## **Towards consistent VIIRS AOP and IOP products**

### ZhongPing Lee, JunFang Lin, JianWei Wei

### **University of Massachusetts Boston**





# Acknowledgements:

# **NOAA/STAR**

## **UMB activities:**

1. Evaluation of VIIRS Rrs products
1a. Compare VIIRS Rrs with climatological Rrs of gyre waters
1b. Compare VIIRS Rrs with in situ measurements in MassBay

**1c. Participate NOAA Cal/Val cruise and other cruises** 

**2. Development of new products** 

2a. Quality Assurance System for Rrs

**2b. IOPs from in situ AOPs** 

2c. Secchi disk depth (Z<sub>SD</sub>) for VIIRS

## **1. Evaluation of VIIRS Rrs products**

### 1a. Compare VIIRS Rrs with MODIS climatological Rrs of gyre waters

### **Band characteristics**

|                                                     | VIIRS      |                   | MODISA     |                   |
|-----------------------------------------------------|------------|-------------------|------------|-------------------|
|                                                     | CW<br>[nm] | Bandwidth<br>[nm] | CW<br>[nm] | Bandwidth<br>[nm] |
| TNAG MI                                             | 410        | 20                | 412        | 15                |
| M2                                                  | 443        | 15                | 442        | 10                |
| M3                                                  | 486        | 19                | 488        | 10                |
| SPG M4                                              | 551        | 19                | 547        | 10                |
| Chlorophyll a Concentration (mg/m <sup>3</sup> )    |            |                   |            |                   |
| Location: South Pacific Gyre (SPG) and North Atlan  | tic Cu     | ro (NAC)          |            |                   |
| LUCALION. SUULI FACILIC GYLE (SFG) AND NOT LITALIAN | ut Uy      |                   |            |                   |

Data (8-day composite): VIIRS: latest reprocessing (from CoastWatch) MODIS\_Aqua (from OBPG; 8-day climatology) all are area average

### 2015 South Pacific Gyre



### "Previous" VIIRS Rrs vs MODIS climatology



### 2016 South Pacific Gyre



### **2015 North Atlantic Gyre**



### **2016 North Atlantic Gyre**







## **1. Evaluation of VIIRS Rrs products**

**1b.** Compare VIIRS Rrs with in situ measurements in MassBay

## Satellite - insitu Matchup

- (1). VIIRS CoastWatch Level-2 750 m daily data
- (2). Mean Rrs in 3x3 box
- (3). Flags Applied: Atmospheric correction failure, Sun glint (high glint and moderate glint), Cloud

## **<u>Direct</u>** Measurement of Water-leaving Radiance (L<sub>w</sub>)





**GPS unit** 



#### MassBay, September 7, 2014



5

0.1 1

2014Sep7 (Chla (mg/m<sup>3</sup>))

#### MassBay, September 17, 2014







0.1

#### MassBay, September 17, 2015



#### MassBay, September 18, 2015



## **1. Evaluation of VIIRS Rrs products**

**1c.** Participate NOAA Cal/Val cruise and other cruises

### NOAA/VIIRS Cruise, December 10, 2015



1

0.1

### VIIRS Cruise, December 11, 2015



#### 0.1



### Cruise just finished in the Yellow Sea and East Sea (June 2016): Preliminary results

![](_page_22_Figure_1.jpeg)

### Time Series A: offshore waters in the northeast of S. Korea OC data were "good", with no flags invoked; Time difference < 3 hours

![](_page_23_Figure_1.jpeg)

#### The location was slightly changing; so different pixels are used for VIIRS data.

### Time Series B: offshore waters in west of Seoul, S. Korea OC data were "questionable", with flags invoked; Time difference < 3 hours

![](_page_24_Figure_1.jpeg)

#### Same location; so the same VIIRS data are used.

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

## 2. Development of new products

### 2a. Quality Assurance System

![](_page_26_Figure_2.jpeg)

23 spectral Rrs reference system

![](_page_26_Figure_4.jpeg)

23 water types are developed from a large Rrs data base, according to the Rrs spectral shapes (cosine distance). The score system is to compare target Rrs spectrum with the reference (and its upper and lower boundary)...

### 2a. Quality Assurance System

#### **Examples of applications**

![](_page_27_Figure_2.jpeg)

# The quality assurance system can be readily applied to satellite and in situ ocean color measurements.

### **2. Development of new products** 2b. IOPs from in situ AOPs

 $R_{rs} = f_1(a, b_b)$   $nK_d = f_2(a, b_b)$  $\{a, b_h\}$ 

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

## **2. Development of new products**

2c. Secchi disk depth (Z<sub>SD</sub>) for VIIRS

$$Z_{SD} \approx \frac{1}{2.5K_d^{tr}} \ln\left(\frac{\left|r_T - r_w^{tr}\right|}{0.013}\right)$$

 $K_d^{tr}$  : attenuation coefficient in the transparent window (Lee et al 2015)

### For MODIS:

$$K_d^{tr} = \min(K_d(412, 443, 490, 531, 547, 667))$$

### Wavelength of MODIS for Minimum K<sub>d</sub>

![](_page_30_Figure_1.jpeg)

## **No 531 nm ...?** Simulate K<sub>d</sub>(531)

 $K_d 531_simulate = 0.2 * K_d 488 + 0.75 * K_d 547$ 

QAA (2002,2013) Lee et al (2005,2013)  $R_{rs} \rightarrow a\&b_b \rightarrow K_d$ 

![](_page_31_Figure_3.jpeg)

## **VIIRS global Z<sub>SD</sub>**

### VIIRS weekly $Z_{SD}$ , Jun 2013

![](_page_32_Figure_2.jpeg)

## Plan of FY17

## **Continue monitoring VIIRS Rrs and IOPs ...**

**1a. Compare VIIRS Rrs with climatological Rrs of gyre waters** 

**1b.** Compare VIIRS Rrs with in situ measurements (Puerto Rico, Mass Bay, other opportunities)

**1c. Evaluate VIIRS IOPs with improved in situ IOPs** 

1d. Evaluate VIIRS other products (e.g., Z<sub>SD</sub>)

2a. Participate NOAA Cal/Val cruise to collect AOP/IOP

# Thank you!