

VIIRS TEB Potential Improvements

Wenhui Wang and Changyong Cao

NOAA/NESDIS/STAR

With contributions from: Likun Wang (STAR CrIS SDR team), Jason Choi, Bin Zhang , and Zhou Wang

JPSS Annual Science Team Meeting (August 9, 2016)

Outline

- Background
 - Remaining issues with SNPP VIIRS TEB calibration
- Potential Improvements to TEB calibration
 - Review of the Aerospace's method
 - Alternative method
 - Other potential improvements
- Summary

Three Remaining Issues with TEB Calibration

Courtesy of Chris Moeller, 2014 JPSS Annual Science Team Meeting

Issue 1: M15 has a cold bias at low scene temperature (~0.3 K at 200 K) Issue 2: Constant bias also exist at SST and other temperatures for M15

Three Remaining Issues with TEB Calibration

Courtesy of Dr. Ignatov, 2015 JPSS Annual Science Team Meeting

- VIIRS SST product is generally consistent with drifter measurements, except
- Issue 3: "Global warming of ~0.3K" occurs in VIIRS SST every 3 months, due to warm up cool down (WUCD) calibration anomaly.

STAR ICVS TEB F-Factor Time Series

TEB F-factors behave differently during WUCD compared to during nominal blackbody (BB) temperature setting (292.5 K).

M15 F-factor for March 2016 WUCD Event

M15 F-factors have large warm biases during cool down→ warm bias in scene BT small cold bias during warm up → small cold bias in scene BT Overall: warm bias during WUCD

- Aerospace proposed a method to reduce F-factor anomalies and scene temperature biases during WUCD (October 7, 2015, Option 1):
 - OBCBB Response Versus Scan (RVS) was changed to optimized values (band-averaged corrections);
 - Half Angle Mirror (HAM) emitted radiance LUT was modified to better represents true HAM radiance;
 - Only #3 and #6 Blackbody (BB) thermistors were used in radiance calculation;
 - Three TEB calibration LUTs in total were changed, no code change required.
 - The method was applicable to all TEB bands.
- The initial proposed method was further updated to flatten F-factors during WUCD by implementing (August 3, 2016, Option 2) :
 - Detector dependent corrections to OBCBB RVS;
 - Detector dependent modification of HAM emitted radiance LUT and using Emission Versus Scan (EVS) to better represents true HAM radiance;
 - Require changes of 3 LUTs + VIIRS SDR science code change;
 - The updated method can be applied to all TEB bands.

Details of Aerospace's method are available on GRAVITE Information Portal under VIIRS SDR telecon documentation directory.

Summary of Aerospace's Method -Band M15 F Factor Trending Over Historical WUCDs

Summary of Aerospace's Method Pros and Cons

- Aerospace's method can effectively reducing F-factor anomalies for all TEB bands and reduce scene BT bias during WUCD at SST temperatures
- It can also reduce M15 constant scene BT bias under nominal BB temperatures
- However, it will increase M15 cold scene bias;
- Three LUTs needed to be modified;
- Code change is require for detector dependent HAM radiance correction (option 2);
- Only use 2 out of 6 BB temperature thermistors.

Alternative Method to Improve TEB Calibration Prelaunch versus WUCD derived C Coefficients

 \triangleright

- Prelaunch characterized C coefficients are currently used for operational SNPP VIIRS TEB SDR production;
- On orbit instrument environment may be different from prelaunch;

Larger difference exist between prelaunch and WUCD derived C coefficients in some bands; e.g. M15 WUCD derived c0s are consistently higher than the prelaunch values, and with opposite sign

- An alternative method is to explore using WUCD derived C coefficients to address TEB calibration issues.
 - VCST WUCD C coefficients were used as references in this study;
 - One LUT (VIIRS-SDR-DELTA-C-LUT) needs to be modified;
 - Similar method was used for MODIS TEB.
- TEB calibration terms from typical granules with nominal (292.5K), warm (315 K), and cold (272.5 K) BB temperatures at nadir were exacted using ADL and used for:
 - further analyzing the sensitivity of different terms, including C coefficients, on WUCD Ffactor anomaly and scene temperature biases;
 - Refining Tele and Tomm dependencies of C coefficients.
- The method was applied to M15 in this study:
 - Band averaged, Tomm dependent modifications were applied to c0, which show large differences between prelaunch and WUCD values;
 - Prelaunch c1 and c2 values are generally consistent those derived by WUCD, therefore unchanged;
 - c2 values are small (on the order of 1E-8), not sensitivity to WUCD anomalies.

M15 F-factors (HAM-A)

After correction, M15 F-factors become more consistent during normal, warm, and cold BB temperatures. HAM-B shows similar patterns.

- WUCD F-factor anomalies are significantly reduced after applying the modified c0 values.
- c0 values, esp its Tomm dependency, can be refined to further reduce the anomalies.

Three Types of M15 BT biases Based on Comparisons with CrIS (Baseline)

Courtesy of Likun Wang (STAR CrIS SDR Team), each plot was generated using 2 hours of data

Three Types of M15 BT biases Based on Comparisons with CrIS (Updated)

- 1. Cold scene bias was almost removed;
- Constant bias was reduced by ~0.1 K;
- 3. WUCD biases removed: Remaining constant biases are close to each other under different BB temperature settings.

Courtesy of Likun Wang (STAR CrIS SDR Team)

Only

Current VIIRS TEB Calibration Equations:

$$F = \frac{\operatorname{RVS}(\theta_{obc}) \cdot \left\{ \left(1 - \frac{1}{\operatorname{RVS}(\theta_{obc})}\right) \cdot \frac{\left(1 - \overline{\rho_{ria}(\lambda)}\right) \cdot \overline{L(T_{ria},\lambda)} - \overline{L(T_{ham},\lambda)}\right\}}{\overline{\rho_{ria}(\lambda)}} + \overline{\varepsilon_{obc}(\lambda)} \cdot \overline{L(T_{obc},\lambda)} + \overline{L_{obc_rfl}(T_{sh}, T_{cav}, T_{tele},\lambda)}\right\}}{\sum_{j=0}^{2} c_{j} \cdot dn_{obc}^{j}}$$

$$\overline{L_{ap}}(\theta, B) = \frac{F \cdot \sum_{i=0}^{2} c_{i} \cdot dn^{i} - (\operatorname{RVS}(\theta, B) - 1) \cdot \frac{\left(1 - \overline{\rho_{ria}(\lambda)}\right) \cdot \overline{L(T_{ria},\lambda)} - \overline{L(T_{ham},\lambda)}\right)}{\overline{\rho_{ria}(\lambda)}}}{\operatorname{RVS}(\theta, B)}$$

F-factor scales c0,c1, c2 equally on orbit

MODIS-equivalent TEB Calibration Equations: ۲

$$c_{1} = \frac{RVS(\theta_{obc}) \cdot \left\{ \left(1 - \frac{1}{RVS(\theta_{obc})}\right) \cdot \frac{\left\{1 - \overline{\rho_{rta}(\lambda)}\right\} \cdot \overline{L(T_{raa}, \lambda)} - \overline{L(T_{ham}, \lambda)}\right\}}{\overline{\rho_{rta}(\lambda)}} + \overline{\varepsilon_{obc}(\lambda)} \cdot \overline{L(T_{obc}, \lambda)} + \overline{L_{obc_rfl}(T_{sh}, T_{cav}, T_{tele}, \lambda)}\right\}} - c_{0} - c_{2} \cdot dn^{2}_{obc}}{dn_{obc}}$$

$$\overline{dn_{obc}}$$

$$\overline{L_{ap}}(\theta, B) = \frac{c_{0} + c_{1} \cdot dn + c_{2} \cdot dn^{2} - (RVS(\theta, B) - 1) \cdot \frac{\left\{(1 - \overline{\rho_{rta}(\lambda)}) \cdot \overline{L(T_{rta}, \lambda)} - \overline{L(T_{ham}, \lambda)}\right\}}{\overline{\rho_{rta}(\lambda)}}}{RVS(\theta, B)}$$
Only c1 is derived for each scan on orbit, no scaling of c0 and c2
This requires further study

Summary

- The VIIRS SDR teams have been working diligently to address remaining issues in TEB calibration;
- The Aerospace's method was reviewed;
- An new method was proposed, preliminary results are promising:
 - Based on WUCD derived C coefficients and sensitivity analysis;
 - Only change one LUT, no other change is needed;
 - Effectively reducing 3 types of M15 scene BT biases:
 1)Cold scene bias; 2)Constant bias; 3) WUCD bias.
- Next step:
 - Further refine the new method and apply it to all TEB bands
 - Conduct more impact studies for all methods;
 - Continue to explore other potential solutions.

Backups

Courtesy of NASA VCST, June 2016 MODIS/VIIRS Science Team Meeting

1.83665×10¹⁵ 1.83670×10¹⁵ 1.83675×10¹⁵ 1.83680×10¹⁵ 1.83685×10¹⁵ 1.83690×10¹⁵ 1.83695×10¹⁵

NASA VCST WUCD c1 and c2

Courtesy of NASA VCST, June 2016 MODIS/VIIRS Science Team Meeting