

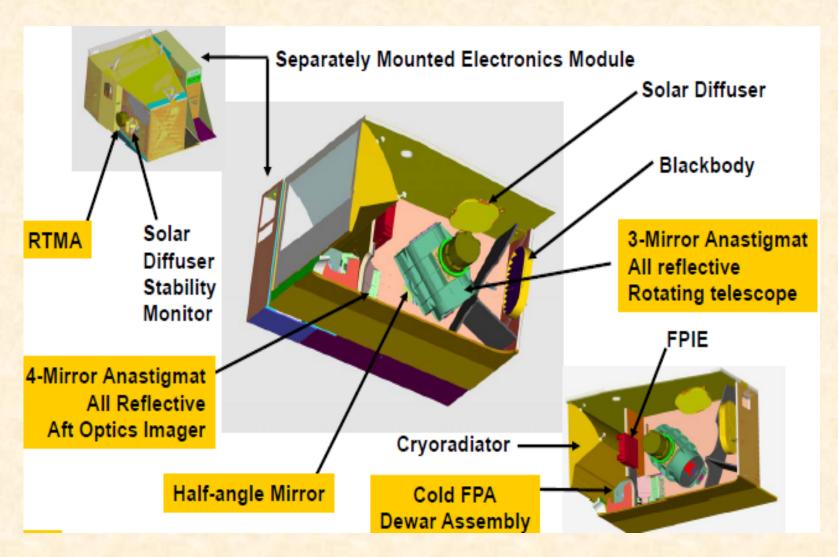
VIIRS RSB Calibration for Ocean Color Applications

Junqiang Sun^{1,2} and Menghua Wang¹

¹NOAA/NESDIS Center for Satellite Applications and Research E/RA3, 5830 University Research Ct., College Park, MD 20740, USA ²Global Science and Technology, 7855 Walker Drive, Maryland, USA

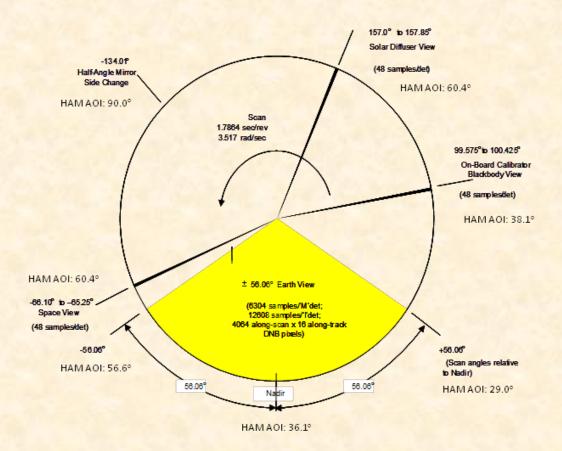
8/9/2016 13:15-13:35 PM

Outline



- Introduction
 - VIIRS Instrument Background
 - Reflective Solar Bands (RSB) On-Orbit Calibration
- SDSM Calibration
 - Algorithms, data analysis, and performance
- SD Calibration
 - Algorithms, data analysis, and performance
- Lunar Calibration
 - Algorithms, data analysis, and performance
- Hybrid Approach
 - Algorithms and hybrid calibration coefficients
- Improvements in Ocean Color Products
- Summary

VIIRS Background



RSB On-Orbit Calibration

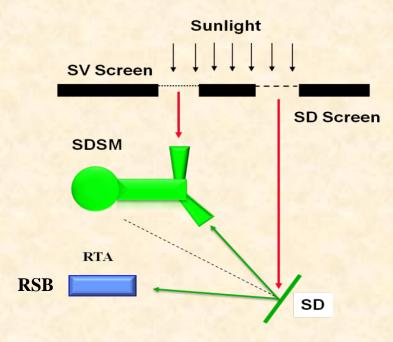
- 22 spectral bands 410 nm to 12.013 m spectral range
- 14 Reflective Solar Bands (RSB): 3 image bands, I1-I3, and 11 moderate bands, M1-M11
- The VIIRS RSB are calibrated on orbit by SD/SDSM calibration
- Monthly lunar observation through its space view (SV) since launch.
- For VIIRS, the angle of incidence (AOI) of the SV is exactly the same as that of the SD. Lunar observations should provide identical on-orbit gain change for VIIRS RSB as SD/SDSM calibration.

VIIRS RSB uncertainty specification is 2%; For ocean color EDR products, the ocean bands (M1-M7) are required to be calibrated with an uncertainty of ~0.1-0.3%.

Key Improvements: Overview

- BRF and VF from yaw measurements
 - Modified procedure
 - Proper data selection
- H-factors (SD degradation from SDSM)
 - Correct initial characterization
 - Identified "SD degradation nonuniformity effect"
- F-factors (RSB Calibration Coefficients)
 - time-dependent relative-spectral-response
- New: Hybrid Coefficients
 - Improved lunar results geometrical factor
 - Combination algorithm

(Each step has been thoroughly described in publication)


Part 1: Standard RSB Calibration with Solar Diffuser

- Solar Diffuser provides quantifiable illumination on orbit
- > Currently the official calibration baseline

SD/SDSM Calibration Overview

• Key assumption: SD degrades uniformly with respect to both incident and outgoing directions

Fist step: Carefully derive BRFs and VFs from the yaw measurements

- SD and SDSM sun view screens:
 - Prevent RSB and SDSM saturation
 - Vignetting functions (VFs)
 - VFs measured prelaunch and validated by yaw measurements
 - SD bidirectional reflectance factors (BRFs)
- BRFs measured prelaunch and validated by yaw measurements
 - SD on-orbit degradation is tracked by the SDSM measurements at 8 wavelength from 412 nm to 935 nm

J. Sun and M. Wang, "On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen," Appl. Opt., 54, 236-252 (2015).

SDSM Calibration Algorithm

- SDSM is a ratio radiometer, which views SD, Sun, and an internal dark scene successively in three-scan cycles.
- SD BRF for SDSM view direction

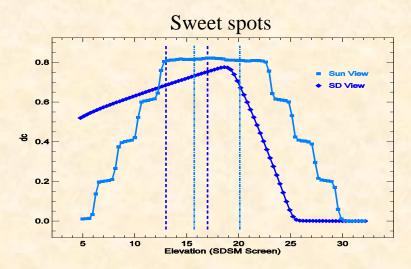
$$BRF_{SD,SDSM}(\lambda) = \rho_{SD,SDSM}(\lambda)H(\lambda)$$

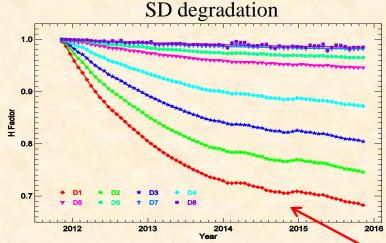
- $\rho_{SD,SDSM}(\lambda)$: Prelaunch BRF for SDSM view direction
- $H(\lambda)$ is solar diffuser degradation since launch
- SD degradation, H factors, for SDSM view direction at the wavelength of the SDSM detector D

$$H(\lambda_D) = \left\langle \frac{dc_{SD,D}}{\rho_{SD,SDSM}(\lambda_D)\tau_{SDS}\cos(\theta_{SD})} \right\rangle_{Scan} / \left\langle \frac{dc_{SV,D}}{\tau_{SVS}} \right\rangle_{Scan}$$

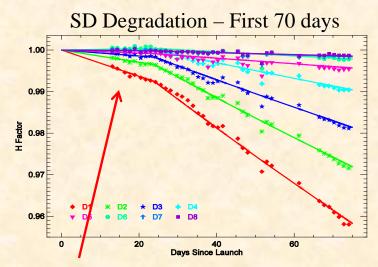
SDSM operations: Every orbit first few months, then once per day for about two years, and once per two days since May, 2014.

- Improvements
 - Carefully derived the VFs and BRFs from yaw measurements
 I Sup and M I
 - Ratio of the averages
 - Sweet spots selection


J. Sun and M. Wang, "Visible infrared image radiometer suite solar diffuser calibration and its challenges using solar diffuser stability monitor," Appl. Opt., 53, 8571-8584 (2014).



SDSM Calibration Results



SD Degradation (H-Factors)

J. Sun and M. Wang, "Visible infrared image radiometer swite > solar diffuser calibration and its challenges using solar diffuser stability monitor," Appl. Opt., 53, 8571-8584 (2014).

- First 25 days must be done right, or 1% error!
- > Results very stable, very accurate, no average over orbit, no smoothing, actual measurements
- > SDSM can accurately track the SD degradation for SDSM direction
- ➤ But in different direction from RSB view direction KEY ISSUE
 - Unexpected but real degradation (Nov., 2014)

SD Calibration Algorithm

- SD is made of Spectralon®, near Lambertian property
- Solar radinace reflected by the SD

$$L_{SD}(\lambda) = I_{Sun}(\lambda) \cdot \tau_{SDS} \cdot \cos(\theta_{SD}) \cdot \rho_{SD,RTA}(\lambda) \cdot h(\lambda) / d_{VS}^{2}$$

- $\rho_{RSD,RTA}(\lambda)$: Prelaunch BRF for RTA view direction
- $h(\lambda)$: SD degradation for SDSM view direction is used as the SD degradation for the RTA direction
- RSB calibration coefficients, F factors

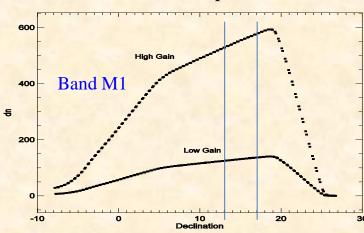
$$F(B, D, M, G) = \frac{RVS_{B,SD} \cdot \int RSR_B(\lambda) \cdot L_{SD}(\lambda) \cdot d\lambda}{\sum_i c_i(B, D, M, G) \cdot dn^i \cdot \int RSR_B(\lambda) \cdot d\lambda}$$

■ B, D, M, G: Band, Detector, HAM side, and gain status

J. Sun and M. Wang, "On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar," Appl. Opt., 54, 7210-7223 (2015).

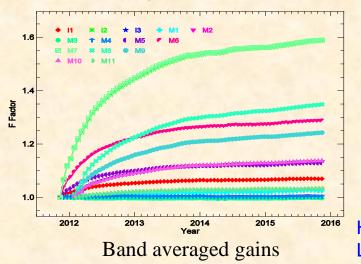
SD Calibration: Every orbit

- Improvements
 - Carefully derived the VFs and BRFs from yaw measurements
 - Improved H factors
 - Sweet spot selection
 - Time-dependentRSR



SD Calibration Results

RSB Calibration Coefficients (SD F-Factors)



Band M1 HAM 1 HG F-factors

Band averaged HAM 1 HG F-factors

HG = High Gain LG = Low Gain

- > SD can accurately track the RSB gain change as long as SD degradation for the RTA view can be approximated as that for the SDSM view.
- > Stable and smooth

Part 2: Lunar Calibration

- Not an official part of the RSB official calibration algorithm
- Not in IDPS processing
- Important calibration baseline

Lunar Calibration Algorithm

- Moon is very stable in its reflectance
- RSB calibration coefficients, F factors, from lunar observations

$$F(B,M) = \frac{g(B)N_{t,M}}{\sum_{D,S,N} L_{pl}(B,D,S,N)\delta(M,M_N)},$$

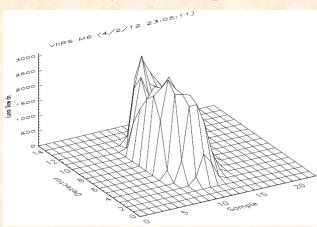
 g(B): View geometric effect correction (ROLO lunar model and extra correction)

SNPP VIIRS is scheduled to view the Moon approximately monthly (about nine months every year)

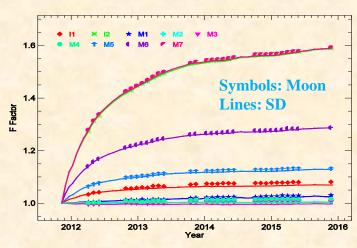
- Advantages
 - Lunar surface reflectance has no observable degradation
 - Can be used for inter-comparison

J. Sun, X. Xiong, and J. Butler, "NPP VIIRS on-orbit calibration and characterization using the moon", Proc. SPIE, 8510,85101I, (2012).

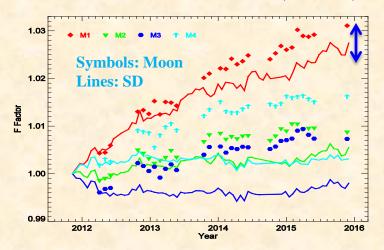
X. Xiong, J. Sun, J. Fulbright, Z. Wang, and J. Butler, "Lunar Calibration and Performance for S-NPP VIIRS reflective Solar Bands", IEEE Trans. Geosci. Remote Sens., **54**, 1052-1061, (2016).



Lunar Calibration Results



RSB Calibration Coefficients (Lunar F-Factors)


Lunar image (M6 in April, 2012)

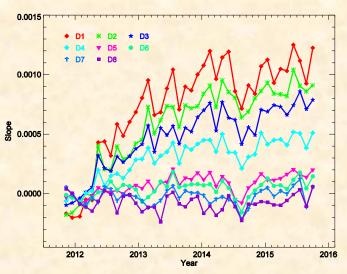
Lunar and SD F Factors

Lunar and SD F factors (M1-M4)

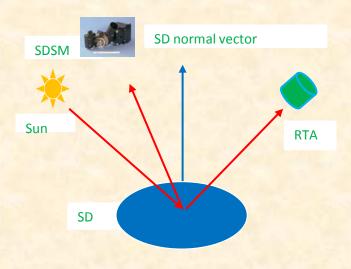
Ex: Relative Bias

- Own Lunar model and correction beyond ROLO model
- New Lunar results much improved smooth, no oscillation
- 0.2% stability
- The differences between the SD Ffactor and lunar F-factors diverge, especially for short wavelength RSB
- Which is correct?

Part 3: Hybrid Methodology Mitigation


- Essential mitigation
- ➤ Takes full advantage of the strength in both SD/SDSM and Lunar Calibration Results

Non-Uniformity of the SD Degradation



Non-uniformity of SD degradation

Slopes of H-factors in each individual event with respect to solar declination

SDSM and RTA views

- SD degrades non-uniformly with respect to the incident angle for SDSM view direction
- According to *optical reciprocity*, then SD also degrades non-uniformly with respect to the outgoing direction
- SD calibration is may bring non-negligible errors for RSB characterization

J. Sun, M. Chu, M. Wang, "Degradation nonuniformity the solar diffuser bidirectional reflectance distribution factor," Appl. Opt., 55, 6001-6016 (2016).

Hybrid Approach

SD Calibration

- SD degrades non-uniformly, resulting long-term drifts
- Results are stable and smooth
- Observation in every orbit

Lunar Calibration

- No degradation issue
- Infrequent and no observation in three months every year

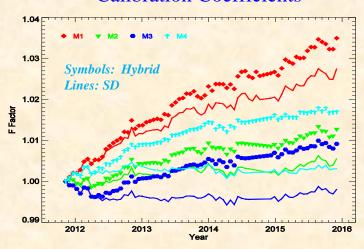
Hybrid Approach

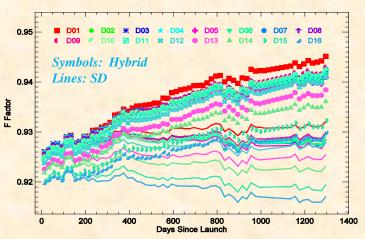
$$\mathcal{F}(B, D, M, G) = R(B, t) \cdot F(B, D, M, G)$$

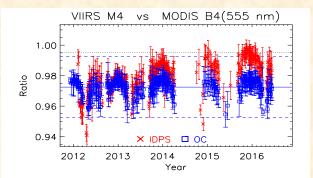
F-Factors Ratios are fitted to quadratic polynomials of time

$$R(B,t) = \left\langle f(B,M,t) \right\rangle_{M} / \left\langle F(B,D,M,0,t) \right\rangle_{D,t-15 < t_i < t+15,M}$$

- Lunar calibration provides long-term baseline
- SD calibration provides smoothness and frequency
- J. Sun and M. Wang, "Radiometric Calibration of the VIIRS Reflective Solar Bands with Robust Characterizations and Hybrid Calibration Coefficients," Appl. Opt., 54, 9331-9342 (2015).
- J. Sun and M. Wang, "VIIRS Reflective Solar Bands Calibration Progress and Its Impact on Ocean Color Products," Remote Sensing, 8, 194 (2016).

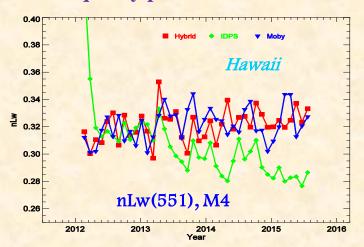

Hybrid Calibration

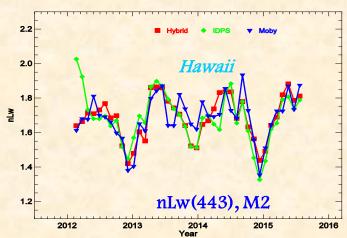

Calibration coefficients Ratios

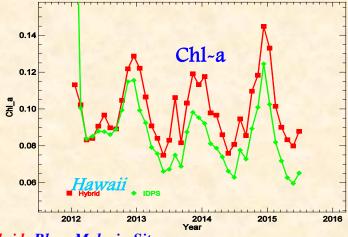

Calibration Coefficients

Calibration Coefficients (M4)

Earth-based SDR studies show that Hybridmitigated SDRs give correct time series


Poster: "Radiometric Comparison of the RSBs of the SNPP VIIRS and Aqua MODIS through SNO analysis" by M. Chu, J. Sun and M. Wang.




Improvements in Ocean Color Products

- VIIRS data were reprocessed using MSL12 with SDR generated with updated hybrid calibration coefficients.
- NOAA ocean color products produced with the hybrid calibration coefficients have met validated maturity in March 2015.
- Hybrid results agree with MOBY in situ!
- Hybrid LUTS have been used for forward science quality products since Dec 2015.

Green: VIIRS IDPS; Red: VIIRS Hybrid; Blue: Moby in Situ

- J. Sun and M. Wang, "VIIRS Reflective Solar Bands calibration prog," Proc. SPIE, 9264, 92640L (2014).
- M. Wang, et al, "Evaluation of VIIRS ocean color products," Proc. SPIE 9261, 92610E (2014).
- M. Wang, et al, "VIIRS ocean color products: A progress update," Proc. IGARSS, Beijing, China (2016).

Summary

- Robust RSB calibration of all components has been done to achieve ~0.2% stability very clean, smooth result.
- The "SD degradation nonuniformity effect" has been discovered to impact RSB calibration, but "hybrid method" mitigation combining SD and Lunar calibration restores RSB calibration accuracy.
- The hybrid coefficients remove long-term bias in ocean color EDR products and enables the VIIRS ocean products for science quality applications. Similar issues expected in J1-J4 VIIRS.
- Identity real and critical issues is a must
- We have successfully completed VIIRS Ocean Color EDR mission-long data reprocessing with Hybrid Coef. F-LUTS this year, and have begun forward delivery of science quality EDR since May 2016.
- We anticipate more challenging issues to come and we are preparing.

***More technical discussions will be presented in Wednesday ocean color breakout session.

Table 1. Specification for SNPP VIIRS RSBs and SDSM detectors.

VIIRS Band	CW* (nm)	Band Gain	Detectors	Resolution*	SDSD Detector	CW* (nm)
M1	410	DG	16	742m x 776m	D1	412
M2	443	DG	16	742m x 776m	D2	450
M3	486	DG	16	742m x 776m	D3	488
M4	551	DG	16	742m x 776m	D4	555
I1	640	SG	32	371m x 387m	NA	NA
M5	671	DG	16	742m x 776m	D5	672
M6	745	SG	16	742m x 776m	D6	746
M7	862	DG	16	742m x 776m	D7	865
12	862	SG	32	371m x 387m	D7	865
NA	NA	N	16		D8	935
M8	1238	SG	16	742m x 776m	NA	NA
M9	1378	SG	16	742m x 776m	NA	NA
M10	1610	SG	16	742m x 776m	NA	NA
13	1610	SG	32	371m x 387m	NA	NA
M11	2250	SG	16	742m x 776m	NA	NA

^{*}CW: Center Wavelength; DG: Dual Gain; SG: Singla Gain; Resolution: Track x Scan at Nadir after aggregation