CrIS Noise Covariance

Model Error Covariance

Addtional Material

CrIS Noise and Moldel Error Covariance

L. Larrabee Strow, Howard Motteler, and Sergio De-Souza Machado

UMBC Department of Physics *and* Joint Center for Earth Systems Technology

STAR Science Meeting Aug. 9, 2016

CrIS Noise Covariance

Model Error Covariance

Addtional Material

NWP Centers: CrIS Covariance Higher than IASI

Derive CrIS Noise Covariance

• Using 1 day of ICT data, derive noise error covariance

Mimic?? NWP (Noise+Model) Error Covariance

- Match ECMWF analysis/forecast to IASI, CrIS clear scenes
- Convert IASI observations (different noise) to CrIS
- Compare bias error covariances
- Try to convert CrIS error covariance to (IASI -> CrIS) error covariance and compare
- Day: Jan 18, 2016
- SDR Code: CCAST standard

Introduction	
0000	

CrIS Noise Covariance

Model Error Covariance

Addtional Material

NWP Data Assimilation

Data assimilation ingests the observations *y* and minimizes a cost function *J*

$$J = (x - x_b)^T B_x^{-1} (x - x_b) + (\gamma - K(x))^T (\boldsymbol{E} + \boldsymbol{F})^{-1} (\gamma - K(x))$$

in order to find the best analysis increment to the model background $x - x_b$.

- B_X : Background error covariance
- K: CrIS RTA

E + F = R: Observation error covariance (often diagonal)

- E: Instrument error covariance
- *F*: Representativeness, nonlinearity, RTA covariances

NPW centers are finding *R* is larger for CrIS than IASI. *But* this is generally presented as correlations rather than covariances.

Introdu	iction
0000	

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Present Status

- A diagonal *R* was/is the norm in the past.
- Many centers working towards off-diagonal R
- This should lead to better use of sounder data, using lower error estimates.
- If practical, I hope this then leads to using more channels, esp. for CrIS which has low noise, but slightly wider Jacobians

Recent Relevant Journal Articles

- Effect of self-apodization correction on Cross-track Infrared Sounder radiance noise, Han et. al. (Applied Optics, 2015)
- Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals, Carmine Serio et. al. (Applied Optics 2015)
- Enhancing the impact of IASI observations through an updated observation-error covariance matrix, Niels Bormann etc. al (QJRMS 2016)

CrIS Noise Covariance

Model Error Covariance

Addtional Material

NWP "Correlation" Observations for CrIS, IASI

ECMWF IASI Error Correlation

Figure 3. Observation-error correlations used in this study for assimilated IASI channels. See main text and Appendix A for further details.

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Noise Correlation

- Following Han et. al., reproduce noise figures
- Expand from 512 points to 1-day (either Jan 18 or 20, 2016)
- Do SVD analysis to determine correlated noise, about 1-2% for Hamming (see Additional Material at end of talk)
- Effect of hamming on covariance and correlation matrices

Keep in mind:

- noise = $\sqrt{(cov_{i,i})}$
- $corr_{i,j} = \frac{cov_{i,j}}{\sqrt{(cov_{i,i} \cdot cov_{j,j})}}$
- CrIS has lower noise than IASI
- CrIS Hamming has lower noise than Sinc

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Noise Correlation Data Analysis

- One day of ICT (blackbody) calibrated data.
- Just substitude ICT_i into SDR equation instead of ES_i
- Remove resulting slow variation in ICT B(T) with a 31-point moving average smoother
- For SVD correlated noise analysis divide by nominal noise

CrIS Noise Covariance

Model Error Covariance

Addtional Material

LongWave Noise Correlations

These smoothed correlation matrices suggest off-diagonal correlated noise at the 2% level. Higher for hamming.

CrIS Noise Covariance

Model Error Covariance

Addtional Material

LongWave Noise Covariance

No difference between Sinc and Hamming off-diagonals! Lower Hamming noise increases off-diagonal correlations.

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Other Sources of Correlation?

- ICT environmental model? (in longwave \pm -0.04 to -0.01K)
- ICT calibration variability, esp. over orbit?
- **Small** orbital calibration errors *could* produce these correlations; TVAC results (day in the life?)
- IASI blackbody has a constant temperature

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Bias Correlation Data Analysis

- Clear ocean scenes, tropical to keep F smaller
- Convert IASI to CrIS ILS "IASI->CrIS"
- Modify CrIS to have "IASI->CrIS" noise
- Concentrate on 650-750 cm⁻¹
- *F* covariance clearly dominates rest of LW and MW (SST, water vapor)
- ??? Our F is *larger* than NWP and mixes background and observation errors, and has no integration of the model to the observation time, etc etc. We are using ECMWF 3-hour forecast/analysis
- ??? Consequently, our results are, at most, only useful for relative comparisons

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Clear Scene Locations for CrIS

Color is hour.

CrIS Noise Covariance

Model Error Covariance

Addtional Material

CrIS and IASI Clear Biases

Night is similar, IASI 0.2K warmer in window region.

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Bias Std and Noise

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Covariance Ratios (IASI/CrIS)

F covariances (Representativeness, RTA, etc.) constant between instruments *E* covariances scale with instrument noise Low noise implies higher off-diagonal correlations

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Effective Model Error

IASI model error up to 3X larger than CrIS?? $F = \sqrt{(std^2 - inoise^2)}$

CrIS Noise Covariance

Model Error Covariance

Addtional Material

CrIS vs IASI Correlations

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Day vs Night Correlations

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Corrected Day Correlations

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Problem with LongWave IASI Biases?

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Problem with LongWave IASI Biases?

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Problem with LongWave IASI Biases?

CrIS Noise Covariance

Model Error Covariance

Addtional Material

CrIS Radiometric Stability: dBT/dt Rates

Blue: Observed Rate Red: Fit residuals

CrIS Noise Covariance

Model Error Covariance

Addtional Material

CrIS Stabliity from dBT/dt Rate Fits

- Do an OEM fit of dBT/dt (K/year) CrIS rates for tropical clear ocean spectra bias versus ERA.
- Fits for T(z) and H₂O (z) are close to ERA
- OEM fit for CO₂
 - CO₂ CrIS = 2.45 \pm 0.006 ppm/year (error is wrong)
 - NOAA ESRL CO₂ = 2.39 ± 0.09 ppm/year
 - (NOAA ESRL CO₂- CrIS CO₂) = -0.002K/year \pm 0.004 K/year
- OEM fit for CH₄ (just final result)
 - $\bullet~$ -0.0008 K/year $\pm~0.002$ K/year

Need to include observation covariance to get correct OEM errors!

Introd	uction	

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Conclusions

- How can NWP utilize low noise of CrIS?
- Could CO₂ be the cause of some of these correlations? Rd-do analysis in Spring when N/S gradient exists.
- Need closer interactions between instrument, RTA, and NWP researchers?
- If NWP includes observation covariances, can they now increase the number of channels used?
- CrIS channels *may* have slightly higher correlations than IASI, but maybe due to other IASI issues?
- IASI calibration appears to vary slightly with some orbits?
- JPSS-1 CrIS will have a better blackbody, will that change these observations?
- Exactly how well does the CrIS ICT temperature match the ICT emission over time? What can TVAC tell us?

CrIS Noise Covariance

Model Error Covariance

Addtional Material

Additional Material

SVD analysis of CrIS correlated noise is shown on the next three slides.

CrIS Noise Covariance

Model Error Covariance

Addtional Material

LongWave Noise Correlations

CrIS Noise Covariance

Model Error Covariance

Addtional Material

MidWave Noise Correlations

CrIS Noise Covariance

Model Error Covariance

Addtional Material

ShortWave Noise Correlations

