

NOAA/STAR JPSS Annual Science Team Meeting August 8-12, 2016 College Park, MD

Assessment of NUCAPS S-NPP CrIS/ATMS Sounding Products Using Reference and Conventional Radiosondes

Bomin Sun^{1,2}, Tony Reale², Frank Tilley^{1,2}, Mike Pettey^{1,2}, Nick Nalli^{1,2} and Chris Barnet³

I. M. Systems Group, Inc., Rockville, Maryland NOAA/NESDIS/Center for Applications and Research (STAR), College Park, Maryland Science and Technology Corp., Columbia, MD

Outline

- The NOAA Products Validation System (NPROVS) & and its expansion (NPROVS+)
- Discussion on uncertainty arising from
 - Time/space mismatch in radiosonde and satellite observations
 - Radiosonde measurement accuracy
 - Radiosonde and satellite vertical resolution differences
- Analysis of S-NPP CrIS/ATMS temperature and water vapor retrievals (IR+MW) based on collocations with Reference (3-yr) and conventional RAOBs (6 mons).
 - Global
 - Individual sites

NOAA Products Validation System: NPROVS and NPROVS+

NPROVS

NOAA Products Validation System (NPROVS)

12719 (865) available out of 12719

CoastLandIsland (Coast)Island (Inland)ShipDropsonde

Typical NPROVS Global Collocations (1000 per day)

Vaisala RS92 (28%), Vaisala RS41 (6%)

R Center for Satellite Applications and Research formerly ORA – Office of Research and Applications

NPROVS+

GRUAN and JPSS funded Dedicated (S-NPP) RAOB Sites Of 23,600 RAOBs, 5,600 are synchronized (1373 via JPSS/ARM) since Jan 2013 thru Jun 2016

GRUAN/Dedicated radiosonde sites and date ranges January 2013 to mid-July 2016 (01)

RAOB Site	Date Range & Number of launches	Active
Ascension Island ARM site (ASCENS, 80)	2016-04-29 to (175)	yes
CI RA/CSU (CI RA, 114)	2016-05-06 to 2016-06-28 (18)	No
AWARE Antarctic ARM site (AWARE, 80)	2015-12-04 to 2016-01-18 (169)	No
Barrow, AK ARM site (70027, 272, 81, 80)	2013-07-01 to (2579)	Yes
Beltsville, MD (BELTSV, 114, 80, 272)	2013-07-01 to (178)	Yes
Boul der, CO (BOULDE, 272)	2013-07-09 to (147)	Yes
Cabauw, Netherlands (06260, 272)	2013-07-01 to (1201)	Yes
Kritimati Island ENRR (CXENRR, 80)	2016-01-26 to 2016-03-13 (96)	No
Darwin, Australia ARM site (94120, 80)	2014-04-01 to 2015-01-14 (714)	No
Eastern North Atlantic Azores ARM site (GRACIO, 80)	2013-09-28 to (2086)	Yes
Lauder, New Zeal and (LAUDER, 123)	2013-07-03 to (234)	Yes
Lindenberg, Germany (10393, 272)	2013-07-01 to (4357)	Yes
Manus Island, Papua New Guinea ARM site (92036, 272, 80)	2013-07-01 to 2014-07-06 (110)	No
McMurdo, Antarctica ARM site (89664, 80)	2015-11-30 to 2016-03-31 (364)	No

GRUAN/Dedicated radiosonde sites and date ranges January 2013 to mid-July 2016 (02)

RAOB Site	Date Range & Number of launches	Active
Nauru Island ARM site (91532, 272)	2013-07-01 to 2013-08-26 (717)	No
Ny-Alesund, Norway (01004, 272)	2013-07-01 to (1270)	Yes
Oliktok Point, AK ARM site (OLIKTO, 80)	2013-09-10 to (944)	Yes
Payerne, Switzerland (06610, 272)	2013-07-02 to (106)	Yes
Potenza, Italy (16300, 272)	2013-12-19 to (73)	Yes
La Reunion Island, France ARM site (REUNIO, 272) Indian ocean away from Africa	2015-05-05 to 2016-05-28 (19)	No
San Cristobal Island, Ecuador (84008, 272) sea terrain	2013-07-26 to 2015-01-26 (142)	No
Southern Great Plains, OK ARM site (74646, 272, 80)	2013-07-01 to (4740)	Yes
Juan Santamaria, Costa Rica (78762, 272)	2013-07-11 to 2014-02-21 (39)	No
Sodankyl a, Finl and (02836, 272)	2013-07-03 to (2250)	Yes
Sterling, VA 71000 (81) 72403 (182) 72000 (152)	2015-10-28 to (724)	Yes
Tateno, Japan (47646, 272)	2013-07-01 to (296)	Yes
Table Mountain Facility, CA (TMFJPL, 272)	2014-12-05 to (27)	Yes
Pacific Missile Range Facility, HI (91162, 80)	2014-04-11 to 2014-04-26 (23)	No

GRUAN/Dedicated radiosonde sites and date ranges January 2013 to mid-July 2016 (03)

RAOB Site	Date Range & Number of launches	Active
Eureka, Northwestern terrority of Canada (71917, 272)	2013-01-10 to 2013-02-13 (17)	No
AEROSE Jan-Feb 2013	2013-01-09 to 2013-02-13 (109)	No
AEROSE Nov-DEC 2013	2013-11-12 to 2013-12-07 (96)	No
AEROSE Jan-Feb 2015	2015-11-17 to 2015-12-13 (90)	No
CalWater/ACAPEX Jan-Feb 2015	2015-01-12 to 2015-02-10 (171)	No
ENRR Feb-Mar 2016	2016-02-16 to 2016-03-16 (166)	No

Roles of NPROVS in sounding EDR cal/val

- Routine product monitoring (e.g., anomaly/outlier detection and long-term stability).
- Characterize product performance in a variety of meteorological conditions.
- Identify problem areas in retrieval algorithm in support of algorithm development.
- Provide independent oversight for operational product implementation.
- Provide support to AWIPS for NUCAPS applications in severe weather detection and prediction.

Outline

- The NOAA Products Validation System (NPROVS) & and its expansion (NPROVS+)
- Discussion on uncertainty arising from
 - Time/space mismatch in radiosonde and satellite observations
 - Radiosonde measurement accuracy
 - Radiosonde and satellite vertical resolution differences
- Analysis of S-NPP CrIS/ATMS temperature and water vapor retrievals (qc-accepted IR+MW)
 - Global collocations
 - Individual sites

Satellite-RAOB Time Mismatch Impact

RMS error changes with time mismatch

• Based on the analysis of 3-yr global IASI-RAOB collocations (506,354)

Satellite-RAOB Distance Mismatch Impact

RMS error changes with distance mismatch

• Based on the analysis of 3-yr global IASI-RAOB collocations (506,354)

Radiosonde temperature radiation bias impact

- Radiosondes tend to have a radiation induced warm bias in the UTLS during daytime.
- The RAOB T bias at 10-70 hPa is 0.18 K for all-the –day and 0.39 K for daytime (Sun et al., JGR 2013)

NUCAPS S-NPP IR+MW - minus - RAOB

Radiosonde Humidity Dry Bias Impact (Vaisala RS92 as an example vs S-NPP NUCAPS IR+MW)

 Most radiosondes tend to have a dry bias in the UTLS particularly daytime.

 The RAOB RH bias at 300 hPa is ~7% for Day and ~3% (Sun et al., JGR 2011)

RS41 Improvement over RS92

Radiosonde vs. Satellite Vertical Sensitivity Impact

(example of Temp inversion)

Sample: Strong inv (13,500) Weak inv (10,500)

Datasets used for S-NPP NUCAPS retrieval analysis

- NUCAPS-RAOB collocation data
 - Time mismatch: <1 hr
 - Distance mismatch: < 50 km
- Sonde types
 - Vaisala RS92 and RS41 (conventional)
 - Vaisala RS92 (Reference)
- Conventional RAOBs (NPROVS, 6 mons)
 - 14, 000 (global), 255 (sea)
- Reference RAOBs (NPROVS+, 3 yrs)
 - 4, 200 (global), 167 (sea)

S-NPP NUCAPS IR+MW Temperature Statistics (K)

S-NPP NUCAPS IR+MW H20 Vapor MR Statistics (%)

Suomi-NPP NUCAPS IR+MW Temperature Statistics

Suomi-NPP NUCAPS IR+MW Water Vapor Statistics

NUCAPS IR+ MW vs. ECMWF analysis

Center for Satellite

relative to JPSS funded field campaign ship RAOBs

Water Vapor Mixing Ratio % diff.

Beltsville & Sterling RAOBs for S-NPP Evaluation

71

-2

NUCAPS-minus-RAOB T mean diff(K)

Launch Synchronizations Summary

- 8 Sterling synchronized to S-NPP
- 90 Beltsville synchronized to S-NPP
- 4 Sterling / Beltsville synchronized to S-NPP:

•	10/10/15	7100	1733 Z
•	3/18/16	7200	1730 Z
•	4/15/16	7100	1705 Z
•	4/18/16	7100	0700 Z

10 10 bias RMS 19 19 26 26 Beltsville 51 51 Sterling 71 93 93 151 151 206 206 247 247 293 293 375 375 506 506 650 650

2

0.5

1.0

1.5 2.0 2.5

NUCAPS-minus-RAOB T RMS diff(K)

3.0

24

3.5

S-NPP IR+MW Temperature

ARM RAOBs for S-NPP Evaluation

North and South Polar RAOBs for S-NPP Evaluation

RAOB Launches within 1hr/50km of S-NPP

- 30 at AWARE ARM site
- 28 at McMurdo ARM site
- 398 at Ny-Alesund, Norway

S-NPP IR+MW Temperature

IR+MW NUCAPS S-NPP vs. AIRS Retrieval Statistics (Sea data, relative to Reference sondes)

Temperature

Sample: 60 collocations (+/- 1.5 hr & 50 km)

Summary

- NPROVS+ (anchored to Reference RAOBs) and NPROVS (anchored to conventional RAOB) are complementary in support of JPSS atmospheric sounding EDR cal/val
- Analysis of satellite collocations with conventional (6 months) and with Reference RAOBs (3 yrs), done globally and at individual sites, indicated
 - NUCAPS IR+MW temperature and water vapor retrievals perform well
- Uncertainties were discussed in the context of hyperspectral sounder retrieval validation:
 - Time mismatch matters
 - Satellite vs. radiosonde vertical resolution inconsistency
 - Radiosonde accuracy including warm T and dry humidity at the upper levels

relative to NOAA field campaign ship RAOBs

S-NPP NUCAPS IR+MW vs. MW-only Retrieval Statistics (Sea data; relative to Reference sondes)

Temperature Water Vapor Mixing Ratio (%) RMS RMS bias bias IR+MW MW-only Pressure (hPa) Pressure 1000 1.5 2.0 2.5 3.0 3.5 -20.5 1.0 -100-50NUCAPS-minus-RAOB T RMS diff(K) NUCAPS-minus-RAOB T mean diff(K) NUCAPS-minus-RAOB MR diff(%) NUCAPS-minus-RAOB MR RMS diff(%)

IR+MW (122), MW-only (185)