Evaluation of VIIRS performance over coastal waters and its capacity to detect dark water and algal blooms

Chuanmin Hu, Brian Barnes, Jennifer Cannizzaro, David English, Lin Qi Univ. South Florida, <u>huc@usf.edu</u>

1

NOAA JPSS/VIIRS Team Meeting, August 8 - 11, 2016

Objectives

- Evaluate/Validate VIIRS ocean color data products
- Demonstrate VIIRS capacity in studying coastal oceans (water quality, algal blooms, oil spills)
- > Share data and results with community to advance science and mission planning

How?

- Field measurements following community-accepted protocols
- Satellite data analysis and comparison with field measurements
- Communication with science team and the community
- Technical reports and publications

Field Measurements

Conducted by USF Optical Oceanography Lab in collaboration with other groups.

All measurements have filter-pads absorptions and CDOM absorptions. Most measurements also have scattering and reflectance IOPs. Some have taxonomy and profiling data.

Field Measurements

An example from the DEEPEND02 cruise (Aug 8 – 22, 2015)

MODIS 5-day composite ending Aug 12, overlaid with cruise stations and glider track to Aug 12

MODIS 3-day composite showing glider track up to Aug 18

NOAA VIIRS Validation Results

Initial Validation (IDPS processing) in 2014

0.020

800

New Validation (MSL12 processing)

VIIRS data downloaded from NOAA/NESDIS ftp site in July 2016 Field data collected between 2012 and 2015 from different cruises

Linear-scale same-day matchups between *in situ* and VIIRS $Rrs(\lambda)$.

	UPD (%)	MAD (sr ⁻¹)	Ν
Rrs(410)	63.7	0.00118	38
Rrs(443)	18.5	0.00140	39
Rrs(486)	20.9	0.00185	40
Rrs(551)	21.4	0.00232	43
Rrs(671)	37.1	0.00184	43

Two *in situ* spectra had replicate same-day VIIRS matchups (i.e., 2 valid VIIRS measurements for that location and date). One outlined in red and the other outlined in black. Rrs values for both spectra are higher than in situ values, thus they're easily identified in this graph.

	UPD (%)	MAD (sr ⁻¹)	Ν
Rrs(410)	63.7	0.00118	38
Rrs(443)	18.5	0.00140	39
Rrs(486)	20.9	0.00185	40
Rrs(551)	21.4	0.00232	43
Rrs(671)	37.1	0.00184	43

Log-scale same-day matchups between *in situ* and VIIRS $Rrs(\lambda)$.

V20123240406

V20133170518

	UPD (%)	MAD (sr ⁻¹)	Ν
Rrs(410)	35.6	0.00144	22
Rrs(443)	19.1	0.00171	25
Rrs(486)	23.8	0.00224	25
Rrs(551)	21.7	0.00293	25
Rrs(671)	38.5	0.00301	25

log-scale matchups between *in situ* and VIIRS chlor_a.

log-scale matchups between *in situ* and VIIRS chlor_a. Only same-day. Note that MOST of these points come from 2 consecutive dates of sampling within a HAB.

Typical algorithm problems over shallow waters

From Cannizzaro et al. (2013, JCR)

Linear-scale same-day matchups between *in situ* and VIIRS $Rrs(\lambda)$. Note that there are fewer matchups (8-10 per band) for NASA data relative to NOAA. Much of this is due to spatial consistency.

	UPD (%)	MAD (sr ⁻¹)	Ν
Rrs(410)	33	0.00089	31
Rrs(443)	23.8	0.00088	31
Rrs(486)	20.2	0.00115	32
Rrs(551)	19.4	0.00136	33
Rrs(671)	35.8	0.00035	33

Log-scale same-day matchups between *in situ* and VIIRS $Rrs(\lambda)$.

log-scale matchups between *in situ* and VIIRS chlor_a.

log-scale matchups between *in situ* and VIIRS chlor_a. Only same-day. Note that MOST of these points come from 2 consecutive dates of sampling within a HAB.

COMMON MATCHUPS

These tables include only the matchups that are in both the NOAA and NASA datasets. "Extra Matchups" is a count of the matchups unique to that dataset (e.g., NOAA captured 8 Rrs(410) matchups that were excluded by NASA, while 1 NASA Rrs(410) matchup was excluded by NOAA).

Chlor_a		UPD (%)		MAD (mg m ⁻³)		Extra Matchups	
	Ν	NASA	NOAA	NASA	NOAA	NASA	NOAA
-3 day	10	82.7	83.5	2	1.9	0	0
-2 day	26	75.8	84.1	2.7	3.2	3	7
-1 day	34	90.2	89.2	4.8	4.5	1	3
Same day	38	68.7	69.3	2.6	2.4	1	1
+1 day	21	57.3	59.3	1.8	1.8	3	4
+2 day	15	74.6	80.7	7.2	8.5	1	7
+3 day	28	72.4	64.9	5.2	4.1	2	2

All Rrs		UPD		MAD		Extra Matchups	
	Ν	NASA	NOAA	NASA	NOAA	NASA	NOAA
Rrs(410)	30	32.2	29.4	0.0009	0.00085	1	8
Rrs(443)	31	23.8	22.5	0.00088	0.00086	0	8
Rrs(486)	32	20.2	18.3	0.00115	0.00111	0	8
Rrs(551)	33	19.4	19	0.00136	0.00143	0	10
Rrs(671)	33	35.8	38.3	0.00035	0.00044	0	10

USA Rrs		UPD		MAD		Extra Matchups	
	Ν	NASA	NOAA	NASA	NOAA	NASA	NOAA
Rrs(410)	30	23.8	22.8	0.00076	0.00085	0	2
Rrs(443)	31	19.2	17.4	0.00085	0.00084	0	0
Rrs(486)	32	22.4	16.1	0.00133	0.0012	0	0
Rrs(551)	33	24.7	18.1	0.00176	0.0016	0	2
Rrs(671)	33	40.8	35	0.00024	0.00022	0	2

China Rrs		UI	PD	MAD		Extra Matchups	
	Ν	NASA	NOAA	NASA	NOAA	NASA	NOAA
Rrs(410)	30	39.7	35.1	0.00103	0.00085	1	6
Rrs(443)	31	27.6	26.7	0.00091	0.00088	0	8
Rrs(486)	32	18.4	20.2	0.00098	0.00103	0	8
Rrs(551)	33	14.4	19.8	0.00099	0.00127	0	8
Rrs(671)	33	31.1	41.5	0.00044	0.00065	0	8

Conclusions from validation results

➢MSL12 Rrs performance generally satisfactory in coastal waters (comparable to published MODIS results)

- Bio-optical inversion algorithms still need improvements
- > MSL12 Rrs slightly better than L2gen Rrs for the same pixels
- ➢ MSL12 shows more retrievals than L2gen

Detecting floating algae

Detecting floating algae

Vertical migration of dinoflagellates

