Combination of VIIRS with CrIS toward Extending Data Utilization

Likun Wang, Yong Chen, Denis Tremblay, Yong Han

- ESSIC/Univ, of Maryland, College Park, MD; wlikun@umd.edu

Acknowledgment CrIS SDR Team

Motivation

NWP Data assimilations
Geophysical parameter retrievals
Purpose: Providing sub-pixel information for CrIS observations using collocated high-spatial resolution VIIRS radiances or products

Outline

- CrIS and VIIRS are two independent instruments, though on the same platform
- Not like IASI and AVHRR on MetOp
- No alignment requirements
- Separate geolocation fields
- Fast and accurate collocation algorithm suitable for operational use
- Are CrIS and VIIRS perfect align together?
- If not, collocated products can introduce errors and uncertainties, making applications even worse.
- Applications
- Cloud detection
- Effects of FOV size on the number of clear sky pixels
- Cluster analysis (on-going)

VIIRS vs. CrIS: Spatially

VIIRS I5 bands

CrIS at $900 \mathrm{~cm}^{-1}$

375 m (1) or 750 m (M)
58.3°
Continuous
14.0km nadir 48.3°
Sub-sample

300

돕
250

200

Collocation of CrIS with VIIRS

CrIS Footprints

Collocation of the measurements from two satellite sensors (either on the same satellite platform or not) involves pairing measurements from two sensors that observe the same location on the Earth but with different spatial resolutions.

CrIS Footprints overlapped with VIIRS image

It is challenging to do it on the Earth Surface using latitude and longitude.

1) Footprint rotation and distortion off nadir; 2) Searching! Searching! Searching!

Collocation of CrIS with VIIRS Using line-of-sight vector

Satellite

- It is better to collocate CrIS and VIIRS in space instead of on the Earth Surface
- If we can retrieve line-of-sight vector of CrIS and VIIRS
- The collocation of VIIRS and CrIS can be simplified as examining the angles between two vectors.
- No worry about FOV distortion
cisememe
Misalignment between CrIS and VIIRS at the end of scan

CrIS-VIIRS 15

VIIRS Geolocation Very Accurate ! (15 band: $\mathbf{3 7 5 m}$ resolution)

Table 2. VIIRS Geolocation Accuracy		
Residuals	First Update	Second Update
	23 February 2012	18 April 2013
Track mean	-24 m, -7\%	$2 \mathrm{~m}, 1 \%$
Scan mean	-8m, -2\%	$2 \mathrm{~m}, 1 \%$
Track RMSE	75 m, 20\%	70 m, 19\%
Scan RMSE	$62 \mathrm{~m}, 17 \%$	$60 \mathrm{~m}, 16 \%$

CrIS Geolocation Assessment Using VIIRS as a reference

- The misalignment between CrIS and VIIRS can be caused by the CrIS geolocation error.
- Can we use VIIRS as a reference to check CrIS geolocation accuracy?
- The purpose is to identify the error characteristics of CrIS LOS pointing vector by comparing them with the truth.

- Furthermore, if the systematic errors are found, a new set of coalignment parameters should be retrieved based on assessment results to improve the geolocation accuracy.

Overview of NPP/JPSS

Geolocation Algorithms

CrIS (or other instrument)

Inverse Geolocation Computation

Earth

cics-md
 Defining α and β angles of CrIS LOS vector

 in Spacecraft Coordinateα and β Angles

varying with Scan Position (FOV5)

α and β angles are step-by-step perturbed by 21 steps with a angle of 375/833/1000.0

Using VIIRS to find best collocation position

Flowchart for VIIRS-CrIS Alignment Check

cicsemd IDPS Data Geolocation Performance

New Geometric Parameters

Figure 48: Sensor Algorithm Level Coordinate Systems
Given the assessment results with 60 angles, the best strategy is to retrieve $\mathbf{6 0}$ scan mirror rotation angles.

SDR Algorithm Process

1) LOS in IOAR coordinate $=$ ILS parameters (3x3)
2) Convert from IOAR to SSMF coordinate (2 angles)
3) Compute normal to SSM mirror in SSMF (30 Scan Pos) (60 angles)
4) Apply SSM mirror rotation to get LOS in SSMF coordinate
5) Convert from SSMF to SSMR coordinate (3 angles)
6) Convert from SSMR to IAR coordinate (3 angles)
7) Convert from IAR to SAR (3 angles)
8) From SAR=> SBF coordinate (0 angels)
9) From SBF=> Spacecraft (3 angles)

New SSMF In-track Angles

Retrieved SSMF Cross-track Angles

Geolocation Performance (New Parameters)

Effects of Geolocation Updates CrIS-VIIRS (M15)

Application (I) Clear Sky Detection Comparison

- Compared to NWP method, the VIIRS method
represent the most conservative clear sky detection.

260 • Differences:
$260{ }_{\omega}{ }_{\omega} 1$ Missed detection of clear sky observations 240 Jer land by the NWP method
2. More clear sky observations over sea by NWP method

Application (II)
Clear Sky observations change with FOV size

Application (III)

VIIRS radiance cluster analysis under CrIS FOV

VIIRS can be collocated within CrIS footprint through fast collocation method

The collocated VIIRS pixels are then separated into several classes (7) based on cluster analysis; for each class, the fraction of CrIS FOV coverage, mean radiance value, standard deviation are provided.

Conclusion

- Fast and accurate collocation method of CrIS and VIIRS has been developed, which is suitable for operational use.
- CrIS geolocation has been adjusted to perfectly align with VIIRS.
- Accurate collocation VIIRS products shows some potentials for data assimilation and geophysical parameter retrivals.

Publication

- Wang, L., D. A. Tremblay, B. Zhang, and Y. Han, 2016: Improved scheme for Cross-track Infrared Sounder geolocation assessment and optimization. Journal of Geophysical Research - Atmosphere (Submitted).
- Wang, L., Y. Chen, and, Y. Han, 2016: Impacts of Field of View Configuration of Crosstrack Infrared Sounder on Clear Sky Observations, Applied Optics (In Print).
- Wang, L., D. A. Tremblay, B. Zhang, and Y. Han, 2016: Fast and Accurate Collocation of the Visible Infrared Imaging Radiometer Suite Measurements and Cross-track Infrared Sounder Measurements. Remote Sensing, 8, 76; doi:10.3390/rs8010076.

QUESTIONS?

BACKUP SLIDES

Retrieve LOS Vectors

Azimuth, Zenith, Range in Local Spherical Coordinate

Geodetic Latitude, Longitude, and Altitude (LLA) Coordinate

Earth-centered, earth-fixed (ECEF) Coordinate

CrIS Spatial Response Function

- Ideally, VIIRS images should be convolved with CrIS spatial response function.
- CrIS detector response function: a cutoff value of $\pm 0.963^{\circ} / 2$ (14.0 km at nadir) is about 41.19% to its peak value but already collects 98% of total radiation falling on the detector.
- The box-car spatial response is good enough to represent the real CrIS spatial response.

K-D Tree Search

$x---------(7,2)$

In computer science, a \boldsymbol{k}-d tree (short for \boldsymbol{k}-dimensional tree) is a spacepartitioning data structure for organizing points in a k-dimensional space.

	Average	Worst case
Search	O(log $n)$	$O(n)$

Clear Sky Detection Comparison (Day time)

VIIRS method
NWP method

Another Validation Case
280 \qquad

Polar Region

Zoom-in warm clouds

