

LW FOV5 Update

Introduction

- For S-NPP CrIS LW FOV5 has higher radiance than other FOVs at 668.125 cm⁻¹ for cold scenes
- Numerous presentations on this anomaly
- Latest was from UW exploring unresolved channel spectrum
 - March 16, 2016
 - Beamsplitter gap causes a secondary "ZPD" spike at 0.88 cm OPD
- UW did analysis in the interferogram domain
- Spectral domain analysis should be identical
- Larabee provided monochromatic spectra for hot and cold scenes
- Results ambiguous
- Joe Predina proposed electrical crosstalk as root cause

Beamsplitter Gap Wedge Reduces Amplitude

Normalization: $0.5*r \cong (0.5) * [(n-1)/(n+1)]^2 = 0.085$ with n = 2.4

- ▶ From March 16, 2015 UW presentation
- Didn't use normalization (conservative analysis)

Effect of Beamsplitter Gap Reflection

High resolution spectra is modulated by channeling
Phase of channeling is unknown

- Monochromatic spectra from Larrabee Strow
- Spectral resolution reduced to CrIS
- Modulation does not have a big affect

Spectral resolution reduced to CrIS
Modulation does not have a big affect

Observed Anomaly Doesn't Match Model

- Observed anomaly larger than modeled
- Larger affect seen for hot spectra than cold
- Shape not a very good match
- Could there be a non-LTE spectral line not in model

Spectral Shift of Anomaly

- Position of peak sensitive to the modulating phase
- ▶ Beamsplitter gap OPD is 0.88 cm⁻¹ or 8800 µm
- Aluminum has thermal expansions of 24x10⁻⁶/°C at 20 C
- Change in length for 1 C change 0.21 µm compared to wavelength of 15 µm (5 degrees of phase)

On orbit OMA temperature change not large enough to expect

8 to see change spacedynamics.org

Electrical Cross-Talk

- Joe Predina proposed the effect could be due to electronic cross-talk
- General electronic pickup would likely not have same phase as optical signal and would show in imaginary spectra

Anomaly Only Visible in Real Spectrum

real

imaginary

- Difference between FOV5 and FOV6
- Anomaly shows up in real but not imaginary spectra
- August 1, 2015 orbit 19478

Electrical Cross-Talk

- If optical or detector electrical cross-talk were getting into FOV5 the line shape would be incorrect
- Synthesized spectra including SA matrix effects
 - From Larrabee Strow's high resolution spectrum
- Added small amount of FOV1 and FOV2 into FOV5
- Applied inverse SA matrix for FOV5
- Plot difference between correct FOV5 spectra

Adding Cross-Talk Not Consistent with Anomaly

0.07 of FOV1 & FOV2 added to FOV5
 Biggest effect in 720 to 760 cm⁻¹ region not 668 cm⁻¹
 Other combination of cross-talk also not a good fit

BACKUP

13

spacedynamics.org

How Large is Anomaly?

Anomaly compared to a single pixel noise

Anomaly was averaged over a granule

spacedynamics.org

Anomaly Spectral Position not Constant

Spectral position of anomaly correlated with amplitude

- Anomaly amplitude uses left axis, position right axis
- South pole region, averaged over each granule
- August 1, 2015 orbit 19480

15

Anomaly Spectral Position not Constant

- Spectral position of anomaly correlated with amplitude
- Anomaly amplitude uses left axis, position right axis
- South pole region, averaged over each granule
- June 21, 2015 orbit 18900

16

Anomaly Spectral Position not Constant

Spectral position of anomaly correlated with amplitude

- Anomaly amplitude uses left axis, position right axis
- South pole region, averaged over each granule

December 21, 2015 orbit 21496

J1 CrIS System Level Testing, Results and Preparation for Launch

Mark Esplin, Deron Scott, Kori Moore, and Ben Esplin

Outline

Preparations for J1 CrIS Spacecraft level test and early on orbit checkout

- Differences in data format since sensor TVAC
- Reading J1 test data
 - Exercising analysis software
- J1 CrIS sensor level TVAC performance
- S-NPP on-orbit status
 - Typical NEdN
 - Standard deviation verses Allan deviation
 - Response trending
 - Bit-trim errors due to bright scenes
 - Extended interferogram operation

PREPARATIONS FOR J1 CRIS SPACECRAFT LEVEL TEST AND EARLY ON ORBIT CHECKOUT

Plan for CrIS Spacecraft TVAC Test

- Four hot and cold cycles planned during TVAC
- Several opportunities to evaluate CrIS NEdN and linearity
- CrIS will be active during other times as well

J1 CrIS Planned Activities

- During Spacecraft TVAC
 - Verify proper functionality of CrIS sensor
 - Investigate any unexpected behavior
 - Determine NEdN at high and low temperature plateaus
 - Check for ice buildup on optical surfaces
 - Evaluate nonlinearity changes from diagnostic mode data
 - Compare sensor performance with previous sensor level TVAC
- Early on orbit checkout in addition to above tasks
 - Evaluate occurrences of radiation spikes
 - Optimize bit-trim mask
 - Trend degradation of system responsivity

Software Tools Ready for Spacecraft TVAC

- Ability to unpack CCSDS packets from HDF5 formatted files
- Ability to read and plot telemetry data
- Plot raw interferograms both normal and diagnostic mode
- Determine FOR, FOV, sweep direction etc. from interferogram data (check for missing data)
- Convert raw interferograms into magnitude and phase spectra
- Process raw interferograms into calibrated spectra (Harris SDR generator)
- Determine NEdN and Allan deviation
- Derive nonlinearity coefficients from diagnostic mode data

J1 Preliminary Spacecraft Data

- Files have 15 granules per file
- Interferogram length LW 876, MW 1052, SW 808
- Data from all FOVs present
- For some files there is one less earth scene interferogram than expected (1799 instead of usual 1800)
 - No gaps in time stamps
 - Short granule not missing data
- Packet trackers not consistent with documentation
 - Issue currently being worked
 - Possible to get needed information from binary CCSDS packet headers

Example J1 Telemetry Data

- Software able to read and decode telemetry data
- Telemetry as expected for a CrIS system turn on

RCRIT_j01_d20151014_t1609422_e1800055_b00001_c20160118222721609000_all-_dev.h5

Uncalibrated Test Spectra

- Playback of representative interferograms
- All FOVs of a given FOR are equal
- Scan direction 1 is small amplitude
- Scan direction 0 is large amplitude

These two spectra are replicated over and over again

g

J1 CRIS SENSOR LEVEL TVAC TESTING

J1 CrIS TVAC During Fall of 2014

- Basic functionality checks
- NEdN from both operational and staring modes
- Three sensor plateaus
 - (PFL) Proto Flight Low (ICT at about 262 K)
 - (MN) Mission Nominal (ICT at about 287 K)
 - (PFH) Proto Flight high (ICT at about 314 K)
- Both electronic sides and different supply voltages
- NEdN with induced vibration
- Nonlinearity Characterization
 - Diagnostic mode interferograms
 - Normal mode CrIS operation with stepped ECT temperatures

- MW FOV9 out of family with other FOVs
- MW FOV9 slightly above spec value
- MN (Mission Nominal) plateau staring mode

Operational Mode MN NEdN

Staring and operational mode NEdN nearly identical
 MN 287 K ECT, side 1

Nonlinearity a₂s Characterized

- Normal is using stepped ECT temperatures
- Relative coefficient magnitude shown
- Diagnostic mode a₂s scaled so MN 310K matched normal FOV5

14

S-NPP ON-ORBIT STATUS

spacedynamics.org

Typical S-NPP On-Orbit NEdN

- ICT interferograms substituted for earth scenes
- Nominal resolution

▶ July 7, 2016

spacedynamics.org

Typical S-NPP On-Orbit NEdN

Average Total NEdN from SDR

NEdN produced by IDPS and imbedded in SDR files
July 7, 2016

Standard Deviation vs. Allan Deviation

- CrIS NEdN is calculated using Std Dev of Internal Calibration Target (ICT) measurements with a temperature (T) correction applied
 - T correction normalizes response with varying ICT T
- Std Dev is sensitive to changing mean, Allan Dev is <u>not</u>
- Std Dev with T correction and Allan Dev are of similar magnitude and show CrIS instrument has been very stable
- ICT T is largest contributor to NEdN variation

CrIS Relative Response Degradation

Degradation is only about 3% after 4.5 years at most sensitive wavenumbers

Response degradation appears to be leveling off

19

Bit-Trim Check

CrIS uses bit-trim compression for interferograms

- Different number of bit are used to encode interferogram zones
- More bits used near center of interferogram (zero path difference or ZPD) while lower number of bits in the wings of interferogram
- Bit-trim errors occur when interferogram amplitude exceeds allocated number of bits – resulting in loss of information
- Causes of bit-trim errors: hot scenes, fires, sun glints, radiation spikes, etc.
- MW margin for bit-trim errors low for hot dry scenes
- During 2015 three cases found with bit-trim errors caused by bright scenes found (all in Lut desert in Iran)
- No bright scene bit-trim errors found in 2016 through July

Extended Mode Operation

- November 2, 2015 extended lengths of S-NPP interferograms
- Truncating interferogram ends leads to spectral ringing
- Interferogram lengths changed:
 - LW 866 to 874
 - MW 1052 (unchanged)
 - SW 799 to 808
- Additional points can be used to taper interferogram ends while maintaining required spectral resolution
- Ongoing work on optimizing ground based SDR software to take advantage of these additional points

Conclusions

- Software tools and procedures are in place for J1 spacecraft level TVAC
- Practiced reading and analyzing preliminary J1 data
- Results from spacecraft TVAC with be compared with pervious sensor level TVAC results
- S-NPP has been operating very well on orbit
- Standard deviation and Allan deviation produce essentially identical results if an ICT temperature drift correction is used
- S-NPP response degradation very low after 4.5 years
- No bit-trim errors caused by too bright desert scenes in 2016

BACKUP

spacedynamics.org

MWIR Bit-Trim Error Caused by Bright Scene

June 11, 2015 Lut desert Iran

Bit-trim errors occur in first and last zone

spacedynamics.org

24

SDR Comparison

UMBC A4 algorithm minus STAR A4 algorithm

Clear Scenes only

PFL NEdN

PFL (Proto Flight Low) temperature plateau
Operational mode, 287 K ECT, side 1

- PFH (Proto Flight High) temperature plateau
- Slightly higher NEdN

spacedynamics.org

Operational mode, 287 K ECT, side 1