national high magnetic field laboratory

PULSED FIELD FACILITY

the future

Click to Jump To:

DETECTORS, SPECTROMETERS & SOURCES

CONTINUOUS SPECTRAL MEASUREMENTS IN PULSED FIELDS

ABSORPTION AND PL SPECTROSCOPY OF HIGHLY-ALIGNED CARBON NANOTUBES

TIME RESOLVED PHOTOLUMINESCENCE IN HIGH B FIELDS

MAGNETIC CIRCULAR DICHROISM & FARADAY ROTATION

OTHER MEASUREMENTS & METHODS

<

specialization and methods

Optical

Spectroscopy

NHMFL-PFF

Contact:

Scott Crooker

 

505-665-7595

crooker@lanl.gov

detectors and spectrometers

• UV-VIS CCD array detector (backthinned, LN2-cooled; Princeton Instruments)

• IR array detector (InGaAs array, LN2-cooled; Princeton Instruments)

• Multichannel-plate PMT and avalanche photodiodes for time-resolved PL

• 300 mm & 500 mm spectrometers (Acton)

 

• Ti:sapphire (both ultrafast pulsed & CW ring).  Frequency doubling available.

• Helium-cadmium (442nm and 325nm)

• CW dye

• variety of laser diode sources (532nm, 405nm, 635nm, 785nm, 1550nm, etc)

• Tungsten-halogen and Xe lamps for broadband white light

• pulsed whitelight generation via photonic crystal fiber

• etc….

 

 

sources

continuous spectral measurements in pulsed fields

• Acquire high-res optical spectra at ~1 kHz rate (~1-3 ms/spectra) continuously throughout magnet pulse.

Photoluminescence, absorption, reflection, etc

PL from single ZnMnSe quantum well

wavelength

[Phys Rev. B Rapid Comm. 78, 081402R (2008); Phys. Rev. Lett. 96, 016406 (2006)]

 

laser

luminescence to spectrometer

& fast, backthinned CCD

 

0.3-300K

in-situ, thin-film, low-temp polarization optics

0T

60T

 

T=1.5K

absorption and PL spectroscopy of highly-aligned carbon nanotubes

• Measure absorption and PL from samples of aligned carbon nanotubes

 

• Aharonov-Bohm splitting and magnetic brightening scale with the magnetic flux threading the nanotube bore.

Voigt geometry; T=1.5T

[Phys Rev. B Rapid Comm. 78, 081402R (2008); Phys. Rev. Lett. 96, 016406 (2006)]

 

time resolved photoluminescence in high B fields

[Reference: Phys. Rev. Lett. 105, 067403 (2010); J. Phys. Chem. B 109, 15332 (2005)]

 

An example using time-correlated single photon counting (TCSPC):

 

• Time-resolved PL from PbSe nanocrystals in fields up to 15 T, temps down to 0.27 K

• Temperature-dependent lifetime indicates fine structure of excitons in these dots

 

magnetic circular dichroism & Faraday rotation

A method for optically probing magnetic properties in many materials

 

•  e.g., from iron-phthalocyanine films

 

• e.g., from magnetically-doped semiconductor nanocrystals

 

λ tunable

light source

RCP/LCP modulator

detector

0-8 Tesla

1.5-300K

 

[Nature Materials  8, 35 (2009); PRB 86, 014409 (2012)]

 

other measurements & methods

 Imaging spin currents in semiconductors using scanning Kerr-rotation microscopy

 

[Science 309, 2191 (2005); PRL 94, 236601 (2005); New J. Phys. 9, 347 (2007); PRB Rapid 80, 041305]

We visualize the spin currents resulting from either optical or electrical spin injection.

 

 

GaAs

iron

50μm

 Fluorescence line narrowing (resonant PL/Raman) at low-T, high-B

 

[PRB Rapid Comm 96, 241313 (2006); Nature Comm. 2, 280 (2011)]

 

We use a narrowband, tunable light source to excite at specific energies, and measure the nearly-resonant emission.

 

0T

33T

<

excite

 “Spin noise spectroscopy” of electrons and holes in semiconductor materials

 

[Nature 431, 49 (2004); PRB 79, 035208 (2009)]

[PRL 104, 036601 (2010); PRL 108, 186603 (2012)]

We use an optical magnetometer to “listen” to the intrinsic, random fluctuations of spins in thermal equilibrium.  This ‘spin noise’ alone reveals dynamical properties (via fluctuation-dissipation theorem).