2016 STAR JPSS Annual Science Team Meeting

Summary of JPSS-1/OMPS LEO&A Activities

T.J. Kelly, G.R. Jaross

2016-August-9

Some SNPP & J1 OMPS Comparisons

- Same instrument flight hardware design
 - No Limb Profiler (LP) on J1
 - Different diffusers:
 - SNPP: Aluminum
 - J1: QVD (diffuser features are much less)
 - Bus rate upgrade
 - SNPP: 196.6 kb/s (shared among NM, NP & LP)
 - J1: 409.6 kb/s
 - Flight S/W
 - SNPP uses FSW v3.6
 - J1 uses FSW v6.0
 - Major instrument performance upgrades
 - » data compression: throughput upgrade > ~2X increase
 - » reduced-frame EV Timing Pattern:
 - Effective, estimated data throughput = 800+ kb/s
- J1/EV_HI_RES capability to collect data at higher resolution:
 - Spatial: ~4X (from SNPP/BF=20 to J1/BF=5)
 - Temporal: ~6X (from SNPP/6 coadds to J1/no coadds)

- Compare on-orbit performance
- ~2X increase

- > ~2X increase optimizes efficiency
- > ~4X overall increase

J1 Mission Timeline & Opening the OMPS Door

- General Orbit Characteristics:
 - J1 *final* orbit is essentially the same as SNPP
 - J1 ~1/2 orbit ahead of SNPP (relative phasing)
- J1 Orbit Raising Campaign (ORC) is based upon SNPP ORC
 - SNPP ORC achieved final orbit by ~L+18
- ORC for J1:
 - First step: Get proper relative phasing of ½ orbit
 - Wait for right relative phase
 - Utilizes a ~10 km lower orbit for J1 (safe distance from SNPP)
 - Moves J1 relative phase ahead by ~13 s/orbit, or ~3 min/day
 - Minimizes fuel consumption
 - Range of Phasing Duration varies from ~3 to ~35 days
 - Second step: Execute J1's ORC
 - Best Case: 12 days
 - Worst Case: 24 days
- Effective range of OMPS door opening is from approximately L+38 to L+70
 - OMPS is powered on first, and opens its door last
 - Other instruments have sequences that have variable times to complete
- Reduce door open time prior to OAR & Operational Handover?

OMPS Notional Summary Timeline

Notes on "Day-1" Solar Cals

- No solar peeks planned during the Door Closed Phase
- *"Day-1"* Solar Cal:
 - If ORC not completed, then must wait for later Solar Cal to validate CBM timing
 - May need to work around the Orbit Raising Campaign
 - Similar to Inclination Adjustment Maneuver on SNPP & Solar Ref Cals in August of 2014
- Follow-up Solar Cals every 2 weeks, as occur on SNPP
 - TBD: Whether to use the 1-orbit or the 3-orbit Solar Cals?
 - 3-orbit = better SolEA coverage: ~16 images per Diff.Pos. covers most of Gon. SolEA
 - 1-orbit = fewer mech movements: 3 image per Diff.Pos.

Example of Consecutive Sequence of Initial Solar Cals

Sequence begins between Orbits-of-the-Day 5 through 10, so nightside Door Closed Dark Cals are collected outside of the SAA

Relative Orbit Number	CBM Activity	Nightside Activity	Notes
1, 2 & 3	3orb_EV_WRK_SCAL	Door Closed & Open Dark Cals	~16 images/DiffPos
4	EV_WRK_SCAL	Door Closed Dark Cals	3 images/DiffPos
5	EV_ExtSCAL4_TC	Door Open Dark Cals	Extended SolEA=[-15°,15°] @ Diff.Pos. #4
6	EV_ExtSCAL_NP	Door Open Dark Cals	Same Extended SolEA Range

Solar Cals with Spacecraft Yaw Mnvrs

- Desire is to measure Solar Cals at the angles used in the lab
 - Speak in terms of Solar Azimuth Angles instead of Solar Beta Angles
 - The 2 are very close during Solar Cals, where Solar Elevation Angle (SolEA) = $\sim 0^{\circ}$
 - SolarAz SolarBeta = ~0.3°
 - Need to check difference for J1 at SoIEA = 0°
- Utilize 3-orbit Solar Cals with Working Diffuser
 - Covers most of Goniometric Solar Elevation Angles
- Exact *Reference Solar Azimuth Angle* is TBD
- Question: Collect 3-orbit Solar Cals with Reference Diffuser too? (at Ref.Azimuth Angle)

Example of Sequence of Solar Cals using Spacecraft Yaw Maneuvers

This sequence is very similar to the 5th Solar Reference Calibrations collected on SNPP/OMPS on 2014-March-4 that used a S/C Yaw Mnvr to the *Reference Azimuth Angle*

Relative Orbit Number	CBM Activity	Desired Goniometric Solar Azimuth Angle	Notes
1 – 3	3orb_EV_WRK_SCAL	Reference Az. Angle	Door Closed Dark Cals will occur 3 times
4 – 6	3orb_EV_WRK_SCAL	Min Gon. Az. Angle (12°)	here, and span a difference of 6 orbits from the 1 st to the last, so at least 1 of the Door
7 -9	3orb_EV_WRK_SCAL	Max Gon. Az. Angle (32°)	Closed Dark Cals will fall outside the SAA.
10- 12	3orb_EV_REF_SCAL	Reference Az. Angle	May or may NOT be incluled

Notional Mission Timeline: Dark and LED Cals

Activity	Door Closed	Door Open	Door Open
	Phase	Phase (Early)	Phase (Later)
Door open	Frequent	Very	Nearly every
Dark Cal		frequently	orbit
Door Closed Dark Cal	Daily	Transitioning	Once a week
LED Cal (Door Closed)	Daily	Transitioning	Once every 4 weeks

Note:

Above Door Closed Dark and LED Cals follow EV Hi-Res data collection on the dayside

Special EV CBM Activity Summary

CBM Activity (PLT Tasks)	Coverage	Targets: Regions & Data	
EV_GeoLoc (PLT-4 & 5)	Run for several days	Geo-Location: Cloud-free land Dynamic Range: Bright, cloudy scenes, usually over oceans & seas	
EV_CoLoc	Run over land masses	Correlate NP EV imagery relative to NTC/NM EV imagery	
EV_FF_TC	Run for entire day Weekly collection	To observe any spectral shifts through the orbits Monitor and λ shifts with orbital or seasonal dependence.	
EV_FF_NP	Run for entire day Weekly collection	To observe any spectral shifts through the orbits Monitor and λ shifts with orbital or seasonal dependence.	
EV_PRNU_NORTH EV_PRNU_SOUTH	Seasonal; run for part of the day	Pixel Response Non-Uniformity Greenland & Antarctica around Summer Solstices	
EV_360	Run for entire day	Provide SolZA coverage >88° for all FOV in both Hemispheres.	
EV_LOW_RES	Run for entire day	Required data collection.	
EV_MED_RES	Run for entire day	Required data collection.	
Note: EV_HI_RES is primary EV (Science Data) operating mode during the transition into NomOps.			

OMPS Post-Launch Tests (PLTs) & Operational Handover

- Demonstrate that the systems are ready for Operational Handover at L+90 days
 - Includes spacecraft & all instruments
 - Operational Acceptance Review (OAR) at L+85
 - Begin in Door Closed Phase:
 - OMPS Trending
 - OMPS Noise Characterization
 - Begin in Door Open Phase
 - OMPS Calibration
 - OMPS Geolocation/ Pointing Accuracy
 - OMPS Dynamic Range
 - OMPS Data Rate Characterization
- Not an evaluation if systems meet requirements

J1/OMPS Trending PLT

OMPS Linearity Correction is stable and meets ±0.2% knowledge requirement over virtually the full dynamic range

S-NPP/OMPS Examples of
➤ TC Dark Cal distributions,
➤ NP LED Linearity Cals performance, &
➤ instrument TLM Min/Max/Mean trending

Science PLT Kickoff

Example of J1/OMPS Geolocation

380 nm Reflectivity from OMPS high spatial resolution data set Comparison to Aqua MODIS for 30 January 2012

Geo-location Results of S-NPP/OMPS and MODIS images

- Figure shows S-NPP/OMPS geo-location results (left) and MODIS (right) images
- MODIS image shows clear water/land boundaries (plus some clouds, silt in the water, etc.)
- IDL s/w tools provide an outline of land edges (white)
- Agreement between expected land-edges locations and S-NPP/OMPS reflectivity is accurate to near the highest resolution (BinFactor = 1), well within the goals for this PLT.

J1/OMPS Data Rate Characterization PLT

An Example of Data Compression from S-NPP/OMPS EV_HiResO3 Measurements

- Typical minimum compression found empirically ≈ 2.2X
 - EV_HiRes_O3 ST are sparse
- BATC assumed ~2X compression factor
 - Excludes BinFactor = 2 for aerosol λ 's (~892 additional macro-pixels)
- Data Compression Fault halts current data stream.
 - Nightside activities will start nominally.
 - If a fault occurs, then, generally, it may be best to return to EV collection using the <u>baseline</u> NM EV ST, i.e., stop Secondary CSM and run Primary CSM.
 - Iterate to new version of <u>trial</u> NM EV ST and run on-orbit to test

J1/OMPS NomOps Summary @ L+90: (Similar to SNPP/OMPS Overall)

Science Data : Default for All Orbits			
Orbits-of-the-Day	Dayside	Dark Cals	
1 -14/15	EV_MED_RES	Door Open	

Preliminary Calibration Schedule				Solar Ref Cals
Week 1	Week 2	Week 3	Week 4	Semi-Annual
Solar-Working		Solar-Working		Solar-Ref & Solar-Work
Door Closed Dark	Door Closed Dark	Door Closed Dark	Door Closed Dark	Door Closed Dark
	LED			

Potential Remaining Cal/Val Measurements:

- Full-Frame EV Measurements to characterize orbital & seasonal variabilities: collected weekly/bi-weekly into 1st or 2nd year?
- EV Data Rate Optimization (seasonally dependent)
- PRNU (seasonally dependent: Solstice <u>+</u>~6 weeks

Backup Slides

- 1. Expected range of J1 Solar Beta Angle
- 2. PLT Summary
- 3. J1/OMPS Calibration PLT Example
- 4. J1/OMPS Dynamic Range
- 5. Two Examples of J1/OMPS NomOps CBM

Expected J1 Solar Beta Angle Cycle

J1 Orbit Maintenance LTAN = 13:25 + 1 min

PLT Summary

#	PLT Name	Data	Description & Success Criteria
1	OMPS Activation	BATC/MOST activity	Instrument powered-on, runs functionality tests, and is approved as ready for operations
2	OMPS Trending	Dark & LED Cals, transient detection, TLM monitoring, etc.	 TLM stays within its defined yellow (& red) limits, analyze data to understand why out-of-range violations occur. Establish baselines & trends to characterize on-orbit behavior, including the LED and Dark Cals.
3	OMPS Noise Characterization	Estimate SNR from LED data	 Measure LED signal variance in individual pixels relative to their neighbors in an attempt to estimate noise as a function of the signal level. The theoretical SNR should not exceed the variance by more than 50%. Be aware of the location of the instruments relative to the SAA.
4	OMPS Calibration	Solar Cal & EV	 Measured solar spectra agree with synthesized spectra to within ±5% over the full spectral range excluding 300-310 nm. Agreement at this level requires both good radiometric and wavelength calibration. The first validation will be performed with the Working Diffuser. If a nearly coincident EV match-up occurs between J1 and OMI or SNPP, in both time & FOV, then can compare radiances, as has been done between SNPP & OMI.
5	OMPS Geolocation/ Pointing Accuracy	EV pixel radiances <i>match</i> calculated geo-locations	 Check at various wavelengths w/BF=1: Limits & middle of image regions, VIIRS correlative λ's, etc. Geographic feature mismatches should not exceed 1 ground pixel.
6	OMPS Dynamic Range	Max EV & Solar signals do not saturate any pixels	 Assess EV dynamic range by observing sensor response over very bright scenes (i.e, clouds) at wavelengths of maximum signal response, & for max Solar Cal signals. That at least 10% margin exists before saturation in the highest signal scenes.
7	OMPS Data Rate Characterization	Optimize NTC/NM EV High-Res ST	 Test updated NM EV ST on-orbit; monitor compression margins through the ground processing. Adjust NM EV ST and replace onboard table if necessary; continue iterating until ST is finalized, preserving a 10% margin & watching seasonal dependence.

J1/OMPS Calibration PLT

Comparison of Day 1 solar flux to Synthetic (KNMI) solar flux

Differences of S-NPP/OMPS Day-1 Solar and Synthetic Spectra <~6%

- Differences from both NP and NM are relatively small
 - Max differences are ~6%
 - Typical differences ~3%

J1/OMPS Dynamic Range

SNPP/NM data review: Highest count levels across NM spectra: Approximate Wavelength-pixels: 65 ⇔ 326.4 nm 73 ⇔ 329.7 nm (Due to higher instrument sensitivity and stronger radiances at those wavelengths.)

Peak signals in NM EV data, from S-NPP/OMPS

- Two signal peaks provide good sampling of max signal level
- Special NM EV ST uses 4 or 5 λ 's to sample each peak, w/ BinFactor = 1.
 - Catches the brightest scenes without binning (i.e., averaging) from any adjacent pixels
- Plenty of room in Special ST for geo-location
 - Direct benefit from reduced-frame imaging and data compression
 - Still some room for Ozone too

J1/OMPS NomOps: Science Data w/Dark & LED Cals

- No LP on J01
- NomOps: EV_HI_RES
 - Default Science Data collection activity
 - Not "Extended-EV" past sub-satellite SoIZA=88
 - Need to start ~75 sec prior to STC (2 EV-TPG loops)
 - Finish at NTC is similar
 - Open Door Dark Cals
 - Storage Region 2 sets of images in twilight
 - 5 images with IT = 30 sec
 - 5 images with IT = 10 sec
 - Image Region in S/C Night:
 - 41 images with IT = 30 sec
 - 21 images with IT = 10 sec
- Closed Door Cals:
 - Same dayside EV coverage
 EV_CLOSED_DARK is Closed Door version of above
 - EV_CLOSED_LED: Replace Dark w/LED Cals

J1/OMPS NomOps: Science Data w/Solar Cals

No LP instrument on JPSS-1/OMPS NomOps:

- 3orb_EV_WRK_SCAL or
- EV_WRK_SCAL
- New QVD Diffuser
 - Decreased diffuser features vs SNPP/OMPS
 - Evaluate on-orbit
- Differences are
 - EV_WRK_SCAL runs in single orbit
 - 3 Solar Measurements per 7 NM/TC Diffuser Positions
 - 9 per NP DiffPos
 - Closed Door Dark Cals
 - 3orb uses 3-orbits
 - 16 or 17 measurements per NM/TC DiffPos
 - Except 23 for TC4 and 16 for NP
 - Closed & Open Door Dark Cals
 - Similar image & Storage Dark Cals
 - Solar Cals take a bite out of EV near NTC