The EPS Aerosol Detection Product From Multi-Satellite Sensors

Pubu Ciren² and Shobha Kondragunta¹ ¹NOAA/NESDIS/STAR ² IMSG

JPSS Annual Meeting 2016 , College park, MD

Outline

- Overview of the Enterprise Processing System (EPS) Aerosol Detection Algorithm
- EPS Aerosol Detection Products from Multi-sensors: S-NPP VIIRS, EOS MODIS, Himawari AHI, and future Sensor: TEMPO
- Algorithm improvement
- Summary

What is the EPS Aerosol Detection Algorithm?

- The Enterprise Processing System Aerosol Detection algorithm was designed to have one set of algorithms working on observations from multi-sensors including both GEO and LEO platforms.
- Heritage is the GOES-R AWG and JPSS Risk Reduction aerosol detection algorithms.
- Uniform input and output structure.

EPS Aerosol Detection Algorithm (1)

PS Aerosol Detection Algorithm (

Table 1. Mapping of channels for different sensors to channels used in EPS ADP algorithm

Channel In EPS		Sensors			
		VIIRS	MODIS	ABI	AHI
1	0.412μm	M1	Band 8	X	x
2	0.445 μm	M2	Band 9	X	X
3	0.488 μm	M3	Band 3	Band 1	Band1
4	0.555 μm	M4	Band 4	Х	x
5	0.640 μm	M5	Band 1	Band 2	Band3
6	0.746 μm	M6	Band 15	X	x
7	0.865 μm	M7	Band 2	Band 3	Band 4
8	1.24 μm	M8	Band 5	X	x
9	1.38 μm	M9	Band 26	Band 4	X (Band 5)*
10	1.61 µm	M10	Band 6	Band 5	Band 5
11	2.25 μm	M11	Band 7	Band 6	Band 6
12	3.70 μm	M12	Band 20	X(Band 7)*	X(Band 7)*
13	4.05 μ m	M13	Band 21	Band 7	Band 7
14	10.7 μ m	M15	Band 31	Band 14	Band 14
15	12.01 μ m	M16	Band 32	Band 15	Band 15

Green: used by both deep-blue based and IR-visible based detection algorithms

Blue: only used by deep-blue based detection algorithm

Brown: only used by IR-Visible based detection algorithm.

*: band is missing but using the corresponding band in the parentheses instead.

X: channel is missing, but not needed, and filled with "-999.9"

Aerosol Detection Algorithm (path1)

Dust Smoke Discrimination Index DSDI = $-10[log_{10}(R_{412}/R_{2250})$

Aerosol Detection Algorithm (path1)

Aerosol Detection Algorithm (path2)

In IR region, dust decreases the brightness temperature difference between 11 and 12 μ m, compared to clear sky. In visible region, dust reduces the contrast between two neighboring wavelengths, such as 0.47 μ m/0.64 μ m.

Aerosol Detection Algorithm (path2)

Weak spectral dependence of reflection from clouds and strong wavelength dependent reflection from smoke allows us to use spectral contrast between two visible wavelengths to separate smoke from clouds; and further separate thick smoke from thin smoke .

Outputs from EPS Aerosol Detection(1)

Output flags from EPS ADP product

Type/Byte		Flag Name	Meaning		
			Value: 0 (default)	1	
Integer -	1	Volcanic Ash	No	yes	
	2	Cloud	No	yes	
	3	Dust	No	yes	
	4	Smoke	No	yes	
	5	None/Unknown/Clear	No	yes	
	6	Snow/ice	No	yes	

Quality flags from EPS ADP product

Byte/Bit [*]			Meaning		
		Quality Flag Name	2bit: 10 (default:00)	01	11
	0-1	QC_ASH_DETECTION	Low	Medium	High
1	2-3	QC_SMOKE_DETECTION	Low	Medium	High
	4-5	QC_DUST_CONFIDENCE	Low	Medium	High
	6-7	QC_NUC_CONFIDENCE	Low	Medium	High

Output from EPS ADP product

Туре	Name	Meaning
Float 32	Scaled Absorbing Aerosol Index	Index scaled by the corresponding threshold to illustrate the intensity of smoke/dust event
Float 32	Non-dust aerosol index	an index used to separate smoke from dust

Outputs from EPS Aerosol Detection(2)

Real-time EPS Aerosol Detection

Suomi NPP VIIRS - Enterprise Aerosols - Suspended Matter

23 Jul 2016

http://www.star.nesdis.noaa.gov/jpss/EDRs/products_aerosols.php

Enterprise Algorithm Aerosol Detection Product (ADP) generated using AHI for February 9, 2016

2016040_0330_00

Winter-time smog (mainly sulfate and highly absorbing brown carbon) is a big concern in Asia with high concentrations of aerosols in the boundary layer impacting air quality and visibility.

Enterprise Aerosol Detection Products: GEO v.s. LEO

AHI

Smoke/Smog

Asian dust captured in EPS ADP from both VIIRS (*left*) and Himawari AHI (*right*).

Enterprise Aerosol Detection Products : DUST

No data Volc. Snow glint Smoke Cloud Dust NUC ash ice

35

45

50

30

20

15

No data snow land water smoke smoke smoke dust dust

med

high

low med high

low

ice

Enterprise Aerosol Detection Products : MODIS

Smoke plume from forest fire originated from Canada on 06/29/2015

S-NPP VIIRS

MODIS Aqua

Smoke/Smog

Dust

Enterprise Aerosol Detection Products : Asian Smog

S-NPP VIIRS RGB

EPS ADP on S-NPP VIIRS

Smoke/Smog

Asian Smog lingering over China and India on 12/06/2015 detected by EPS ADP ¹⁷

Dust

Enterprise Aerosol Detection algorithm applied to future sensor: TEMPO

- TEMPO (Tropospheric Emissions: Monitoring of Pollution), a NASA Earth Venture Instrument, is a UV-Visible (290-740nm) spectrometer on GEO orbit.
- First GEO-satellite with measurements in the "deep-blue" spectral region.
- Will be on-orbit about the same time as GOES-R.
- NASA generated synthetic radiances for a smoke case
 - Hourly, 7-km nature run for 22 cases; smoke case for August 7, 2006 used in this study
 - Simulated radiances for GOES-R and TEMPO footprints using VLIDORT
 - Aerosol optical properties from OPAC data base

Enterprise Aerosol Detection algorithm applied to future sensor: TEMPO

Enterprise Aerosol Detection algorithm applied to future sensor: TEMPO

EPS ADP (on VIIRS) vs. CALIPSO

Land	Accuracy (%)	POCD (%)	POF D (%)
DUST	84.4	85.3	3.1
SMOKE	98.4	96.7	34.1

Water	Accuracy (%)	POCD (%)	POF D (%)
DUST	95.4	96.4	3.3
SMOKE	94.0	97.2	45.7

PSS AD

	TRUTH DATA			
	Yes	No		
Yes	А	В		
No	С	D		

```
POCD = A/(A+C)POFD = B/(A+B)Accuracy = (A+D)/(A+B+C+D)
```

EPS ADP vs. NOAA HMS smoke product

Example of smoke plume on 06/29/2015. Polygons of smoke plume from NOAA HMS (black-thick line) overlap smoke mask from EPS ADP on VIIRS

Global Monthly Smoke Fraction

0.25 x 0.25 degree

2013.01-2015.12

January

Smoke(dust) fraction is defined as the Number of smoke (dust) detected divided by the total number of detections in each grid.

Global Monthly Dust Fraction

0.25 x 0.25 degree

2013.01-2015.12

January

Smoke(dust) fraction is defined as the Number of smoke (dust) detected divided by the total number of detections in each grid.

Algorithm improvements (1)

AOD<0.2, 2012.05 to 2014.05

Background AAI is a function for scattering angle and different between backward (Relative azimuth<90) and forward (Relative azimuth>90) direction.

Algorithm improvements (2)

Relative azimuth >90.0

VIIRS bright -100(alog10(M1/M2))

Relative azimuth <90.0 Bright surface

The derived climatology of surface reflectance ratio between M1 and M2, indicates that AAI threshold may vary with geo-location, as a result of surface type changes.

Algorithm improvements (3)

Relative azimuth >90.0 **Relative azimuth <90.0** Dark surface Scattering angle=140 VIIRS dark -100(alog10(M1/M2)) VIIRS dark -100(alog10(M1/M2)) 3.0 6.0 9.0 12.0 15.(0.0 3.0 9.0 12.0 0.06.0 15.0

The derived climatology of surface reflectance ratio between M1 and M2, indicates that AAI threshold may vary with geo-location, as a result of surface type changes.

Summary

- EPS Aerosol detection algorithm combines IR-visible based and DAI-based algorithms to work on observations from multisensors.
- The concept, function and results of EPS ADP algorithm have been demonstrated by applying EPS aerosol detection algorithm to observations from multi-sensors, including MODIS, S-NPP VIIRS, AHI and future sensor (TEMPO)
- Validations against CALIOP VFM product indicated that EPS aerosol detection algorithm meets requirements with an accuracy of around 80%.
- Future improvements on EPS aerosol detection algorithm is undergoing by creating geometry and geo-location dependent thresholds to reduce false alarm rate.