice to Students

Mitch Goldberg, JPSS Program Arron Layns, JPSS Program Lihang Zhou, STAR Walter Wolf, STAR Jaime Daniels, STAR Corey Guastini, EMC Wesley Ebisuzaki, NCEP Changyong Cao, STAR Many IMSG Scientists on Programming, Research, CM Fuzhong Weng, STAR Denis Tremblay, (SDPI) Larry Flynn, STAR Shobha Kondragunta, STAR Ivan Csizar, STAR Jeff Key, STAR Ralph Ferraro, STAR

Ninghai Sun, (STAR)

Thank You

JPSS Program Office, NCWCP Scientists who delivered talks on JPSS Science and Data Products