

Validation for Ocean Color satellites (LISCO and Ocean Cruises)

Alex Gilerson, Samir Ahmed, Matteo Ottaviani, Robert Foster, Ahmed El-Habashi, Carlos Carrizo, Eder Herrera

Optical Remote Sensing Laboratory, The City College of the City University of New York

JPSS meeting, August 10, 2016

Long Island Sound Coastal Observatory (LISCO)

Multi-spectral SeaPRISM instrument. Transmits data to NASA AERONET every hour.

HyperSAS-POL with polarimetric sensors. Transmitted data to CCNY server every hour. Was on the platform in 2009-2014. Currently used for the shipborne operations.

Comparison of spectral Remote Sensing Reflectance (Rrs) using NASA and NOAA MSL12 processing and AERONET data

Rrs are obtained from:

- MODIS (412, 443, 488, 547, and 667)
- VIIRS (410, 443, 486, 551, and 671)
- LISCO AERONET-OC, Level 1.5 (413, 442, 491, 551, 668)

Satellite data are filtered for sunglint and clouds on a 3x3 grid centered at LISCO

Stray-light flag is suspended

Temporal coincidence is sought with AERONET-OC measurements (±2h)

Time series data for the LISCO site

All 2015

2016

Validation on the LISCO site (all 2015)

Validation on the LISCO site (2016)

Validation in ocean cruises

CCNY ocean group participated in two VIIRS validation ocean cruises on NOAA R/V Nancy Foster (Nov. 2014, Dec. 2015)

<image>

Other teams: NOAA/STAR,

U. of Southern Mississippi,

UMAS Boston

NASA, U. of South Florida, OSU,

CCNY HyperSAS-POL (6 sensors) in front of the ship. Made underway measurements with continuous adjustment of its platform for Sun glint minimization

GER and ASD handheld spectroradiometers for manual operation

Comparison of HyperSAS and GER (handheld) data (open ocean station)

12-05-2015 Sat 15:39:04 VIIRS Val

Comparison of HyperSAS and GER (handheld) data (coastal water station)

Station 2

12-03-2015 Thu 17:21:54

VIIRS Val 2015

Comparison of HyperSAS, GER (handheld) and VIIRS data

Open ocean station

Wavelength [nm]

550

600

650

700

Reflectance [sr⁻¹]

400

450

500

Coastal water station

600

650

700

6

550 Wavelength [nm]

HyperSAS/VIIRS

500

HyperSAS showed very good performance in comparison with many other instruments on board and can be considered as a stable shipborne instrument for the validation of the satellite data

400

450

Glint Correction

How do we estimate polarized Remote Sensing Reflectance?

For scalar reflectance:

For polarized reflectance:

We need to know the full polarization state of the light after interaction with the surface.

$\bar{\rho} =$	$\rho_{11} \\ \rho_{21} \\ \rho_{31} \\ \rho_{41}$	$ ho_{12} ho_{22} ho_{32} ho_{42}$	$ ho_{13} ho_{23} ho_{33} ho_{42}$	$\rho_{14} \\ \rho_{24} \\ \rho_{34} \\ \rho_{44}$
	$ m L ho_{41}$	$ ho_{42}$	$ ho_{43}$	$ ho_{44}$]

Goal: Determine $\bar{\rho}$

$$p = f \begin{pmatrix} \theta_s, \phi_s, \theta_v, \phi_v, n(\lambda), \Omega_{FOV}, \\ windspeed, sky illumination \end{pmatrix}$$

 $\overline{Rrs} = (\overline{L}_t - \rho \cdot \overline{L}_s) / \overline{E}_d$

 ρ estimates how much incident light is reflected from the surface.

$$R_{rs}^{p}(\theta_{v},\phi_{v},\lambda) = \frac{L_{t}^{p}(\theta_{v},\phi_{v},\lambda) - \bar{\rho}L_{s}^{p}(\pi - \theta_{v},\phi_{v},\lambda)}{E_{d}(\lambda)} \quad [sr^{-1}]$$

Modeling of light reflection for wind driven ocean surfaces

R. Foster et al, Appl. Opt. (in review)

Effective surface reflective matrix

Sun angle 30 deg, viewing angle 40 deg, azimuth angle 90 deg

Dependence of p on the viewing angle and a field of view

Combination of accurate measurements and correct coefficients improves HyperSAS and other sensors data quality in above water measurements

 L_s^m is for the measurement of the radiometer with 5.75 deg half angle

Development of Algorithms for Retrieval of Chlorophyll-a in the Chesapeake Bay and other Coastal Waters Based on JPSS-VIIRS Bands

Evaluation on the field data, Chesapeake Bay, 2013

chl1 = 10^(a1 + a2*Rrs488/Rrs550 + a3*Rrs671/Rrs745)

Similar results chl2 = ((2.459*(t1*Rrs745/Rrs671) - 0.439 + t2)/(0.022))^1.124

Performance of the algorithms based on the satellite data

Evaluation on the satellite data VIIRS 2012-15, strict filtering, matchups with the in situ data of the Chesapeake Bay Program

R1=Rrs486/Rrs550; R2= Rrs671/Rrs745)

- Good performance of the algorithms which use 745nm band in comparison with OC3V on VIIRS.

- Small amount of data because of the strict filtering

Performance of the algorithms based on the satellite data

Stray light flag is suspended

Evaluation on the satellite data VIIRS 2012-15, strict filtering, matchups with the in situ data of the Chesapeake Bay Program

R1=Rrs486/Rrs550; R2= Rrs671/Rrs745)

While few outliers are present, new algorithms significantly outperform OC3V algorithm

Conclusions

- Based on the comparison of the satellite and AERONET-OC data on the LISCO site 412 and 443nm bands for MODIS and VIIRS do not perform well in coastal environment, atmospheric data should be further analyzed.
- HyperSAS instrument performs well in the shipborne mode and can be considered for the validation at the stations and underway.
- Accurate reflection coefficients were simulated for various wind and observation conditions and can be used for the improvement of the sky correction in above water measurements.
- Chlorophyll algorithms for the Chesapeake Bay with VIIRS bands have been developed based on the Rrs671/Rrs745 ratio which significantly outperform standard OC3V algorithms.
- We acknowledge support from the JPSS program and NOAA-CREST.