

Ocean color, biological heating and upper ocean thermal structure: A sensitivity analysis

Lead PI: Dr. Avichal Mehra¹

Co-Pl's: Drs. Hae-Cheol Kim², Eric Bayler³, David Behringer²

Collaborators: Drs. Jim Cummings⁴, Zulema Garraffo², Sudhir Nadiga², Vladimir Krasnopolsky¹, Carlos Lozano¹, Victoria Coales⁵, Seunghyun Son⁶

1: NOAA/NWS/NCEP/EMC; 2: IMSG at NOAA/NWS/NCEP/EMC; 3: NOAA/NESDIS/STAR; 4: SAIC at NOAA/NWS/NCEP/EMC; 5: UMD/HPL; 6: CIRA at NOAA/NESDIS/STAR

Project Descriptions

(Background)

- The NOAA Ecological Forecasting Roadmap (EFR) for 2015-2019 states that its objective is "to provide dependable, higher quality forecast products, derived from the successful transition of research and development into useful applications...."
- In support of the NOAA-approved roadmap, this project proposes to evaluate approaches and develop a prototype foundational global biogeochemical modeling capability for NOAA's global operational Real-Time Ocean Forecast System (RTOFS-Global) for reliably providing the global modeling fields required to support the ecological forecasts of the EFR technical teams

Project Descriptions

(Background)

• Specifically,

to establish a component for the national modeling 'backbone' that will generate global predictions of the common physical and biogeochemical variables used by ecological forecasts

➢ to address key linkages and gaps within the EFR infrastructure framework via JPSS VIIRS ocean color data and physicalbiogeochemical numerical modeling because ocean color data from VIIRS provides a unique path toward ecological forecasting through biogeochemical (BGC) analyses and forecasts, facilitating both real-time and scenario-based marine ecosystem applications

Scientific Objectives

- Employing coupled BGC-physical modeling to improve NWS forecasting skill at short-term and seasonal scales
 - ➢ by including the effects of biological heating on upper-ocean thermal structure
 - ➢ by exploring the direct assimilation of ocean color products (e.g., VIIRS) in conjunction with radiative transfer (RT) computations using existing validated algorithms (Lee et al., 2005).
- Providing scenario-based forecasting
 - ➢ to predict system responses to potential changes by drivers (natural or through ecosystem management decisions)
- Assessing the effects of carbon dynamics between the atmosphere and the ocean and subsequent changes in the acidity of the global ocean
- Exploring BGC model to support for upper-trophic-level modeling

Ocean Color and Biological Heating

STAR JPSS Annual Meeting, 2016

Ocean Model

(HYbrid Coordinate Ocean Model; HYCOM)

• GLBa0.24

Credit: Spindler

RTOFS-Global (NCEP's operational)
>HYCOM-base (1/12° and 41 layers)
>NAVOCEANO daily initialization with MVOI (now 3DVAR) data assimilation from NCODA (Navy Coupled Ocean Data Assimilation)
> KPP for vertical mixing
> 2-day nowcast (GDAS) and 6-day forecast (GFS)

- Hybrid Coordinate Ocean Model (HYCOM) with 1/4° and 32 layers
- \succ iso-pycnal (deep ocean), z-levels (surface), σ (coasts)
- Tripole grid (1 at South Pole and 2 from Arctic patches)
- ➢ Recti-linear (<47°N) and curve-linear (>47°N)

Numerical Experiments

Experiments	Ocean color product	Sensor	Period	Algorithms
KparCLM	Long-term climatological K _{dPAR} (Son and Wang, 2015)	SeaWiFS	1997-2009	Kara et al. (2004)
ChlaCLM	Long-term climatological Chl- <i>a</i> (O'Reilly et al., 1998)	SeaWiFS	1997-2009	Lee et al. (2005)
ChlaID	Interannual mean Chl- <i>a</i> (O'Reilly et al., 1998)	SeaWiFS	Each year (2001 – 2009)	Lee et al. (2005) (diurnal variation of solar zenith angle)
ChlaIND	Interannual mean Chl- <i>a</i> (O'Reilly et al., 1998)	SeaWiFS	Each year (2001 – 2009)	Lee et al. (2005) (no diurnal variation of solar zenith angle)

- KparCLM vs. ChlaCLM: algorithmic differences
- ChlaCLM vs. ChlaID: mesoscale variabilities
- ChlaID vs. ChlaIND: diurnal variabilities and short-term scale effects

Configurations

- SeaWiFS ocean color data, combined with hourly CFSR (Saha *et al.*, 2010) with additional flux correction, were used to hindcast ocean state 2001-2009
- The optical algorithm (CHL) is a two-band scheme for CASE 1 waters (Lee *et al.*, 2005) newly implemented in the latest HYCOM source code version (src2.2.98)
- The two-bands include the visible (VIS; 400-700 nm) and red bands (IR; 700-2000 nm)
- Required input are:
 - > Total absorption coefficient at the surface for 490 nm (a_{490} , m⁻¹)
 - Total backscattering coefficient at the surface for 490 nm (b_{b490}, m⁻¹)
 - These inherent optical properties (IOP's) are functions of chlorophyll and pure water
 - $\succ K_{VIS}(IOP,z) = K_1(IOP,\theta_a) + K_2(IOP,\theta_a)/(1+z)^{0.5}$
 - \succ K_{IR}(z, θ_a)=[0.56+2.304/(0.001+z)^{0.65}](1+0.002 θ_a)
 - Considered valid for global, basin-scale oceanography

Simulations (2001-2009)

- All runs are initialized at Jan. 1, 2001
- All simulations are free runs with no data assimilation (2001-2009)

SSH 2009

MLD_TEMP 2009

Mixed Layer Depth (MLD)

Sea Surface Height

MLD-averaged Tempearture

台

KparCLM minus ChlaCLM (Algorithm Difference)

Mixed Layer Depth (MLD)

Sea Surface Height

MLD-averaged Tempearture

ChlaCLM minus ChlaID (mesoscale variabilities)

STAR

MLD_TEMP 2009Jul

Mixed Layer Depth (MLD)

Sea Surface Height

MLD-averaged Tempearture

Mixed Layer Depth (MLD)

Polar Satellite System

Sea Surface Height

MLD-averaged Tempearture

Diurnal variation of surface forcings

 Diurnal variation effect of in-water solar zenith angle is significant and should be considered (especially, when high frequency forcings are used)