Validation of the NPP-Suomi OMPS ozone products with NOAA groundbased Dobson network.

By I. Petropavlovskikh^{1,2}, K. Miyagawa², B. Evans^{1,2}, G. McConville^{1,2}, A. McClure^{1,2}, E. Beach³, L. E. Flynn⁴

Cooperative Institute for research in Environmental Sciences, U. of Colorado, Boulder, CO
Global Monitoring Division, NOAA/ESRL, Boulder, CO
IMSG, Inc. @ Center for Satellite Applications and Research, NOAA/NESDIS, College Park, MD
4 Center for Satellite Applications and Research, NOAA/NESDIS, College Park, MD

Cooperative Institute for Research in Environmental Sciences

Introduction to NOAA's Ozone Network

NOAA GMD ozone and water vapor group maintains long-term records of total column and ozone profiles at 20+ unique locations around the globe.

Cooperative Institute for Research in Environmental Sciences

Spatial and temporal variability and its impact on Dobson comparisons

• Size of the footprint

OMI -13x24 , OMPS - 50x50 , SBUV -180x180 km2

- Separation in space
- Separation in time (jet stream meandering)
- Clouds ozone amount below the cloud, averaging of ozone field with partial clouds
- Surface pressure
- Temperature sensitivity in ozone x-sections

Cooperative Institute for Research in Environmental Sciences

Match ADDS

OMPS_NOAA (TOZ; Closest_Dist)

Cooperative Institute for Research in Environmental Sciences

Match ADDS

OMPS_NOAA (TOZavg)

Cooperative Institute for Research in Environmental Sciences

Match ADDS

OMPS_NOAA (TOZ; Closest_Dist)

September 19, 2015 Wavelength, Solar, Calibration NM NP CCR 15-2549 15-2548

Cooperative Institute for Research in Environmental Sciences

Total ozone (DU) / Ozone total (UD), 2015/09/18

Cooperative Institute for Research in Environmental Sciences

Matched ADDS

OMPS_NOAA

Cooperative Institute for Research in Environmental Sciences

Matched ADDS

OMPS_NASA

Cooperative Institute for Research in Environmental Sciences

Screening of the overpass data

Cooperative Institute for Research in Environmental Sciences

Matching criteria for the "closest"

Cooperative Institute for Research in Environmental Sciences

Tracking OMPS SDR changes

- 1. Wavelength scale changes.
- 2. Day 1 Solar changes
- 3. Changes in stray light corrections
- 4. Calibration constant changes.
- 5. Start of weekly dark update
- 6. Wavelength shift adjustment

Cooperative Institute for Research in Environmental Sciences

Timeline OMPS SDR changes

- February 2012 Problem with wavelength scales for both NM and NP SDRs were reprocessed.
- May 7, 2012 Wavelength scales for NM and <u>NP</u> CCR 389
- June 11, 2012 Day 1 Solar for NM CCR 411
- July 17, 2012 Day 1 Solar for <u>NP</u> CCR 458
- December 21, 2012 Dark Update NM CCR 12-776
- February 6, 2013 Dark Update <u>NP</u> CCR 13-801
- July 10, 2013 Stray Light Correction NM CCR 13-1115
- August 21 2013 Stray Light Correction NM CCR 13-0883
- February 20, 2014 Wavelength Shift Adjustment CCR 13-1192
- March 18, 2014 Stray Light Correction <u>NP</u> CCR 13-1249
- October 23, 2014 Wavelength Scale <u>NP</u> CCR 14-2053
- November 13, 2014 Day 1 Solar and Wavelength Scale NM CCR 14-2052
- November 21, 2014 Stray Light Correction NM CCR 14-1879
- December 18, 2014 Stray Light Correction NM CCR 14-2100
- September 19, 2015 Wavelength, Solar, Calibration NM <u>NP</u> CCR 15-2549 15-2548

Cooperative Institute for Research in Environmental Sciences

Lauder, NZ

Matched ADDS

Gridded Data

Cooperative Institute for Research in Environmental Sciences

Cooperative Institute for Research in Environmental Sciences

Umkehr AM and PM

Cooperative Institute for Research in Environmental Sciences

https://www.niwa.co.nz/pur-services/ornine-services/uv-ozon

Cooperative Institute for Research in Environmental Sciences

CIRES

Cooperative Institute for Research in Environmental Sciences

Boulder Dobson/SBUV Comparison (1992 – 2015)

Brandon Noirot, CIRES/NOAA

Cooperative Institute for Research in Environmental Sciences

Introduction

Problem:

Dobson Total Column Ozone exhibits seasonal error associated with current operational processing of the data using the constant stratospheric temperature. This creates the known bias from other Ozone-measuring methods.

Purpose:

To develop and validate the seasonal cycle correction method for Dobson Total Column Ozone record in Boulder (initially).

Ozone-Temperature Datasets Used to Test Correction:

- \sim Ozones ondes
- ~ Solar Backscatter UltraViolet (SBUV)

http://www.star.nesdis.noaa.gov/smcd/spb/ozone/Version8AlgorithmDesc.php

~ Ozone Mapping Profiler Suite (OMPS)

http://npp.gsfc.nasa.gov/omps.html

~ Global Modeling Initiative (GMI) (Susan Strahan, Goddard/USRA)

http://gmi.gsfc.nasa.gov/index.php?section=7

Cooperative Institute for Research in Environmental Sciences

Equations: Effective Temperature

Generic Effective Temperature (Ozone-Weighted Temperature) [2]:

$$T_{effective} = \frac{\int_{0}^{top} (T(Z) * O_3(Z)) dZ}{\int_{0}^{top} O_3(Z) dZ} = \frac{\sum_{i=1}^{N_{top}} [T(i) * O_3(i)]}{\sum_{j=1}^{N_{top}} O_3(j)}$$
(1)

Effective Temperature for Ozonesonde (Ozone-Weighted Temperature) [4]:

$$T_{effective} = \frac{\sum_{i=1}^{N_{top}} [T(i) * O_3(i)]}{\sum_{j=1}^{N_{top}} O_3(j)} + \frac{O_{3,top} * \frac{(T_{top} + T_{ref})}{2}}{TOC}$$
(2)

 T_{ref} is the reference temperature at a certain altitude using the **1976** Standard Atmosphere. $T_{ref} = -2.5$ °C for a Geopotential Height of **50**km.

TOC is the Total Ozone Column (in DU).

 T_{top} is the temperature at the burst.

Cooperative Institute for Research in Environmental Sciences

Equations: TOC

Total Ozone Column Calculation (in DU):

$$O_{3,column} = \frac{1}{2} 0.7898 ln(\frac{P_i}{P_{i+1}}) (VMR_i * P_i + VMR_{i+1} * P_{i+1})$$
(3)

VMR is the Volumetric Mixing Ratio in ppmv. *p* is pressure in hPa.

 $10^* RT_0 / g_0 p_0 = 0.7898$

Effective Temperature Adjusted Total Ozone Column (in DU) [2]: $TOC_{new} = TOC_{old} * [1 - 0.0013 * (T_{ef} + 226.7)]$ (4)

Cooperative Institute for Research in Environmental Sciences

Daily: Uncorrected Dobson

Cooperative Institute for Research in Environmental Sciences

Daily Averages: Corrected Dobson

CIRES

Cooperative Institute for Research in Environmental Sciences

Monthly Averages: Uncorrected Dobson

Cooperative Institute for Research in Environmental Sciences

Cooperative Institute for Research in Environmental Sciences

Correlation Matrix: R²

	Dobson	GMI	Sonde	SBUV	OMPS
Dobson	1.0000	0.9174	0.7575	0.9111	0.9313
GMI	0.9174	1.0000	0.6806	0.8366	0.8700
Sonde	0.7575	0.6806	1.0000	0.8550	0.7543
SBUV	0.9111	0.8366	0.8550	1.0000	0.8736
OMPS	0.9313	0.8700	0.7543	0.8736	1.0000

Cooperative Institute for Research in Environmental Sciences

